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During the end-Permian extinction, a substantial amount of methane (CH4) was likely
released into the ocean-atmosphere system associated with the Siberian Traps
volcanism, although fluctuations in the global CH4 cycle in the aftermath of the
extinction remain poorly understood. The carbon (C) isotopic composition of
carbonate (δ13Ccarb) across the Permian-Triassic boundary (P-TB) was analyzed at
Chaotian, South China. The δ13Ccarb values decrease from ca. +1 to –2‰ across the
P-TB, possibly caused by a collapse of primary productivity associated with the
shallow-marine extinction. The frequent intercalation of felsic tuff layers around the
P-TB suggests that a volcanogenic carbon dioxide (CO2) input to the surface oceans
may also have contributed to the δ13Ccarb decline. The magnitude of the δ13Ccarb

decrease (∼3‰) is substantially smaller than the magnitude of a decrease in C isotopic
composition of organic matter (δ13Corg) in the same P-TB interval (∼7‰). This apparent
δ13Ccarb-δ13Corg decoupling could be explained by proliferation of methanogen
(“methanogenic burst”) in the sediments. A global δ13C compilation shows a large
variation in marine δ13Corg records, implying that the “methanogenic burst” according
to the Siberian Traps volcanism may have contributed, at least in part, to the δ13Corg

variability and to the elevated CH4 levels in the atmosphere. The present and previous
observations allow us to infer that the global CH4 cycle may have fluctuated
substantially in the aftermath of the extinction.
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INTRODUCTION

The end-Permian extinction was one of the largest biodiversity
crises in the Phanerozoic (e.g., Erwin, 2006; Alroy, 2010; Shen et al.,
2011a; Stanley, 2016), and many geologic events around the
Permian-Triassic boundary (P-TB) have been proposed as the
cause of the extinction, including a bolide impact (e.g., Xu et al.,
1985; Becker et al., 2004), Siberian Traps volcanism (e.g., Renne and
Basu, 1991; Campbell et al., 1992; Kamo et al., 2003; Reichow et al.,
2009; Burgess and Bowring, 2015) and the associatedmassive release
of thermogenic gases (e.g.,Wignall, 2001; Retallack and Jahren, 2008;
Svensen et al., 2009; Shen et al., 2012; Polozov et al., 2016) and
resulting global warming (e.g., Hallam and Wignall, 1997; Kidder
and Worsley, 2004; Brand et al., 2012; Joachimski et al., 2012),
oceanic anoxia (e.g., Wignall and Hallam, 1992; Wignall and
Twitchett, 1996; Isozaki, 1997; Algeo et al., 2008; Shen et al.,
2011c; Schobben et al., 2015) accompanied by H2S poisoning
(e.g., Grice et al., 2005; Kump et al., 2005; Zhang et al., 2017;
Zhou et al., 2017) and hypercapnia (Knoll et al., 1996, 2007), and
oceanic acidification (e.g., Heydari et al., 2003; Payne et al., 2007;
Clapham and Payne, 2011; Clarkson et al., 2015; Baresel et al., 2017;
Garbelli et al., 2017; Jurikova et al., 2020). However, the ultimate
trigger mechanisms of the extinction remain a topic of discussion
(e.g., Payne and Clapham, 2012; Isozaki, 2019; Racki, 2020).

The global carbon (C) cycle was likely perturbed during the
Permian-Triassic transition in association with those geologic
events that potentially contributed to the extinction (e.g., Kump
and Arthur, 1999). Stable C isotope geochemistry is useful to
correlate sections in different regions and to reveal the changes in
the global C cycle (e.g., Hayes et al., 1999). Plenty of studies
analyzed the C isotopic composition of carbonate (δ13Ccarb) of
P-TB rocks and documented a negative δ13Ccarb shift by ∼5‰
during the extinction in various sections around the world,
including South China, Iran, Armenia, northern Italy, Austria,
Slovenia, and Pakistan (e.g., Magaritz et al., 1988; Baud et al.,
1989; Holser et al., 1989; Jin et al., 2000; Richoz, 2006; Horacek
et al., 2007a; Horacek et al., 2007b; Korte and Kozur, 2010 and
references therein; Shen et al., 2013; Schobben et al., 2016;
Joachimski et al., 2020). Although several studies pointed out
a substantial diagenetic overprint and/or erosional unconformity
on the P-TB δ13Ccarb records (e.g., Heydari et al., 2001; Heydari
and Hassanzadeh, 2003; Grasby and Beauchamp, 2008; Yin et al.,
2014; Schobben et al., 2016; Li and Jones, 2017), the widely
recognized P-TB δ13Ccarb decrease has been generally regarded as
an original isotopic signal of seawater (Bagherpour et al., 2019).

Considering a simple box model of the surface-ocean C pool,
two principle mechanisms could explain the P-TB δ13C decrease
in marine carbonates: 1) a decrease in the output and 2) an
increase in the input of 13C-depleted C (e.g., Korte and Kozur,
2010). A collapse in primary productivity and reduction in
biological pump (“strangelove oceans”) corresponds to the
former mechanism (e.g., Kump, 1991), although it may have
produced only a ∼3‰ negative δ13Ccarb shift (Rampino and
Caldeira, 2005) and might not be sufficient to explain larger
P-TB δ13C declines commonly observed around the world. The
increase in the input of 13C-depleted C to the surface oceans
seems to bemore important (e.g., Payne and Clapham, 2012), and

several geologic events have been proposed for the C injection,
including volcanogenic CO2 emission involved in the Siberian
Traps volcanism (e.g. Renne et al., 1995; Hansen, 2006), methane
(CH4) release during destabilization of submarine and permafrost
clathrates or thermal alteration of coal by volcanic intrusion (e.g.
Erwin, 1993; Morante, 1996; Krull and Retallack, 2000; Berner,
2002; Sarkar et al., 2003; Retallack and Jahren, 2008), enhanced
erosion and reoxidation of sedimentary organic matter or
terrestrial soil (e.g. Baud et al., 1989; Holser et al., 1989; Ward
et al., 2000; Sephton et al., 2005), and the oceanic overturn or
shoaling of deep-water (e.g., Kajiwara et al., 1994; Knoll et al.,
1996; Algeo et al., 2007a). Korte and Kozur (2010)
comprehensively correlated the P-TB δ13Ccarb records of shelf
carbonates on a global scale. Based on a gradually decreasing
trend toward the P-TB, the authors suggested that the δ13Ccarb

decrease was caused by a combination of the Siberian Traps
volcanism and a shoaling of anoxic deep-waters onto shelves.

A negative shift of the C isotopic composition of organic C
(δ13Corg) across the P-TB has been reported in marine strata in
many sections such as Arctic Canada (e.g., Grasby and Beauchamp,
2008; Algeo et al., 2012), Greenland (e.g., Twitchett et al., 2001),
Spitsbergen (e.g., Wignall et al., 1998; Zuchuat et al., 2020), South
China (e.g., Cao et al., 2002), Japan (e.g., Takahashi et al., 2010), and
Australia (e.g., Morante, 1996). Themarine δ13Corg decrease has been
correlated normally with the negative δ13Ccarb shift in shelf
carbonates by assuming that the δ13Ccarb and δ13Corg trends were
parallel and the difference between the δ13Ccarb and δ13Ccarb values
(Δ13C) was consistent during the Permian-Triassic transition,
although the Δ13C value is generally controlled by several factors
such as carbon dioxide (CO2)-fixing enzymes and atmospheric CO2

levels (pCO2) (e.g., Hayes et al., 1999). A parallel δ13Ccarb and δ13Corg

decline has been reported in the P-TB intervals in Austria (Magaritz
et al., 1992), Italy (Sephton et al., 2002), mid-Panthalassa (Musashi
et al., 2001), and Kashmir (Algeo et al., 2007b). However, some
studies pointed out a δ13Ccarb-δ13Corg decoupling across the P-TB.
TheΔ13C values apparently decrease in some sections in SouthChina,
Slovenia, and Iran (Riccardi et al., 2007), and increase in some other
Chinese sections (e.g., Shen et al., 2012).

The δ13Corg decrease in a terrestrial P-TB succession has also
been reported in South China (e.g., Shen et al., 2011a), South Africa
(e.g., Ward et al., 2005; Gastaldo et al., 2020), Antarctica (e.g., Krull
and Retallack, 2000), Australia (Morante, 1996),Madagascar (deWit
et al., 2002), and Germany (Scholze et al., 2017). However, the
apparent δ13Corg trends on land are generally variable compared to
those of marine sediments, and the P-TB δ13Corg decline is not
clearly recognized in many terrestrial sections (e.g., Retallack et al.,
2005; Fielding et al., 2019). Moreover, the P-TB is generally not well
assigned in the terrestrial successions due to their poorer
biostratigraphic constraints. Under these circumstances, it is still
difficult to correlate the terrestrial δ13Corg records well with the
marine δ13Corg and δ13Ccarb records.

Previous studies particularly suggested that a substantial
amount of CH4 was released into the ocean/atmosphere
during the Siberian Traps volcanism via several processes,
including volcanic intrusion into coal (e.g., Retallack and
Jahren, 2008; Shen et al., 2012; Rampino et al., 2017),
destabilization of submarine and permafrost clathrates (e.g.,
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Krull et al., 2000; Krull et al., 2004; Brand et al., 2016), and
enhanced microbial methanogenesis (“methanogenic burst”)
(Rothman et al., 2014). As CH4 is a potent greenhouse gas,
the huge CH4 input may have contributed to climate warming
in the aftermath of the extinction (e.g., Hallam andWignall, 1997;
Joachimski et al., 2012; Sun et al., 2012; Cui and Kump, 2015).
However, the global CH4 cycle during the Permian-Triassic
transition has been poorly examined and constrained. In this
study, we analyzed the δ13Ccarb records of the P-TB carbonates at
Chaotian in northern Sichuan, South China. Together with the
previously reported δ13Corg records of the same interval, we
examined the sedimentary C cycle in eastern Paleotethys
during the Permian-Triassic transition. Moreover, we compiled
the δ13Ccarb and δ13Corg records of P-TB successions in various
marine and terrestrial environments around the world, to
examine whether the isotopic signal detected at Chaotian was
a global one. Based on those results, we suggest fluctuations in the
global CH4 cycle in the aftermath of the end-Permian extinction.

GEOLOGICAL SETTING AND
STRATIGRAPHY

During the Permian to early Triassic, South China was isolated
from other continental blocks and located at low latitudes on the

eastern side of Pangea (Figure 1B; Muttoni et al., 2009). Shallow-
marine carbonates and terrigenous clastics with diverse fossils
accumulated extensively on its platform (e.g., Zhao et al., 1981;
Yang et al., 1987; Jin et al., 1998). In northern Sichuan along the
northwestern edge of South China, carbonates and mudstones of
deep-water facies accumulated on a slope/basin that faced on the
eastern Paleotethys (Figure 1C; Zhu et al., 1999; Wang and Jin,
2000). The Chaotian section is located ca. 20 km to the north of
Guangyuan city in northern Sichuan (Figure 1; 32°37′N,
105°51′E; Isozaki et al. 2004). At Chaotian, Guadalupian
(middle Permian) to lowermost Triassic carbonates are
continuously exposed along the bank of the Jialingjiang River
in a narrow gorge called Mingyuexia. We mapped the eastern
bank of the gorge on the southern limb of an E-W trending
anticline.

The Permo-Triassic rocks at Chaotian (>300 m thick in total)
are composed of the Guadalupian Maokou Formation, the
Lopingian Wujiaping and Dalong formations, and the
lowermost Triassic Feixianguan Formation, in ascending order
(Figure 2; Isozaki et al., 2004; Isozaki et al., 2007; Saitoh et al.,
2013a; Saitoh et al., 2013b; Saitoh et al., 2014a). The Maokou
Formation (>150 m thick) is composed mainly of massive dark
gray bioclastic limestone with diverse shallow-marine fossils,
such as calcareous algae, brachiopods, ostracodes, crinoids,
rugosa corals, and fusulines. However, the uppermost part

FIGURE 1 | Locality and paleogeographic maps of Chaotian. (A) Location map of Chaotian. (B) Global paleogeographic map around the P-TB (modified from
Muttoni et al., 2009). (C) Sedimentary facies distribution in South China in the late Changhsingian (late Late Permian) (modified from Wang and Jin, 2000). (D) Detailed
sedimentary facies in the square in C (modified from Zhu et al., 1999).
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(∼11 m thick) of the Maokou Formation is composed of thinly
bedded black calcareous mudstone and black chert/siliceous
mudstone with abundant radiolarians, conodonts, and
ammonoids. The Wujiaping Formation (∼70 m thick) is
composed mainly of massive dark gray bioclastic limestone
with black chert nodules/lenses, containing shallow-marine
fossils such as fusulines, smaller foraminifer, rugosa corals,
calcareous algae and brachiopods. At the base of the
Wujiaping Formation, a ca. 2 m thick tuffaceous Wangpo bed
occurs. The Dalong Formation (∼25 m thick) is composedmainly
of thinly bedded black mudstone, black siliceous mudstone and
dark gray limestone with radiolarians, ammonoids, bivalves, and
brachiopods. The Feixianguan Formation (>30 m thick) is
composed mainly of thinly bedded light gray micritic
limestone containing few conodonts, ammonoids, and
brachiopods.

Zhao et al. (1978) and Yang et al. (1987) originally described
the overall biostratigraphy of the Chaotian section based on
fusulines, conodonts, and ammonoids. Isozaki et al. (2004) and
Isozaki et al. (2007) re-examined the stratigraphy of the section
that spans across the two mass extinction intervals; i.e. the
Guadalupian-Lopingian boundary (G-LB) and the P-TB in
higher resolution. More analyses on the litho-, bio-, and
chemo-stratigraphy of the Chaotian section added further
information (Isozaki et al., 2008; Lai et al., 2008; Saitoh
et al., 2013a; Saitoh et al., 2013b; Jost et al., 2014; Saitoh
et al., 2014b; Saitoh et al., 2015; Saitoh et al., 2017). Isozaki

et al. (2007) and Ji et al. (2007) constructed the detailed
lithostratigraphy and conodont zonation for the ∼12m thick
interval across the P-TB, and suggested that intermittent felsic
volcanism may have contributed to the extinction. Cao et al.
(2010) analyzed the δ13Ccarb values around the P-TB and found a
negative δ13C excursion around the extinction horizon. Saitoh et al.
(2014a) analyzed the nitrogen and organic C isotopic composition of
the ∼40m thick P-TB interval at Chaotian and suggested enhanced
nitrogen fixation in the anoxic oceans throughout the
Changhsingian.

In the present study, we focused on the ∼40 m thick P-TB
interval at Chaotian (Figure 2). This interval is identical to that
analyzed in Saitoh et al. (2014a), which contains the ∼12 m thick
carbonates analyzed in Isozaki et al. (2007). Fresh rock samples,
collected from outcrops and from core samples by scientific
drilling to a depth of >30 m, were prepared as polished slabs
and thin sections for describing microtextures by petrographical
observations. The analyzed P-TB interval is composed of three
stratigraphic units: 1) the upper Wujiaping Formation, 2) the
Dalong Formation, and 3) the lowermost Feixianguan Formation,
in ascending order. The upper Wujiaping Formation (∼10 m
thick) is composed mainly of massive dark gray limestone (lime
mudstone/wackestone) with some sandy/muddy limestones
(Figure 3D). Black chert nodules (<10 cm in diameter) occur
in the uppermost part of the Wujiaping Formation. The upper
Wujiaping limestones contain diverse shallow-marine fossils
such as calcareous algae, crinoids, brachiopods, radiolarians,

FIGURE 2 | The analyzed P-TB interval at Chaotian with ranges of fossil groups (modified from Saitoh et al., 2014a). Un.: unit in Isozaki et al. (2007), E. Tr.: Early
Triassic, In.: Induan, Feix.: Feixianguan, ii: ichnofabric index.
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FIGURE 3 | A distant view and photographs of the P-TB interval at Chaotian. (A) A distant view of Chaotian (circled car for scale). (B,C)Outcrops of the uppermost
Dalong limestones. (D–F) Thin sections of bioclastic limestone in the upper Wujiaping Formation (D), calcareous mudstone in the Dalong Formation (E), and lowermost
Feixianguan limestone (F). (G-J) Secondary electron (SE) image (G) and element maps (H–J) of calcareous mudstone in the Dalong Formation. Carbonates in the
mudstones are mainly finely-fragmented bioclasts with few secondary dolomites.
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and ostracodes. Burrows frequently occur in the upperWujiaping
limestones.

The Dalong Formation (∼25 m thick) is composed mainly of
thinly bedded black calcareous mudstone, black siliceous
mudstone, dark gray muddy limestone, and bedded gray
limestone (lime mudstone/wackestone) (Figures 2, 3). The
Dalong Formation contains abundant radiolarians with a
minor amount of ostracodes, brachiopods, ammonoids, and
conodonts, bivalves and small foraminifers. The uppermost
(∼3.5 m thick) part of the Dalong Formation mostly consists
of bedded gray limestone (lime mudstone/wackestone) (‘Unit C
and D’ in Isozaki et al., 2007). Thin (<10 cm thick) acidic tuff
layers frequently occur in these limestones. Burrows are observed
in the lower and upper Dalong Formation, although bioturbation
is generally absent in the middle Dalong Formation. Small pyrite
framboids (mostly 3–7 µm in diameter) occur abundantly
throughout the Dalong Formation. The lowermost Feixianguan
Formation (∼5m thick) is composed of thinly bedded gray marl
and light gray micritic limestone with some sandy/muddy
limestones. In particular, the lowermost (1.4 m thick) part (‘Unit
E’ in Isozaki et al., 2007) is composed of gray marl. This marl unit is
almost barren of fossil, although few ammonoids and bivalves occur
from the basal part. The upper part of the lowermost Feixianguan
Formation consists of light gray micritic limestone containing few
conodonts and brachiopods. Few trace fossils are recognized in the
lowermost Feixianguan Formation.

Based on index fossils (fusulines, conodonts, ammonoids, corals,
and brachiopods), the analyzed P-TB interval at Chaotian is dated as
follows (Figure 2; Zhao et al., 1978; Yang et al., 1987; Isozaki et al.,
2004; Isozaki et al., 2007): The upper Wujiaping Formation is
correlated with the Wuchiapingian (early Lopingian). The lower
Dalong Formation is correlated with the late Wuchiapingian,
whereas the middle Dalong Formation belongs to the late
Wuchiapingian to early Changhsingian. The upper Dalong
Formation is correlated with the late Changhsingian. The
lowermost Feixianguan Formation is correlated with the latest
Changhsingian to early Induan (early Early Triassic). The main
extinction horizon is assigned at the base of the Feixianguan
Formation (‘Unit D/E boundary’ in Isozaki et al., 2007), whereas
the biostratigraphically defined P-TB is assigned at the base of the
overlying micritic limestones (‘Unit E/F boundary’ in Isozaki et al.,
2007). Based on the litho- and bio-facies, the sedimentary
environments of the three stratigraphic units of the analyzed
P-TB interval were reconstructed (Figure 2; Saitoh et al., 2014a).
The upper Wujiaping limestones were deposited on the shallow
euphotic shelf under oxic conditions. In contrast, the lower and
middle Dalong Formation was deposited on the relatively deep
slope/basin under anoxic conditions. The upper Dalong limestones
were deposited on the relatively shallow slope below the storm wave
base under oxic conditions. The lowermost Feixianguan formations
were deposited on a relatively shallow slope under anoxic conditions.

ANALYTICAL METHODS

Fresh rock samples were carefully chosen based on detailed
observations of polished slabs and thin sections. Powdered

sample was reacted with 100% phosphoric acid at 28°C for
24 h using a GasBench (Thermo Fisher Scientific). The
extracted CO2 was separated in a chromatography line with a
helium flow, and the carbon and oxygen isotope ratios were
measured with a DELTA V PLUS mass spectrometer. The
carbonate carbon and oxygen isotopic compositions are
presented using the delta notation δ13C � ((13C/12C)sample/
(13C/12C)standard−1) and δ18O � ((18O/16O)sample/(

18O/
16O)standard−1), respectively. The δ13C and δ18O values are
reported in ‰ relative to the Vienna Peedee Belemnite
(V-PDB) standard. The analytical reproducibility of the
δ13Ccarb and δ18Ocarb values was better than 0.1 and 0.1‰,
respectively.

RESULTS

Table 1 lists all the measured δ13Ccarb and δ18Ocarb values of the
P-TB interval. Figure 4 shows chemostratigraphic profiles of the
δ13Ccarb, δ18Ocarb, δ13Corg, and Δ13C values and TOC contents.
The δ13Corg values and TOC contents were previously reported in
Saitoh et al. (2014a). Figure 5 shows a δ13Ccarb-δ18Ocarb cross
plot. The δ13Ccarb values range from −6.9 to +4.3‰, with an
average value of ca. 0‰. The δ18Ocarb values range from −7.9 to
−2.9‰, with an average value of ca. −5.9‰.

The δ13Ccarb values are consistently ca. +4‰ in the upper
Wujiaping Formation and decrease from ca. +4‰ to −2‰
across the Wujiaping/Dalong formation boundary. In the
Dalong Formation, the δ13Ccarb values increase slightly
from ca. −2 to +1‰ upward except for some anomalously
low (<−3‰) values (open symbols in Figure 4). The δ13Ccarb

values decrease from ca. +1‰ to −2‰ across the Dalong/
Feixianguan formation boundary (i.e., the P-TB) and are
consistent around −2‰ in the lowermost Feixianguan
carbonates. The present δ13Ccarb results around the P-TB
are generally identical to the results in Cao et al. (2010).
The δ18Ocarb values are somewhat variable in in the upper
Wujiaping limestones and are mainly around −7‰ in the
overlying Dalong Formation. Above the P-TB, the δ18Ocarb

values are mostly around −6‰ in the lowermost Feixianguan
Formation. The Δ13C values are mainly between 27 and 29‰
in the upper Wujiaping Formation and decrease slightly to ca.
26‰ in the Dalong Formation. The Δ13C values increase to ca.
30‰ in the overlying lowermost Feixianguan carbonates.

No linear correlation is observed between the δ13Ccarb and
δ18Ocarb values (Figure 5). It indicates that secondary
overprinting on the Chaotian carbonates is not significant
(Knauth and Kennedy, 2009). In the chemostratigraphic
profile, however, some δ13Ccarb values in the Dalong
Formation are anomalously low (<−3‰; open symbols in
Figure 4) and these samples were likely affected at least
partly by the secondary addition of 13C-depleted C. Except
for these anomalous values, the present δ13Ccarb results
represent a smooth chemostratigraphic trend in the analyzed
interval. This trend may record secular changes in the δ13C
value of dissolved inorganic carbon (DIC) in seawater (δ13CDIC)
in the Lopingian to earliest Triassic. Based on the C isotopic
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TABLE 1 | C and O isotopic composition of the analyzed P-TB interval at Chaotian. The δ13Corg values and TOC contents were reported in Saitoh et al. (2014a).

Formation Sample ID Lithology Thickness
(m)

δ13Ccarb

vs.
VPDB
(‰)

δ18Ocarb

vs.
VPDB
(‰)

δ13Corg

vs.
VPDB
(‰)

Δ13C
vs.

VPDB
(‰)

TOC
(%)

Feixianguan G8 dark gray limestone 38.3 −1.7 −5.5 −29.6 27.9 0.0
Feixianguan G6 dark gray limestone 38.0 −1.9 −6.1 −31.3 29.5 0.0
Feixianguan G4 gray limestone 37.7 −1.8 −5.9 −31.4 29.7 0.1
Feixianguan G1 dark gray limestone 37.3 −1.7 −5.7 −31.8 30.0 0.1
Feixianguan F11 gray limestone 36.8 −1.8 −5.9 −31.6 29.9 0.1
Feixianguan F7 dark gray limestone 36.5 −1.9 −4.9 −31.7 29.8 0.1
Feixianguan F5 gray marl 36.3 −1.6 −5.5 −28.2 26.7 0.0
Feixianguan F3 gray limestone 36.0 −1.3 −6.0 −30.8 29.5 0.0
Feixianguan F1 gray limestone 35.7 −0.9 −6.9 −30.1 29.2 0.1
Feixianguan E11 gray marl 35.1 −0.4 −5.8
Feixianguan E7 gray marl 34.8 −0.1 −4.4 −25.6 25.5 0.1
Feixianguan E2 gray marl 34.4 0.1 −4.4 −25.0 25.0 0.1
Dalong D19 gray limestone 33.7 1.0 −5.7 −28.2 29.2 0.0
Dalong D15 gray limestone 33.3 0.4 −7.0 −25.6 26.0 0.1
Dalong D13 gray limestone 33.1 −1.3 −7.5 −25.2 23.8 0.2
Dalong D9 gray limestone 32.8 0.6 −5.7 −25.2 25.8 0.1
Dalong D3 gray limestone 32.2 1.9 −4.0 −25.7 27.6 0.0
Dalong C8 black mudstone 31.6 0.6 −7.0 −26.0 26.6 0.9
Dalong C6 black mudstone 31.2 −0.2 −7.2 −26.7 26.4 2.0
Dalong B33 black mudstone 30.3 0.2 −7.1 −27.1 27.3 1.6
Dalong B26 black mudstone 29.7 0.3 −7.1 −27.2 27.4 1.5
Dalong B20 dark gray muddy

limestone
29.2 0.7 −6.7 −26.0 26.7 0.7

Dalong B10 dark gray muddy
limestone

28.5 −3.4 −6.0 −27.2 23.8 0.7

Dalong B3 dark gray muddy
limestone

28.0 −5.9 −6.0 −26.5 20.6 0.7

Dalong A11 black mudstone 27.4 −26.6 4.8
Dalong Dalong49 black mudstone 25.5 −2.6 −7.1 −26.8 24.2 10.1
Dalong Dalong48 black mudstone 25.1 −0.4 −7.2 −26.8 26.4 10.4
Dalong Dalong47 black mudstone 24.6 −2.1 −7.1 −26.6 24.6 10.0
Dalong Dalong46 black mudstone 24.0 −4.1 −4.7 −26.7 22.7 8.1
Dalong Dalong45 black mudstone 23.1 0.4 −6.6 −26.6 26.9 10.0
Dalong Dalong44 black mudstone 22.9 0.6 −6.9 −26.8 27.3 9.9
Dalong Dalong43 black mudstone 22.4 −0.5 −7.0 −26.7 26.1 12.3
Dalong Dalong42 black mudstone 21.9 0.4 −6.9 −26.2 26.7 9.0
Dalong Dalong41 black mudstone 20.3 −3.2 −5.0 −27.2 24.0 7.5
Dalong Dalong40 black mudstone 20.0 −3.6 −5.3 −27.2 23.6 9.2
Dalong Dalong39 black mudstone 19.8 −1.1 −7.8 −27.1 25.9 13.2
Dalong Dalong38 black mudstone 19.3 −1.4 −7.2 −27.0 25.6 9.4
Dalong Dalong37 black mudstone 19.0 −0.2 −7.2 −27.1 26.9 8.7
Dalong Dalong36 black mudstone 18.5 −1.6 −6.0 −27.3 25.7 12.3
Dalong Dalong34 black mudstone 18.2 −0.7 −7.0 −27.0 26.3 9.4
Dalong Dalong33 black mudstone 17.9 −1.4 −7.3 −27.3 25.9 11.3
Dalong Dalong31 black mudstone 17.7 −0.4 −7.4 −27.6 27.2 5.9
Dalong Dalong30 dark gray muddy

limestone
17.6 −6.9 −2.9 −28.5 21.6 2.5

Dalong Dalong29 black mudstone 17.2 −1.6 −7.1 −27.2 25.6 10.0
Dalong Dalong28 black mudstone 16.6 −2.3 −7.5 −27.2 25.0 3.9
Dalong Dalong27 black mudstone 16.3 −1.8 −7.0 −27.4 25.6 8.3
Dalong Dalong26 dark gray muddy

limestone
16.1 −5.8 −4.7 −27.6 21.8 1.4

Dalong Dalong25 dark gray muddy
limestone

15.6 −1.9 −6.5 −27.3 25.3 5.8

Dalong Dalong23 black mudstone 15.5 −2.3 −6.9 −26.8 24.5 15.1
Dalong Dalong21 black mudstone 15.2 −1.3 −7.5 −27.1 25.8 10.3
Dalong Dalong20 black mudstone 14.8 −1.6 −6.9 −27.4 25.8 11.9
Dalong Dalong18 black mudstone 14.3 −0.5 −7.9 −27.0 26.5 12.4
Dalong Dalong17 black mudstone 14.0 −0.6 −7.2 −27.2 26.6 11.6
Dalong Dalong14 dark gray muddy

limestone
13.6 −0.4 −3.8 −27.8 27.4 3.1

(Continued on following page)
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analyses of the P-TB carbonates in Iran, Schobben et al. (2016)
suggested that the first-order δ13Ccarb trend in the bulk
carbonates is robust, although small-scale isotopic

fluctuations may be due to secondary alteration. In the
following discussion, we focus solely on the first-order
δ13Ccarb trend in the analyzed interval at Chaotian.

TABLE 1 | (Continued) C and O isotopic composition of the analyzed P-TB interval at Chaotian. The δ13Corg values and TOC contents were reported in Saitoh et al.
(2014a).

Formation Sample ID Lithology Thickness
(m)

δ13Ccarb

vs.
VPDB
(‰)

δ18Ocarb

vs.
VPDB
(‰)

δ13Corg

vs.
VPDB
(‰)

Δ13C
vs.

VPDB
(‰)

TOC
(%)

Dalong Dalong13 black mudstone 13.4 −1.4 −6.5 −27.0 25.6 13.4
Dalong Dalong12 dark gray muddy

limestone
13.2 −0.8 −3.8 −28.2 27.4 0.2

Dalong Dalong11 black mudstone 13.0 −1.5 −7.2 −27.2 25.7 8.7
Dalong Dalong10 black mudstone 12.8 −0.7 −7.1 −27.0 26.4 3.9
Dalong Dalong9 black mudstone 12.5 0.0 −7.1 −26.4 26.4 11.9
Dalong Dalong8 black mudstone 12.0 −0.1 −5.8 −26.4 26.2 5.6
Dalong Dalong6 black mudstone 11.7 0.6 −6.4 −26.3 26.9 7.1
Dalong Dalong5 black mudstone 11.2 −0.1 −5.9 −26.2 26.1 3.6
Dalong Dalong3 black mudstone 10.8 1.2 −7.3 −26.2 27.4 4.1
Dalong Dalong2 black mudstone 9.9 1.9 −6.3 −24.8 26.7 0.8
Dalong Dalong1 gray mudstone 9.4 2.4 −5.7 −24.9 27.3 0.4
Wujiaping Wujiaping20 dark gray limestone 9.0 2.9 −4.2 −26.8 29.7 0.1
Wujiaping Wujiaping19 dark gray limestone 8.6 2.5 −6.0 −25.1 27.6 0.1
Wujiaping Wujiaping18 dark gray limestone 8.2 3.5 −4.7 −24.9 28.4 0.1
Wujiaping Wujiaping17 dark gray limestone 7.6 3.9 −4.1 −24.6 28.5 0.3
Wujiaping Wujiaping16 dark gray limestone 7.2 4.2 −3.3 −22.6 26.7 0.1
Wujiaping Wujiaping15 dark gray limestone 6.6 3.4 −4.0 −24.9 28.2 0.0
Wujiaping Wujiaping14 dark gray limestone 6.0 3.4 −7.0 −24.5 27.8 0.1
Wujiaping Wujiaping13 dark gray limestone 5.2 4.3 −3.0 −24.7 29.1 0.1
Wujiaping Wujiaping12 dark gray limestone 4.6 4.1 −3.5 −24.7 28.8 0.2
Wujiaping Wujiaping11 dark gray limestone 4.1 4.2 −3.2 −25.0 29.2 0.1
Wujiaping Wujiaping10 dark gray limestone 3.6 3.7 −6.4 −25.0 28.7 0.1
Wujiaping Wujiaping9 dark gray limestone 3.1 4.2 −3.4 −24.7 28.9 0.0
Wujiaping Wujiaping8 dark gray limestone 2.6 3.9 −5.0 −23.3 27.2 0.3
Wujiaping Wujiaping7 dark gray limestone 2.0 4.1 −4.5 −24.3 28.4 0.2
Wujiaping Wujiaping6 dark gray limestone 1.3 3.8 −5.2 −24.3 28.2 0.4
Wujiaping Wujiaping5 dark gray limestone 0.8 3.9 −4.4 −25.1 29.0 0.2
Wujiaping Wujiaping4 dark gray limestone 0.0 4.1 −3.9 −24.8 28.9 0.8

FIGURE 4 | Chemostratigraphy of the analyzed P-TB interval at Chaotian. The δ13Corg values and TOC contents were previously reported in Saitoh et al. (2014a).
Open symbols represent samples with anomalously low δ13Ccarb values in the Dalong Formation.
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DISCUSSION

δ13C Stratigraphy at Chaotian
δ13Ccarb Decrease Around the
Wuchiapingian-Changhsingian Boundary
The δ13Ccarb values unidirectionally decrease from ca. +4 to −2‰
across the Wujiaping/Dalong formation boundary at Chaotian
(Figure 4). Although the timing of this negative δ13Ccarb shift is
not well constrained because of the poor occurrence of index
fossils, the δ13Ccarb shift likely occurred around the
Wuchiapingian-Changhsingian boundary. This δ13Ccarb

decrease apparently coincides with the deepening of the
sedimentary setting from a shallow shelf to relatively deep
slope/basin floor. However, we emphasize that carbonates in
the Dalong Formation of deep-water facies comprise mainly
finely fragmented bioclasts and few secondary dolomite
(Figures 3E, G–J). Thus, regardless of the lithofacies change,
this prominent δ13Ccarb decrease likely records the Lopingian
secular change in the δ13CDIC value in the surface oceans in the
eastern Paleotethys.

Two possible mechanisms could explain the δ13Ccarb

decrease: 1) collapse of primary productivity in the surface
oceans and 2) addition of isotopically light C into the DIC pool
of the surface oceans. As certain shallow-marine taxa went
extinct across the Wuchiapingian-Changhsingian boundary

(e.g., Knoll et al., 1996; Bambach, 2006), extinction-related
productivity deficiency may have contributed to the δ13Ccarb

decrease at Chaotian. However, the magnitude of the δ13Ccarb

drop (∼6‰) seems to be too large to be caused solely by the
collapse of primary productivity (e.g., Berner, 2002); thus the
addition of 13C-depleted C to the DIC pool in the surface
oceans likely contributed to the δ13Ccarb drop. We emphasize
that the sedimentary setting deepened from oxic shelf to
anoxic slope/basin floor. The ubiquitous occurrence of small
pyrite framboids in the Dalong Formation suggests the
dominance of sulfate reduction in an anoxic deep-water
mass on the slope/basin. The DIC in the deep-water mass
would have become enriched in 12C due to the anaerobic
respiration; therefore, the injection of 13C-depleted C into
the surface oceans via shoaling of the deep-water might
have contributed to the negative δ13Ccarb shift. It is
noteworthy that no eruption of a large igneous province or
substantial sea-level change occurred on a global scale around
the Wuchiapingian-Changhsingian boundary (e.g., Haq and
Schutter, 2008; Bond and Wignall, 2014). An input of
volcanogenic excess CO2 and/or reoxidized sedimentary
organic C during a eustatic sea-level fall is unlikely for the
cause of the δ13Ccarb drop at Chaotian.

Regional and global correlations would be useful to constrain
the cause of the δ13Ccarb decrease at Chaotian. Around the

FIGURE 5 | Geochemical cross-plots of the analyzed P-TB interval at Chaotian.
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Wuchiapingian-Changhsingian boundary, a ca. 6‰ negative
δ13Ccarb shift was reported at Shangsi, ca. 60 km southwest of
Chaotian, in northern Sichuan (Bai et al., 2008; Shen et al. 2013),
which is almost identical in magnitude to that at Chaotian.
Therefore, the deep-water carbonates in northwestern South
China probably record the common δ13CDIC decrease in
eastern Paleotethys. Similar δ13Ccarb declines were also
reported from other sections in South China, including Dukou
in Sichuan, Shiligou in Chongqing, Zhuqiao in Hubei, and
Heshan and Matan in Guangxi (Shao et al., 2000; Shen et al.,
2013; Yang et al., 2019); nonetheless, the magnitude of the
δ13Ccarb decreases (∼2–5‰) is variable and smaller than that
at Chaotian. At Abadeh in central Iran, Richoz (2006) found a
negative δ13Ccarb shift in the corresponding interval in the
Hambast Formation, which was later re-confirmed by Liu
et al. (2013). A similar negative δ13Ccarb excursion (∼4‰) was
also reported from the equivalent horizons of Julfa beds/Alibashi
Formation boundary at Kuh-e-Ali Bashi in northwestern Iran
(Shen et al., 2013). These almost co-eval negative δ13Ccarb shifts
around the Wuchiapingian-Changhsingian boundary in Iran are
comparable to that at Chaotian. Moreover, a large negative
δ13Ccarb excursion (∼7‰) was demonstrated in the
Bellerophon Formation at the Reppwand section in the Carnic
Alps, Austria (Buggisch et al., 2015), which is also correlative to
the negative shift at Chaotian.

A negative δ13Corg shift, as well as the δ13Ccarb drop, around
the Wuchiapingian-Changhsingian boundary has been
documented in several sections in South China and Arctic
Canada (e.g., Bai et al., 2008; Beauchamp et al., 2009; Wei
et al., 2015; Liao et al., 2016). These δ13Corg decreases may
have likewise recorded fluctuations in the global C cycle;
however, a negative δ13Ccarb/δ13Corg shift around the
Wuchiapingian-Changhsingian boundary is not clear in the
rest of the Permian world (e.g., Baud et al., 1996; Korte et al.,
2004; Richoz, 2006; Baud et al., 2012). Even at the above-
mentioned sections in which a negative δ13C shift is
recognized, the magnitude of and the trend in the δ13C
decrease vary substantially (Shen et al., 2013). Under the
circumstances, we infer that the C cycle in the surface oceans
around the Wuchiapingian-Changhsingian boundary was not
globally uniform but rather widely variable possibly owing to
local factors, such as primary productivity and oceanic circulation
along the continental margins. More studies with high chemo-
and bio-stratigraphic resolutions in various sections around the
world are necessary to reveal the fluctuations in the global C cycle
around the Wuchiapingian-Changhsingian boundary.

δ13Ccarb Decrease Across the P-TB
The δ13Ccarb values decrease from ca. +1 to −2‰ across the
Dalong/Feixianguan formation boundary (P-TB) at Chaotian
(Figure 4). This negative δ13Ccarb shift is identical to that
previously reported at Chaotian in Cao et al. (2010). Likewise,
two possible mechanisms should be considered for the cause of
this δ13Ccarb decrease: 1) collapse of primary productivity in the
surface oceans and 2) addition of 13C-depleted C to the DIC pool
in the surface oceans. The negative δ13Ccarb shift occurs across the
major extinction horizon, suggesting that the shift was driven by

the collapse of primary productivity during the extinction. The
addition of isotopically light C to the shallow-marine DIC pool is
another plausible candidate for the cause of the δ13Ccarb decrease.
Isozaki et al. (2007) found frequent intercalations of thin felsic
tuff layers across the extinction horizon at Chaotian and
suggested volcanic stress on the shallow-marine biota during
the extinction. An excess input of volcanogenic CO2 (δ13C:
∼−5‰) may also have contributed to the δ13Ccarb decrease.
Weathering of sedimentary organic matter due to a large
regression is another possible mechanism for the δ13Ccarb

decrease (e.g., Yin et al., 2014). However, the sea-level drop
occurred significantly before the δ13Ccarb shift at Chaotian
(Isozaki et al., 2007; Saitoh et al., 2014a), without any evidence
for shallowing across the extinction horizon (Figure 4). This
suggests that a contribution of reoxidized organic C to the
δ13Ccarb drop was negligible. Song et al. (2012a) proposed the
existence of a large vertical δ13Ccarb gradient in the end-Permian
oceans, along which a deepening of the sedimentary setting
possibly caused the observed δ13Ccarb decrease. At Chaotian,
however, the upper Dalong and lowermost Feixianguan
carbonates across the P-TB were deposited on a relatively
shallow slope without abrupt sea-level changes. Thus the
δ13Ccarb decrease cannot be attributed to the assumed vertical
δ13Ccarb gradient in the water column.

Δ13C Increase Across the P-TB
Saitoh et al. (2014a) reported the δ13Corg chemostratigraphy of the
P-TB interval at Chaotian and revealed that the δ13Corg values drop
abruptly by 7‰ (from −25 to −32‰) immediately above the
extinction horizon (Figure 4). This clear δ13Corg decrease is
consistent apparently with the δ13Ccarb shift documented in the
present study, although the magnitude of the δ13Corg decrease
(∼7‰) is substantially larger than that of the δ13Ccarb decrease
(∼3‰). The Δ13C (�δ13Ccarb−δ13Corg) values increase by 4‰ from
+26‰ to +30‰ in the aftermath of the extinction at Chaotian. Two
possible mechanisms may explain this Δ13C increase: 1) an increase
in C isotopic fractionation of biological C fixation and 2) additional
input of 13C-depleted C to the sedimentary organic matter. The high
aqueous CO2 concentration ([CO2 (aq)]) generally promotes the
large C isotopic fractionation during photosynthetic C fixation (εp)
in the surface oceans (e.g., Rau et al., 1992, Rau et al., 1997; Kump
and Arthur, 1999). The Δ13C values are ∼26‰ in the middle to
upper Dalong Formation at Chaotian, which are consistent with the
typical Calvin cycle (e.g., Schidlowski et al., 1983), although the
values increase substantially to ca. 30‰ above the P-TB (Figure 4). It
should be noted that a substantial amount of CO2 was released
during the Siberian Traps volcanism around and mostly after the
P-TB (Supplementary Information) (e.g. Renne et al., 1995; Hansen,
2006; Cui et al., 2013; Cui and Kump, 2015). The increased [CO2

(aq)] may have promoted greater εp (e.g., Kump and Arthur, 1999).
The previous estimates of the amount of emitted CO2 and of

the elevated pCO2 during the Permian-Triassic transition are
useful to constrain the influence of εp changes on the δ13C
records. Cui and Kump (2015) estimated that pCO2 rose from
500 to 4,000 ppm to ∼8,000 ppm during the extinction
(Supplementary Information). Kump and Arthur (1999)
derived a simplified relationship between pCO2 and εp from
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isotopic data of modern marine algae, with some assumptions: εp
≈ 25–2,301/pCO2. According to this relationship, εp with pCO2 of
500, 4,000, and 8,000 ppm is calculated apparently to be ∼20.4,
∼24.4, and ∼24.7‰, respectively. Thus, the relatively large δ13Corg

decline (∼7‰) compared to the δ13Ccarb decrease (∼3‰) at
Chaotian can be explained by the enlarged εp according to the
elevated pCO2. However, it is obviously difficult to extrapolate
the relationship formula between pCO2 and εp in Kump and
Arthur (1999) directly to the end-Permian system, due to several
reasons. First, several assumptions with large uncertainties are
included in this simplified formula, such as the dissolved
phosphate concentration in the surface seawater. Moreover,
εp is controlled, not only by pCO2, but also by temperature
and the growth rate of phytoplankton, in general (e.g., Rau et al.,
1997; Kump and Arthur, 1999). Second, this relationship
formula was obtained empirically on the basis of data of
modern haptophyte algae and seawater (Bidigare et al., 1997).
Different coefficients on the formula would be more appropriate
for the end-Permian phytoplankton communities with
unknown physiology. Third, the relationship was obtained on
the basis of observations of modern environments with relatively
low [CO2 (aq)] (calculated pCO2 < 850 ppm, assuming
equilibration according to Henry’s Law at 25°C). It is
uncertain whether the formula can be extrapolated to
environments with substantially high [CO2 (aq)], which are
particularly supposed in the aftermath of the end-Permian
extinction (Cui et al., 2013; Cui and Kump, 2015).

Nonetheless, the low sensitivity of εp to pCO2 under high-
pCO2 conditions is probably essential (Rau et al., 1997; Kump and
Arthur, 1999). Because the reciprocal dependence of εp on pCO2

is attributed theoretically to isotopic discrimination by diffusion
of CO2 from the ambient seawater to the phytoplankton cell
(Laws et al., 1995). It is also suggested that the sensitivity of εp to
pCO2 of land plants is lower than that of marine phytoplankton
(e.g., Popp et al., 1989). The estimated high pCO2 up to
4,000 ppm before the end-Permian extinction (Brand et al.,
2012; Cui et al., 2013; Cui and Kump, 2015) allows us to
postulate that the influence of εp change on the Chaotian δ13C
records was not significant.

Additional input of 13C-depleted C to the sedimentary organic
C pool is the other possible mechanism for the Chaotian P-TB
Δ13C increase. Rothman et al. (2014) suggested that increased Ni
input to the ocean/atmosphere during the Siberian Traps
volcanism promoted methanogen proliferation in the oceans
(“methanogenic burst”). Methanogens generally fix C via the
reductive acetyl-CoA pathway, which can produce greater C
isotopic fractionation than the Calvin cycle (e.g., Preuss et al.,
1989). The organic C from methanogenic biomass may have
contributed, at least partly, to the Δ13C increase. Terrestrial plants
are another possible C source for sedimentary organic matter in
the Chaotian carbonates. In general, the δ13Corg value of Permian
terrestrial plant is thought to be higher than the value of marine
phytoplankton (e.g., Faure et al., 1995; Foster et al., 1997; Korte
et al., 2001). Thus, if the terrestrial C flux decreased across the
P-TB, the bulk δ13Corg and Δ13C values of the sediments would
have decreased and increased, respectively. However, two lines of
evidence exclude the possibility of the decreased terrestrial flux at

Chaotian. First, as discussed above, the water depth of
depositional site did not change substantially across the P-TB,
and a large change in terrestrial flux owing to sea-level changes is
unlikely. Second, previous studies suggested enhanced chemical
weathering and increased continental flux during the Permian-
Triassic transition (Algeo and Twitchett, 2010; Algeo et al., 2011;
Cao et al., 2019). At Chaotian, the enhanced chemical weathering
is supported by the increased supply of clay minerals/micas
around the P-TB based on bulk nitrogen isotope records
(Saitoh et al., 2014a). The terrestrial flux may have increased
(rather than decreased) in the aftermath of the extinction, and
thus the observed Δ13C increase cannot be attributed to the
decreased terrestrial C flux. Also, the putative vertical δ13Corg

gradient (Luo et al., 2014) cannot explain the Δ13C increase
because the water depth of depositional site did not change
substantially across the P-TB at Chaotian.

In summary, the P-TB Δ13C increase at Chaotian was most
likely due to the proliferation of methanogen in the sediments
during the Siberian Traps volcanism (Figure 4), corresponding to
the “methanogenic burst” event at a local scale (Rothman et al.,
2014).

Global δ13C Correlations Around the P-TB
Regional δ13C Differences
The δ13C profile across the P-TB at Chaotian is here relatively
perceived through global correlation, in the context of global C cycle
during the Permian-Triassic transition. We focused particularly on
the apparent magnitude of the δ13C decrease across the P-TB in
previous studies and examined its frequency distribution on a global
scale (Figures 6, 7). All the reference sections in the current
compilation are summarized in Table 2. We categorize the
compiled sections geographically into seven realms; i.e., Boreal,
eastern Paleotethys, western Paleotethys, western Pangea, mid-
Panthalassa, Neotethys, and Gondwana (Figure 6).

Marine Records
Previous δ13Ccarb studies are concentrated mostly in eastern
(China) and western Tethys realms (Iran to Italy) (Figures 6,
7;Table 2), where extensive carbonate platforms developed under
warm tropical climate. These two realms share almost the same
frequency distribution of the magnitude of the P-TB δ13Ccarb

decrease (Figure 7), suggesting a common δ13CDIC decline
throughout Paleotethys during the Permian-Triassic transition.
The magnitude of the δ13Ccarb decrease ranges mostly between 3
and 6‰ in those tropical regions. In the Boreal realm, the
magnitude of the P-TB δ13Ccarb decrease in few marine
records is substantially large (to 19‰), which indicates a
diagenetic overprint onto the original isotopic signal from
seawater (Mii et al., 1997). In contrast, the magnitude of the
P-TB δ13Corg decrease varies substantially around the world
(Figures 6, 7). In particular, a relatively large (∼7‰) δ13Corg

decline has been reported in several marine sections in high
latitudes such as Greenland, Spitsbergen, Australia, and
Antarctica (e.g., Retallack and Jahren, 2008; Nabbefeld et al.,
2010). It is consistent with the previous notion that themagnitude
of the δ13Corg decrease in high latitudes was substantially larger
than that of the δ13Ccarb decrease in equatorial regions (e.g., Krull
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et al., 2000; Krull et al., 2004; Korte and Kozur, 2010; Payne and
Clapham, 2012; Saltzman and Sedlacek, 2013; Yuan et al., 2015).

Terrestrial Records
The present δ13C compilation also demonstrates that the P-TB
δ13Corg decrease is not clearly recognized in a number of
terrestrial sections, especially around the Neotethys and in
Gondwana realms (Figure 6). The δ13Corg decline is not
clearly recognized in previous studies at 14 out of 49
terrestrial sections (Table 2). In these sections, the δ13Corg

values are sometimes substantially scattered and no smooth
δ13Corg trend is observed (e.g., de Wit et al., 2002; Retallack
et al., 2005; Coney et al., 2007). In other Gondwanan sections, the
δ13Corg decline is recognized and the apparent magnitude of the
δ13Corg decrease is mostly not large (Figure 7). However, the

δ13Corg decline is obscured frequently by sharp δ13Corg drops to
−45‰ (e.g., Krull and Retallack, 2000; Retallack et al., 2005).

Variable Δ13C Records
Magaritz et al. (1992) originally proposed a parallel δ13Ccarb and
δ13Corg trend on the basis of the P-TB isotope profile of the
Gartnerkofel Core from the Carnic Alps, Austria, and later
studies confirmed similar parallel trends not only in the
Tethyan but also in the Panthalassan realms (e.g., Musashi
et al., 2001; Algeo et al., 2007b; Luo et al., 2014). However,
other studies pointed out a decoupling between the δ13Ccarb and
δ13Corg trends around the P-TB. For example, Riccardi et al. (2007)
analyzed the δ13Ccarb and δ13Corg values of the P-TB carbonates at
Meishan and Shangsi in South China, and compiled the Δ13C
changes during the extinction in Iran, Slovenia, Japan, Austria,

FIGURE 6 | Paleolocation map of the P-TB sections examined in inorganic (upper) and organic (lower) carbon isotope studies. Marine and terrestrial sections are
shown as circles and squares, respectively. Filled and opened symbols represent sections in which the reported magnitude of the P-TB δ13Ccarb decrease is large (>5‰)
and small (<5‰), respectively. A half-filled symbol represents a section in which both large and small δ13C decreases were reported. A terrestrial section at which the
P-TB δ13Corg decrease is not clearly recognized is shown as a red star. The paleolocation of mid-Panthalassan sections is not precisely specified. Paleoclimate
classification is after Schneebeli-Hermann (2012) and Benton and Newell (2014).
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and South China. They found a Δ13C decrease across the extinction
horizon in these regions and suggested that it was due to
proliferation of green sulfur bacteria with photic zone euxinia
(e.g., Grice et al., 2005; Zhang et al., 2017). Kaiho et al. (2009)
confirmed the Δ13C decrease at Meishan. In contrast, the apparent
Δ13C increase was reported at several sections in Italy (Siegert et al.,
2011), South China (Shen et al., 2012; this study), and Pakistan
(Schneebeli-Hermann et al., 2013). It is difficult to reconstruct the
Δ13C changes in high latitudes as carbonates are generally scarce in
those regions. Nonetheless, the present compilation illustrates that
the δ13Corg records are substantially variable on a global scale
particularly in high latitudes, in marked contrast to the rather
consistent δ13Ccarb records in equatorial Paleotethys (Figures 6, 7).

Potential Causes of the Marine δ13Corg Variability
Several possible mechanisms may explain the observed δ13Corg

variability in marine records on a global scale during the
Permian-Triassic transition: 1) eustatic sea-level changes, 2)
intense continental weathering, 3) proliferation of green sulfur
bacteria, 4) elevated pCO2, and 5) “methanogenic burst”.

Eustatic Sea-Level Changes
The δ13Corg value of terrestrial plant was generally thought to be
higher than the value of marine phytoplankton in the Permian (e.g.,
Faure et al., 1995; Foster et al., 1997; Korte et al., 2001). Eustatic sea-
level changes during the Permian-Triassic transition may have been

responsible for the δ13Corg variability of shallow-marine records,
controlling the mixing ratio of 13C-enriched terrestrial and
13C-depleted marine C in the shelf sediments. The Permian-
Triassic transition is marked by a major transgression on a global
scale (e.g., Hallam andWignall, 1999; Erwin et al., 2002; but also see;
Yin et al., 2014). It is therefore likely that shelf sediments of proximal
facies shifted to be of more distal facies during the transgression, and
that the terrestrial C flux to the depositional setting reduced, which
resulted in the apparent δ13Corg decrease in the bulk sediments.
Although the eustatic sea-level changes could have exerted a first-
order control on the global δ13Corg variability of shallow-marine
records, they do not fully explain the regionally variable δ13Corg

records. For example, the δ13Corg records of terrestrial to marine
transitional sections in western South China do not record a simple
mixing of terrestrial andmarine C, despite of a regional transgression,
but rather the atmospheric C isotopic signal (Cui et al., 2017).
Moreover, the P-TB δ13Corg drop and Δ13C increase at the
present Chaotian cannot be attributed to the sea-level changes,
because the water depth of depositional site did not change
substantially across the P-TB, as discussed above (Figure 4).

Intense Continental Weathering and Increased Terrestrial C
Flux
The Permian-Triassic transition is characterized by extensive
vegetation collapse on lands (e.g., Retallack et al., 1996; Benton
and Newell, 2014), massive soil erosion (e.g., Retallack, 2005;

FIGURE 7 | Frequency histogram of the magnitude of the P-TB δ13C decrease in various regions.
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Sephton et al., 2005), and intense continental weathering and
increased continental flux to the oceans on a global scale (e.g.,
Algeo and Twitchett, 2010; Algeo et al., 2011; Cao et al., 2019).
An increased flux of terrestrial plant C (with relatively high
δ13Corg value) to the shelf sediments via the vegetation collapse
and intense weathering may have increased the bulk δ13Corg

values of sediments. However, this process generally decreases
the bulk Δ13C value of shelf carbonates and cannot explain the
P-TB Δ13C increase observed in several sections, including
Chaotian, as discussed in the former section (Figure 4). Aged
refractory organic matters may also have been derived into the
sediments via the enhanced continental weathering and/or soil
erosion (Hayes et al., 1989), though it is difficult to constrain
their δ13Corg values. On the other hand, it is most likely that a
terrestrial nutrient flux to the oceans also increased
simultaneously via the intense continental weathering,
which stimulated eutrophication and algal blooms in the
coastal oceans (e.g., Xie et al., 2007; Algeo et al., 2011;
Kaiho et al., 2016). The algal blooms may have resulted in
an increased flux of marine C (with relatively low δ13Corg

value) to the shelf sediments, offsetting the influence of
increased terrestrial C flux on the bulk δ13Corg value of the
sediments. Because of this offset effect, the net influence of the
intense continental weathering on the marine δ13Corg records
is highly uncertain.

Proliferation of Green Sulfur Bacteria With Photic Zone Euxinia
Characteristic green sulfur bacteria (GSB) may have proliferated
under photic-zone euxinic conditions during the Permian-Triassic
transition (e.g., Grice et al., 2005). They generally fix C via the reverse
tricarboxylic acid (TCA) cycle, which can produce smaller C isotopic
fractionation (∼12.5‰; van Breugel et al., 2005), than the Calvin
cycle (variable but mostly 25–35‰) (e.g., Schidlowski et al., 1983).
Thus, the proliferation of GSB and an increased contribution of GSB
biomass to the bulk organic-C pool in the shelf sediments would
have decreased theΔ13C value of the sediments. Riccardi et al. (2007)
reported the P-TB Δ13C decrease in various sections in the peri-
Tethyan realm and attributed it to the GSB proliferation.
Nonetheless, the proliferation of GSB cannot explain the
apparent Δ13C increase observed in several sections, including
Chaotian (Figure 4).

Enlarged C Isotopic Fractionation During Photosynthesis Under
the Elevated pCO2

The increased [CO2 (aq)] and εp in the surface oceans is another
potential mechanism for the observed δ13Ccarb-δ13Corg

decoupling (e.g., Rau et al., 1992, Rau et al., 1997). However,
as discussed above for the Chaotian record, the influence of εp
change on the P-TB δ13C records may not have been significant.

Methanogenic Burst
In addition to the several potential mechanisms discussed above,
we emphasize here that the “methanogenic burst” may also have
contributed to the variable δ13Corg records on a global scale
(Figures 6, 7). A substantial amount of Ni was presumably
released into the atmosphere during the Siberian Traps
volcanism (Le Vaillant et al., 2017; Rampino et al., 2017).

Because Ni is a key element for microbial methanogenesis
(e.g., Diekert et al., 1981), the temporary input of excess Ni
was likely favorable for methanogens (e.g., Basiliko and Yavitt,
2001) and presumably enhanced microbial methanogenesis
(“methanogenic burst”) on a global scale (Rothman et al., 2014).

Methanogen generally fixes C via the reductive acetyl-CoA
pathway, which can produce larger C isotopic fractionation up to
40‰ (e.g., Preuss et al., 1989), compared to the Calvin cycle (e.g.,
Schidlowski et al., 1983). Thus, according to the “methanogenic
burst”, the increased organic-C flux from expanded methanogen
biomass to the bulk organic-C pool in the local sediments may
have caused the large δ13Corg decrease (Figures 6, 7). However,
the activity of methanogen is generally regulated, not only by the
Ni availability, but also by a number of environmental factors,
such as temperature, CO2 levels, and availability of organic
substrates (Supplementary Information; e.g., Singh et al.,
2010; Nazaries et al., 2013). Although the excess Ni input
during the Siberian Traps volcanism likely promoted
methanogenesis, the variable activity of methanogen in the
local sediments may have been responsible for the observed
δ13Corg variability on a global scale. The elevated temperature
and pCO2 may also have stimulated the “methanogenic burst”,
because these factors generally increase the biogenic CH4

emissions in various environments (Supplementary
Information; e.g., van Groenigen et al., 2011; Yvon-Durocher
et al., 2014; Aben et al., 2017). The “methanogenic burst” may
have occurred not only in marine sediments but also in terrestrial
wetlands (Figure 8). Nonetheless, it is still difficult to estimate the
total amount of released Ni during the Siberian Traps volcanism
(Le Vaillant et al., 2017), and to evaluate the influence of the
“methanogenic burst” on the global δ13Corg records
quantitatively.

In summary, the P-TB δ13Corg variability in marine records on
a global scale may have been attributed to several potential
mechanisms, including the eustatic sea-level changes, intense
continental weathering, and GSB proliferation. We infer that
the “methanogenic burst”was also involved, at least in part, in the
substantial δ13Corg decrease in several sections, including the
present Chaotian (Figure 4).

Implications for the Global CH4 Cycle in the
Aftermath of the Extinction
A substantial amount of CH4 was presumably released into the
atmosphere during the Siberian Traps volcanism (Figure 8B), via
volcanic intrusion into coal (e.g., Retallack and Krull, 2006;
Retallack and Jahren, 2008; Grasby et al., 2011; Shen et al.,
2012; Rampino et al., 2017; Elkins-Tanton et al., 2020), and
via destabilization of submarine and permafrost clathrates
(e.g., Krull et al., 2000; Krull et al., 2004). Pyrogenic CH4 was
also produced by the incomplete combustion of organic carbon
(e.g., Kirschke et al., 2013) and emitted during extensive wildfire
events around the P-TB both in the northern and southern
hemispheres (e.g., Shen et al., 2011b; Hudspith et al., 2014;
Vajda et al., 2020). The “methanogenic burst” likely
contributed to the elevated pCH4 (Rothman et al., 2014). The
claimed Araguainha impact event in Brazil (Tohver et al., 2013)
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may also have contributed to the CH4 accumulation in the
atmosphere, though its timing, magnitude, and effective time
span for the global CH4 cycle are not well-constrained. Together
with other greenhouse gases like CO2, the elevated pCH4 may
have contributed to the climate warming during the earliest
Triassic (e.g., Hallam and Wignall, 1997; Joachimski et al.,
2012; Sun et al., 2012; Cui and Kump, 2015), although the
long-term warming may have been disturbed intermittently by
short-term SO2-induced cooling (Black et al., 2018).

Although there still remains large uncertainty, we infer
fluctuations in the global CH4 cycle in the aftermath of the
extinction based on the present and previous observations
(Figure 8B). Firstly, aerobic methanotrophy may have
prevailed in aerated terrestrial soils in the Gondwana and peri-
Gondwanan realms (Figure 8B; Krull and Retallack, 2000). The
present compilation illustrates that the P-TB δ13Corg decrease is
not clearly recognized in a number of terrestrial sections,
especially around the Neotethys and in Gondwana realms
(Figure 6; Table 2). The highly scattered and variable δ13Corg

records in the terrestrial successions were likely due to local-scale

and short-term organic C dynamics in soils, including vegetation,
selective microbial decomposition of sedimentary organic
matters with C isotopic fractionation, and addition of
microbial biomass to the sedimentary C pool (e.g., Krull and
Retallack, 2000; Korte and Kozur, 2010). The locally enhanced
methanotrophy might have been involved, at least in part, in the
soil C dynamics and in the scattered δ13Corg records in the
Gondwana and peri-Gondwanan realms (Krull and Retallack,
2000), possibly according to the warming and permafrost thaw
(Supplementary Information; e.g., Oh et al., 2020).

Secondly, the oceanic sediments may have been a significantly
large source for atmospheric CH4 at that time. In the modern
oceans enriched in sulfate (the SO4

2– concentration � 28 mM),
almost all CH4, produced in deeper sediments, is consumed by
anaerobic oxidation of methane (AOM) in the sulfate-methane
transition zone (SMTZ) (Figure 8; Supplementary
Information; e.g., Reeburgh, 2007). However, AOM would
be substantially suppressed when the sulfate concentration is
<0.5 mM (Knittel and Boetius, 2009). The Permian-Triassic
transition interval is characterized by the substantially low

FIGURE 8 | Schematic diagram of the global CH4 cycle in the modern world (A) and during the Permian-Triassic transition (B). CH4 influx to and efflux from the
atmosphere are shown as red and yellow arrows, respectively. In the modern system, the global atmospheric CH4 budget is 0.4–0.5 Gt C/year (Supplementary
Information; e.g., Conrad, 2009; Nazaries et al., 2013). During the Permian-Triassic transition, several processes may have contributed to the elevated pCH4 and climate
warming, although terrestrial responses to the elevated pCH4 were probably complex. The elevated pCH4 enhanced aerobic methanotrophy in local soils whereas
the intense soil erosion decreased a net CH4 efflux in the global budget. AOM: anaerobic oxidation of methane; SMTZ: sulfate-methane transition zone. See
Supplementary Information for details.
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sulfate concentration in the oceans (0.6–2.8 mM) (Luo et al.,
2010; Schobben et al., 2017; Stebbins et al., 2019). This estimated
SO4

2– range is slightly higher than the threshold of the AOM
rate. Nonetheless, the porewater sulfate concentration in the
sediments may have quickly become <0.5 mM at a very shallow
depth, due to sulfate consumption via decomposition of other
organic substrates. The sedimentary AOM was consequently
suppressed and the oceanic sediments might have been a larger
CH4 source compared to in the modern oceans, further
contributing to the elevated pCH4. The impact of
“methanogenic burst” on the enhanced CH4 emissions
should have been significant under such sulfate-depleted
conditions with less AOM. Prevailing oceanic anoxia (e.g.,
Wignall and Hallam, 1992; Isozaki, 1997; Song et al., 2012b)
also helped CH4 to escape from the oceans to the atmosphere
(e.g., Ryskin, 2003).

Finally, the global CH4 budgets may have been disturbed by the
terrestrial devastation and intense continental weathering (e.g.,
Algeo and Twitchett, 2010; Cao et al., 2019). The Permian-
Triassic transition is characterized by the extensive vegetation
collapse on lands and massive soil erosion on a global scale
(Figure 8B; e.g., Retallack, 2005; Sephton et al., 2005; Benton and
Newell, 2014). The destruction of terrestrial ecosystems and the
decay of land plants in the aftermath of the extinction was claimed to
bring the well-known Early Triassic “coal gap” (Retallack et al.,
1996). Although the release of substantial amounts of Ni into the
ocean-atmosphere during the Siberian Traps volcanism may have
caused the “methanogenic burst”, it may also have contributed to the
vegetation collapse because excess Ni is generally toxic to plants
(Fielding et al., 2019). The vegetation collapse could have stimulated
the destabilization of permafrost and the CH4 emissions in high
latitudes according to the warming (Nauta et al., 2015), whereas the
massive soil erosion might also have contributed to the atmospheric
CH4 accumulation as aerated terrestrial soils are a CH4 sink
(Supplementary Information; Figure 8B).

CONCLUSIONS

The carbon isotopic composition of carbonate (δ13Ccarb) across
the Permian-Triassic boundary (P-TB) was analyzed at Chaotian,
Sichuan, South China, and was correlated to the
chemostratigraphy of the carbon isotopic composition of
organic carbon (δ13Corg) of the same interval. The δ13Ccarb

and δ13Corg records at Chaotian were further integrated into
the records from various marine and terrestrial environments all
around the world, to examine fluctuations in the global methane
(CH4) cycle during the Permian-Triassic transition. The
following results were obtained:

(1) The δ13Ccarb values decrease from ca. +1 to −2‰ across the
P-TB, possibly reflecting the shallow-marine extinction and
the collapse of primary productivity in the oceans. The

frequent intercalation of felsic tuff layers around the
extinction horizon suggests that volcanic activity also
contributed to the δ13Ccarb decrease.

(2) The magnitude of the δ13Ccarb decline (∼3‰) is substantially
smaller than the magnitude of the δ13Corg decrease (∼7‰)
across the P-TB. This δ13Ccarb-δ13Corg decoupling could be
explained by an elevated CO2 concentration in the ocean/
atmosphere and/or proliferation of methanogen
(“methanogenic burst”) in the sediments, according to the
Siberian Traps volcanism.

(3) A global P-TB δ13C compilation shows a large variation in
marine δ13Corg records, which could be attributed to several
potential mechanisms including eustatic sea-level changes
and proliferation of green sulfur bacteria. We infer that the
“methanogenic burst” may also have contributed, at least in
part, to the δ13Corg variability. The global CH4 cycle might
have fluctuated substantially in the aftermath of the
extinction.
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