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We study the forced response of the teleconnection between the El Niño–Southern
Oscillation (ENSO) and the Indian summer monsoon (IM) in the Max Planck Institute
Grand Ensemble, a set of Earth system ensemble simulations under historical and
Representative Concentration Pathway (RCP) forcing. The forced response of the
teleconnection, or a characteristic of it, is defined as the time dependence of a
correlation coefficient evaluated over the ensemble. We consider the temporal
variability of spatial averages and that with respect to dominant spatial modes in the
sense of Maximal Covariance Analysis, Canonical Correlation Analysis and Empirical
Orthogonal Function analysis across the ensemble. A further representation of the
teleconnection that we define here takes the point of view of the predictability of the
spatiotemporal variability of the Indian summer monsoon. We find that the strengthening of
the ENSO-IM teleconnection is robustly or consistently featured in view of various
teleconnection representations, whether sea surface temperature (SST) or sea level
pressure (SLP) is used to characterize ENSO, and both in the historical period and
under the RCP8.5 forcing scenario. It is found to be associated dominantly with the
principal mode of ENSO variability. Concerning representations that involve an
autonomous characterisation of the Pacific, in terms of a linear regression model, the
main contributor to the strengthening is the regression coefficient, which can outcompete
even a declining ENSO variability when it is represented by SLP. We also find that the
forced change of the teleconnection is typically nonlinear by 1) formally rejecting the
hypothesis that ergodicity holds, i.e., that expected values of temporal correlation
coefficients with respect to the ensemble equal the ensemble-wise correlation
coefficient itself, and also showing that 2) the trivial contributions of the forced
changes in means and standard deviations are insignificant here. We also provide, in
terms of the test statistics, global maps of the degree of nonlinearity/nonergodicity of the
forced change of the teleconnection between local precipitation and ENSO.
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1 INTRODUCTION

ENSO teleconnections are widely studied, but their changes
resulting from external forcing, such as an increasing
concentration of greenhouse gases, remain to be further
explored and understood. Power and Delage (2018) provide a
multi-model assessment of ENSO-precipitation teleconnection
changes based on the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) archive. They consider, in
particular, ENSO-driven precipitation anomalies in tropical
regions around the globe, and assess them jointly with changes
of mean precipitation. Haszpra et al. (2020a) have evaluated only
the trend in the strength of ENSO-precipitation teleconnection,
however, not in a multimodel ensemble but the so-called “single
model initial condition large ensemble” (SMILE) CESM1-LE
(Kay et al., 2015). Working with a SMILE has the advantages
that the response to forcing is correctly represented in that model
at least (Bódai and Tél, 2012; Drótos et al., 2015; Tél et al., 2019),
and seeking a physical interpretation of changes is not faced with
confusion at the outset, even if the physics depicted in that model
is inaccurate or unrealistic.

The forced response is the time evolution of some ensemble-
wise statistics, or, most generically, that of the probability
measure carried by the climate snapshot attractor (Bódai and
Tél, 2012; Drótos et al., 2015; Tél et al., 2019). The ensemble-wise
statistics evaluated over the converged ensemble (Drótos et al.,
2017) is in a one-to-one correspondence with the external forcing
of the nonautonomous dynamical system, hence the term ‘forced
response.’ For specific observables, this translates to the time
evolution of any statistics evaluated with respect to an ensemble,
e.g., that of mean values, standard deviations, correlation
coefficients, empirical orthogonal functions (EOFs). Note that
quantifiers of internal variability exhibit a forced response just as
well as quantifiers of the “mean state.” The ensemble must have
converged to the time-evolving snapshot attractor (Drótos et al.,
2017); in the terminology of climate research, this means the
correct representation of the full ensemble spread along with the
absence of any drift. External forcing is defined as an explicit
dependence on time of any parameter of the system (Ghil and
Lucarini, 2020), which in historical and RCP runs corresponds to
changes in the atmospheric composition (including greenhouse
gases, anthropogenic aerosols and volcanic aerosols), land use,
and solar activity (Meinshausen et al., 2011).

Without convergence, or considering a single realization,
which may even correspond to observations, the state depends
also on initial conditions, so that forced changes cannot be
precisely disentangled from changes brought about by internal
variability. In an attempt of doing this nevertheless, concerning a
single realization, the standard practice is that a trend, linear or
not (Franzke, 2014), is simply identified as a forced change, before
possibly “anomalies,” i.e., (what is assumed to be) the internal
variability is analyzed. Identifying the principal component (PC)
of the leading or first empirical orthogonal function (EOF1)
(Storch and Zwiers, 1999) obtained without detrending with
the forced response (Kim and Ha, 2015; Pandey et al., 2020) is
still somewhat arbitrary. It certainly leads to biases (Drótos et al.,
2016). Yet, even with SMILEs available, it is very common to see

that authors evaluate temporal statistics first–unnecessarily
involving a subjective factor—and ensemble statistics afterward
(Vega-Westhoff and Sriver, 2017; Carréric et al., 2020). The biases
of all these approaches are certainly controlled by the magnitude
of the climate change signal relative to the intensity of internal
variability—a kind of signal-to-noise ratio. Computing the PC1 of
EOF1 without detrending, as mentioned just above, is in fact
meant to maximize the signal at least, and the EOF1 is referred to
(Santer et al., 2019) as a “fingerprint” of the forced change—the
spatial pattern that is supposed to be distorted by internal variability,
in any single realization, the least. See (Timmermann, 1999) which is
concerned rather with the minimization of the “noise.”

It is not pertinent to talk about “advantages” of temporal or
ensemble methods over one another, because no situation arises
when we need to decide between them. When an ensemble is
available, the correct, conceptually sound ensemble method is to
be applied if the forced response (including that of internal
variability) is concerned. However, certainly we can make
statements only about the given model.1 Therefore, we should
speak only about limitations in the respective situations of
analyzing observational or modeled ensemble data.

We should note that the finite-size estimators of some statistics
of basic interest are not generally unbiased—an example to
appear in this work—and there might not be a universally
applicable correction to the estimator to make it unbiased
[unlike, e.g., the fortunate cases of the central moments
(Heffernan, 1997)]. Therefore, even an ensemble-wise
approach could suffer from biases in practice with the
ensemble size being always finite. Some extreme value
statistics are likely other examples.

Concerning teleconnections, in particular, the forced response
can be identified as the time evolution of the ensemble-wise
Pearson correlation coefficient (Herein et al., 2016; Yettella et al.,
2018) (in a simple linear approach) between some quantities
representing anomalies. The anomaly can correspond to a simple
spatial (mean of a temporal) mean (Bódai et al., 2020b), but also
the PC of an EOF concerning variability across the ensemble,
called a snapshot EOF (SEOF) (Haszpra et al., 2020c). Haszpra
et al. (2020a) take the latter approach; however, this can be
extended to obtaining anomalies observing the “mutual
variability,” e.g., in the sense of Maximal Covariance Analysis
(MCA) (Storch and Zwiers, 1999) or Canonical Correlation
Analysis (CCA) (Storch and Zwiers, 1999; Härdle and Simar,
2007). That is, with an interest in a teleconnection and its forced
response, MCA and CCA—just like EOF analysis—can also be
pursued concerning the variability across the ensemble, whereby
we can refer to these methods as SMCA and SCCA. This is
perhaps best suited to teleconnection analyses concerning two
extended, possibly disconnected, regions. See an application of
SMCA to studying the forced change of the coupling of JJA
200 hPa geopotential height and September sea ice concentration
in (Haszpra et al., 2020b; Topál et al., 2020).

An other important example would be the relationship of the
summer monsoon precipitation on the Indian subcontinent with

1It is, therefore, instructive to study a multimodel ensemble of SMILEs.
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the ENSO phenomenon which extends over the whole of the
Equatorial Pacific (Wang, 2006; Mishra et al., 2012; Wang et al.,
2015). In a previous publication (Bódai et al., 2020b) we examined
the forced response of the ENSO-Indian monsoon teleconnection
in the Max Planck Institute Grand Ensemble (MPI-GE) (Maher
et al., 2019) representing the monsoon by the average JJAS
precipitation over India and the ENSO by either the gridpoint-
and SLP-based SOI (SouthernOscillation Index), or the areal mean
of the SST in some extended area in the Equatorial Pacific.
Standard choices for the latter are the Niño3, Niño4, and
Niño3.4 regions. For the first time we established, via a formal
hypothesis test, that standard representations of the
teleconnection2 strengthened in this model, both in the
historical period and under the high-emission RCP8.5 forcing
scenario, although not necessarily monotonically. In fact, using the
SOI it was the historical period only when an increase could be
detected, and, using the Niño3 index, it was rather the RCP8.5
scenario under which an increase could be detected. This raises the
question whether the discrepancy is down more to 1) the physical
difference between the SOI and Niño3 indices, or 2) rather
that–one based on two distant gridpoints while the other on a
limited region of the Equatorial Pacific–they “take somewhat
different slices” of the whole ENSO phenomenon. This question
is especially relevant when spatial characteristics of ENSOmay also
have a forced response besides the amplitude. In fact, using the
Niño3.4 index, instead of Niño3, the result is closer to that using
the SOI or the so-called box-SOI. With all these representations,
one is able to detect the same nonmonotonicity: a temporary
weakening around the turn of the millennium. In addition, both
with Niño3.4 and the box-SOI changes are detected both under the
historical and scenario forcing. On the one hand (I), this seems to
rule out that using SST versus SLPmakes much difference.We will
see below that this is actually not precisely the case. On the other
hand (II), it is still a question whether spatial characteristics of
ENSO (in terms of SEOFs) or the whole teleconnection (in terms of
SMCA or SCCA) would also change, or only the variance as
reflected in the magnitudes of the PCs belonging to either of the
said instantaneous (snapshot) spatial modes. These are the two
basic questions that we set out here to investigate.

Furthermore, this study identifies, in terms of a regression
model, three controlling factors driving the forced change of the
ENSO-IM teleconnection strength. These are the ENSO
variability, the coupling (i.e., the regression coefficient), and
the intensity of other influences—which include but are not
restricted to internal influences from the IM region and can
be viewed as noise. We find that the changes of the ENSO-IM
teleconnection are not driven only or dominantly by the change

of ENSO variability. Nevertheless, it imprints its nonlinearity
onto the teleconnection change, whichmight be an important source
of biases (besides using a biased estimator). In particular, any
nonlinearity prompts that the system should be nonergodic3 with
respect to correlations, i.e., biases should exist (Drótos et al., 2016) in
the temporal correlation coefficient evaluated in, say, multi-decadal
time windows. Such a bias is something to bear in mind besides the
ample statistical fluctuations of finite-size statistics even under a
stationary climate (Bódai et al., 2020b). Nonlinearity is implied in
our case by a nonmonotonic change in the ENSO variability: after a
seemingly monotonic change, a decline follows in the second half of
the 21st c. under RCP8.5.4 Given that the ensemble size is finite and
not so large from the point of view of teleconnections, we develop
here a statistical test whereby we can detect nonergodicity, and,
subsequently, map out regions of the world where such a
nonergodicity can be detected in the MPI-GE in the context of
the relationship of local precipitation with ENSO.

The rest of the paper is organized as follows. In Section 2 we
provide details about our methodology of analyzing the forced
response of teleconnections, such as the way we pursue EOF,
MCA, CCA, the definitions of a host of teleconnection
representations, as well as the idea of decomposing the change
of the teleconnection strength in terms of a simple regression
model. In Section 3 we provide results both on spatial aspects of
the forced change of the ENSO-IM teleconnections and those
concerning magnitudes. Section 4 provides a comparison of the
MPI-ESMwith observational and reanalysis data. In Section 5we
outline our method of detecting nonergodicity and map out the
world with respect to the degree of nonergodicity concerning the
synoptic relationship of the local JJA precipitation with ENSO. In
Section 6 we discuss and summarize our results.

2 DATA AND METHODS

2.1 Data
The analysis is restricted to the historical and RCP8.5 simulations
of the Max Planck Institute Grand Ensemble (MPI-GE, Maher
et al., 2019), which is a collection of initial-condition ensemble
simulations of the Max Planck Institute Earth System Model (MPI-
ESM) under various forcing. The MPI-ESM is a fully coupled Earth
system model, and its version 1.1.00p2, between phases 5 and 6 of
the CMIP, was used to generate the MPI-GE from initial conditions
that sample a long pre-industrial control run. SeeMaher et al. (2019)
for further details. We make use of the same 63 of the 100 ensemble
members as done in (Bódai et al., 2020b), due to concerns that the
discarded members have not converged to the climate attractor of
the model (Drótos et al., 2017).

To characterize the ENSOwemake use of the 2D fields of either
the Sea Level Pressure (SLP) or the Sea Surface Temperature (SST).
The Indian Summer Monsoon Rain (ISMR) was calculated from
the total (convective and large-scale) precipitation rate. The variable

2We do not regard the co-evolution of the ensemble means of e.g., Niño3 and the
Indian summer monsoon rain to be part of the teleconnection, unlike Pandey et al.
(2020), as these responses could be largely unrelated. Yet, using an infinite
ensemble, the rank correlation coefficient with respect to the temporal
variability, i.e., evolution, of the ensemble means is trivially 1. The prediction
or projection of the Indian summermonsoon rain does not even need to rely on the
Equatorial Pacific SST, but could be just facilitated by e.g., some extrapolation of
the observed response of its own. That is, if there was reason to believe that we have
a reliable estimate of the forced response.

3We emphasize that the bias that defines “nonergodicity” is based on the ideal
ensemble mean, not a sample mean for a finite-size ensemble.
4Such a feature is absent in the CESM1-LE (Haszpra et al., 2020a).
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codes for SLP, SST and total precipitation rate are 134, 12 and 4,
respectively. Monthly mean SLP is accessible publicly at https://
esgf-data.dkrz.de/projects/mpi-ge/under variable
name “psl.” The SST can be derived from the top layer of the 3D
potential temperature field, whose variable is “thetao.” Alternatively,
one can use the surface air temperature variable, as e.g., the monthly
mean approximates the SST very well over the ocean. Instead of the
total precipitation rate [km/s], one can use the precipitation flux [kg/
s/m2], whose variable name is “pr.”

2.2 Representations of the ENSO-IM
Teleconnection
The scalar quantity of the ISMR, averaged over JJAS and over India, is
the same as that calculated in (Bódai et al., 2020b), in order to secure a
correspondence with the so-called AISMR rain gauge data set
(Parthasarathy et al., 1994) (excluding some states of India; see their
Figure 1). We will refer to the model ISMR corresponding to the
observational AISMR region also as AISMR. Scalar quantities to
represent ENSO variability are also the same as in (Bódai et al.,
2020b), as follows. 1. Average SST in the standard Niño3 region
represented by the box (5°S, 5°N, 210°E, 270°E); 2. average SST in
the standard Niño3.4 region (5°S, 5°N, 190°E, 240°E); 3. SLP difference,
pdiff � pTahiti − pDarwin, between the closest gridpoints to Tahiti and
Darwin; 4. the difference of the average SLPs in the boxes (5°S, 5°N, 80°E,
160°E) and (5°S, 5°N, 200°E, 280°E). We will refer to these quantities as
the 1. Niño3 index, the 2. Niño3.4 index, the 3. SOI and the 4. box-SOI,
respectively (SOI being short for the Southern Oscillation Index). See a
discussion on them in Section 4.a of (Bódai et al., 2020b).

We investigate the correlation of the “near-synoptic” JJAmean
of any of Niño3, Niño3.4, SOI and box-SOI with the JJAS AISMR.
The correlation coefficient r is evaluated across the ensemble, as
done in (Bódai et al., 2020b), which results in time series with one
data point from each year. These time series are representations
of the forced response of the ENSO-IM teleconnection. However,
the finite ensemble size entails a relatively large sampling error,
and the corresponding fluctuations in the estimated signal, r̂(t),
badly mask the true forced response signal, r(t). Therefore, in the
first round, we do not aspire to draw conclusions about the shape
of r(t), but only to detect if there is any monotonic time
dependence in a given time period. For this, we employ the
Mann–Kendall test (Mann, 1945) in the same way as done in
(Bódai et al., 2020b), aiming to reject the hypothesis of
stationarity against the alternative hypothesis of a monotonic
trendmasked by serially uncorrelated stationary noise. In fact, the
Pearson correlation coefficient, or rather its Fisher-transform, is
likely an exceptional quantity in that such a test of nonstationarity
is rather straightforward to apply to it5. To study some
characteristics of the time dependence, we take all possible

subintervals of the simulation period, and apply the hypothesis
test separately for each of them (Bódai et al., 2020b).

We will evaluate correlation coefficients of the AISMR also
with the PCs belonging to EOFs. PCs and EOFs can be also
defined and constructed with respect to (wrt.) the ensemble, as a
“snapshot”6, hence the name SEOF, as proposed by Haszpra et al.
(2020a,c).7 The SEOFs concerning SST are evaluated here wrt. the
Equatorial Pacific box (30°S, 30°N, 150°E, 295°E), and, concerning
SLP, wrt. the narrower box (10°S, 10°N, 150°E, 295°E). Traditional
EOFs are decomposing spatio-temporal variability as a sum of
independent standing waves, i.e., spatial patterns, orthogonal in
the N-dimensional gridpoint space, modulated by arbitrary but
uncorrelated temporal signals, the PCs. Snapshot EOFs are
computed in the same way but different time steps are
replaced by different ensemble members (i.e., realizations of
the dynamics).

Besides the requirement of (“spatial”) orthogonality, each new
EOF is defined such that the corresponding PC has the largest
possible variance, leading to an eigen-problem. The variances of
the PCs σ2n, n � 1,...,N, are singular values of the covariance matrix
and belong to the EOFs being the corresponding singular
vectors8. We find them by using Matlab’s svd as done in
(Björnsson and Venegas, 1997). The ordering of the singular
values wrt. magnitude, σ2N < . . . < σ21, provides a natural ordering
of the EOFs, which are denoted as EOF1, EOF2, etc., and likewise
we write PC1, PC2, etc. PCn is said to explain a fraction of the
total variance:

FVE � σ2n/∑N
n�1

σ2n. (1)

PC1s of the SLP and the SST fields in the same box have more
in common than, e.g., Niño3 and SOI, because Niño3 and SOI do
not derive from a mathematical definition of dominance9; and
one could think that more similar representations yield more
similar results10. Therefore, firstly, we wish to see if we can
establish a robust representation of the ENSO-IM
teleconnection by having possibly a better match between the
forced response signals belonging to the SLP and SST than
between those using the classic indices 1.-4. Secondly, the

5The case of the standard deviation, a statistic of basic interest giving a primary
representation of internal variability, is already nontrivial, as nonstationarity would
imply heteroscedasticity, in which case the reliable detection of nonstationarity is
not straightforward. Assuming homoscedasticity wrongly, the estimates of
standard errors could be either negatively or positively biased, and, therefore, a
type II error can be made: not rejecting stationarity at a certain confidence level
when the process is actually nonstationary.

6The quotation marks are used because the concept of a “snapshot”makes the best
sense concerning a time-continuous evolution, whereas here we consider the
discrete-time annual progression of a seasonal mean.
7Ensemble-wise EOFs, SEOFs, were used earlier in the context of probabilistic
ensemble forecasting in e.g., (Zheng et al., 2013; Zheng et al., 2017; Zheng et al.,
2019), in which case the concern was certainly not the forced response.
8It is also common to redefine PCs to be normalized and EOFs to be multiplied by
the corresponding standard deviations.
9Although, the rationale behind defining simple indices is such that we want to
work with a simple-to-compute quantity (e.g., an areal average or difference
between two locations) that correlates very strongly with the dominant
variability in terms of EOFs, which latter can be seen to represent a more
natural method of decomposing the variability of a field.
10If the same wider box is used with the SLP as with the SST, the “weight” of the
EOF1 is concentrated on parts of the perimeter of the box. Despite the dissimilarity
of the EOF1s with the SLP in the two different boxes, the time dependence of the
corresponding correlation coefficients r(PC1,AISMR) are actually very similar.
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teleconnection strength can possibly change because of a shift in
the “center of action” of the ENSO phenomenon, something that
can have a different impact on the teleconnection representations
given by one of indices 1.-4. and the AISMR. Thirdly, including
higher EOF modes can reveal more predictive power of the full
field compared with a simple index alone. In this regard we are
interested in whether the correlations to do with the higher
modes are more susceptible to the anthropogenic forcing. We
will only show results for the second modes. Traditionally, only
the first two or three EOFs are regarded to describe ENSO11, and
we should distinguish between ENSO-related and full Pacific
variability, but EOFs beyond the third will be found to have
negligible importance, we will thus usually drop this distinction.

The pursual of the listed three points of inquiry can be
supported by MCA and CCA. MCA and CCA are similar to the
EOF analysis, but consider two fields, and find paired modes
recursively whose paired PCs are respectively uncorrelated
with the readily determined PCs belonging to the other modes
of the same kind (or “side”) and have the maximal covariance
and correlation, respectively, between them12. Note that these
modes do not capture in general the locally dominant modes of
variability in the given regions (which may be represented e.g.,
by EOFs); this is the situation only in the uninteresting case:
for fields that are not related at all. Instead, they highlight parts
of the variability in the two regions that are interrelated the
most. These are not additive “parts” of the variability for CCA
though; only the MCA modes are independent being spatially
orthogonal, but not the CCA modes. By comparing these
patterns and their changes to those locally defined in the
given regions and thus characterizing ENSO and the IM in
our case, we might possibly obtain some hints about how much
spatial rearrangements of the relevant areas contribute to
changes in the teleconnection strength, but confirmations
by further analyses would be necessary.

Similarly to ENSO, we may carry out an EOF analysis on the
Indian precipitation field, as represented byM gridpoints, to identify
dominant modes of variability from a local point of view, for which
we can use the box of (5°S, 40°N, 65°E, 100°E).However, an arbitrarily
selected box may not provide a good representation. In fact, the
comparison of the time dependence of correlation coefficients
belonging to teleconnection representations or characteristics
involving the scalar AISMR, on the one hand, and involving the
full spatio-temporal monsoon variability, on the other hand, would
make most sense if the domain for the latter were the same as for
AISMR. We make this choice for our main exposition, and provide
the results with the choice of the box given above for comparison in
the Supplementary Material, including those obtained by replacing
AISMR by the box summer precipitation (BOXSR).

CCA yields the correlation coefficients between the paired PCs
by definition; as for theMCA, besides the covariance of the paired
PCs yielded by the definition, the correlation coefficient is

straightforward to compute. The correlations of these PCs are
not analogous to those between the AISMR and the PCs of EOFs
of ENSO. We anticipate that the SMCA and SCCA lead to higher
correlations than the SEOF analysis, stemming from their very
definition. In this regard, as the fourth point of inquiry, we want
to see if higher correlations are more susceptible to anthropogenic
forcing. A comparison of the correlation coefficients yielded by
the MCA or CCA can be made with those between the PCs of the
EOFs of the same order on the two sides. Although, in contrast
with MCA and CCA, PCs mismatched wrt. the EOF order will in
general feature a nonzero r.

On the side whereM >N , the MCAmodes form an orthogonal
basis. The covariance matrix in this basis is diagonal, with entries
conveniently denoted by σ2m, m � 1,...,M, and, therefore, MCA
modes can also be associated with a fraction of variance explained,
FVE, according to Eq. 1. Because of the nonorthogonality of the
CCA modes, the fraction of variability that each of them explains
would not sum up to 1. Nevertheless, we can still evaluate the FVE
wrt. to the “target” side of the IM in the context of CCA if we
simply retain the areal mean scalar AISMR to represent that side.
This way, we have only a single nontrivial Equatorial Pacific SST/
SLP CCAmode.We consider this as a further representation of the
ENSO- or Equatorial Pacific-IM teleconnection.

From the point of view of predictability, in view of the regression
model

Ψ � aΦ + ξ, (2)

where Φ, Ψ and ξ represent the ENSO (or ENSO-related) signal,
the IM (or IM-related) signal and random noise, the square of the
correlation coefficient r2 gives in fact the fraction of the variance
of the predictand Ψ that the predictor Φ can deterministically
predict (“explain” in what follows), since

r � aσΦ
σΨ

. (3)

In the case of multiple predictors, Φ1, . . . ,ΦN , in terms of a multi-
dimensional linear regression model, the square of the coefficient of
multiple correlation or determination (Storch and Zwiers, 1999)

R2 � rTC−1
ΦΦr,

r�[r(Φ1,Ψ), . . . , r(ΦN ,Ψ)]T, CΦΦ�[CΦΦ,nn′ ] �[r(Φn,Φn′ )],
can likewise quantify predictability, and a teleconnection
strength (by the same token as with the one-dimensional case).
When the predictors are uncorrelated, C−1

ΦΦ is the identity matrix,
and, so,

R2 � r2 � ∑N
n�1

r2(Φn,Ψ). (4)

This concept can be further generalized consideringmultiple scalar
predictands, Ψ1, . . . ,ΨM , when they provide a decomposition of
the spatio-temporal variability of the ultimate predictand. Such a
decomposition of the IM can be given by the orthogonal basis of
the EOFs or theMCAmodes (ifM <N) on the IM side (but not the
CCAmodes) and the corresponding PCs. In contrast, on the side of
the predictor, which is the ENSO or Equatorial Pacific in our case,

11Strictly speaking, each mode should be tested if it can be distinguished from noise
and if it features characteristics associated with ENSO.
12As for the MCA, maximizing the unexplained covariance implies that the PCs are
uncorrelated as reflected by the SVD decomposition.
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the independence of the scalar predictors Φn is not required.
Concerning the same predictors Φn, one can associate a
coefficient Rm of multiple correlation to each independent IM
mode. As each IM mode explains only a fraction of the total
variance (Eq. 1), this factor needs to multiply R2

m to provide the
fraction of the spatio-temporal IM variability explained (FSTVE)
by the predictors Φn via that one IM mode. Thanks to the
independence of these modes, by analogy with Eq. 4, these
fractions can be summed up over the modes to give the total
FSTVE:

TFSTVE � ∑M
m�1σ

2
mR

2
m∑M

m�1σ2
m

. (5)

In the natural case when Φn are the PCs belonging to the
ENSO-side MCA modes, which is our choice for calculations,
Rm reduces to be just r(Φm, Ψn), n�m. One can take the square
root of TFSTVE in order to have something comparable to
the correlation coefficient r associated with the one-
dimensional setting of e.g., spatial averages. Nevertheless,
they are not comparable from the point of view that the same
fraction of AISMR variability explained as the TFSTVE
provides much less information given that it overlooks the
spatial part of the variability. Furthermore, concerning the
detection of nonstationarity potentially by the MK-test, it is
not clear to us whether the Fisher transform can be applied to
TFSTVE to produce residuals described by independent
identically distributed random variables—a requirement by
the MK-test—the same way as it does in the case of the
Pearson correlation coefficient (Fisher, 1915; Bódai et al.,
2020b). We pursue this analysis in the belief that it does to a
reasonable approximation.

We carry out the MCA and CCA over the same domains as the
EOF analyses, whether it is the AISMR domain or a box, by
applying Matlab’s svd and canoncorr, respectively. Before
pursuing MCA and EOF analysis, we regrid the SST data using
Matlab’s griddata, mapping the irregular ocean grid onto a
regular one of 2° latitude-longitude resolution. With this, a
weighting by the grid cell area as proposed by Baldwin et al.
(2009) is straightforward (although it makes hardly any difference
in these tropical regions). Instead of the complete field, the SCCA is
performed on the PCs corresponding to the first 10 SEOFs, since it
is ill-defined on the full fields as a result of the number of gridpoints
on any considered domain being larger than the number of
ensemble members used. MCA could also be restricted to the
first 10 SEOFs, presumably withoutmuch influence on the results.
In fact, it turns out that on the Equatorial Pacific side, as few as 3
EOFs capture most of the variance (see Supplementary Figures
S2, S3). Therefore, we can regard the TFSTVE to represent the
ENSO-IM teleconnection even if we are prepared to regard only
the first 3 EOFs to constitute the ENSO phenomenon. On the
other side, 10 EOFs are also sufficient to represent the IM
variability. We will speak about SCCA modes as the linear
combination of the SEOF modes in terms of the coefficients
defining the so-called canonical variables. Indeed, thanks to the
orthogonality of the SEOFs, the projection of the full fields onto
these modes yields the SCCA PCs whose correlations were
maximized by the SCCA.

The finite size of the data set (the number of the ensemble
members, or the length of the time series if evaluation is carried
out wrt. time) introduces errors in the estimates of the spatial
modes of the various kinds mentioned. The relative errors are
increasing with the order of the mode (North et al., 1982;
Quadrelli et al., 2005). In our experience, these errors seem to
lead to a negative bias in estimating r involving some EOF (e.g.,
r(PC1, AISMR) or r(PC1, PC1)), but to a positive bias of r to do
with MCA or CCA. In fact, with a high enough dimensionality of
the spatial representation, given the number of ensemble
members fixed to be 63, r � 1 can result for the first CCA
mode, or even for a number of leading CCA modes. (We can
reproduce this even with completely unrelated fields both
characterized by spatially and temporally uncorrelated noise.)

The biases of r can be reduced by pooling data within a relatively
short time window. We use a moving window of a length of
11 years. The anomaly for each data point in such a time window
could be calculated by subtracting the combined temporal and
ensemble mean (i.e., the mean over all the pooled data points).
Alternatively, which is what we choose to rather do, one can pool
data for determining only the modes more accurately. Such a
smoothed MCA or CCA mode (or even an EOF) calculated from
the pooled anomaly data as described is ordered to the middle of
the time window. The correlation coefficient r is then estimated
wrt. ensemble-wise variability only, from the subset of the pooled
anomaly data belonging only to the mid-window single year. One
can go further, as we do, by leaving out the mid-window data for
the first part of this process of determining smoothed modes. This
should lead to a negative bias, just like with r(PC1, AISMR), etc.
We will refer to these estimates of r as “conservative.” From the
point of view of detecting nonstationarity, however, our
conclusions rely on the assumption that the bias depends only
on the ensemble size, but not e.g., the true value of r. As for the
simple representations involving indices like Niño3, one can
also apply pooling to determine the ensemble means, and, so,
anomalies, more precisely.

The statistical errors of the numerically determined modes can
pose a problem in studying the forced response of themodes, however.
It is so because the svd algorithm returns themode estimates with an
arbitrary orientation. Before looking at the year-to-year time
dependence, or possibly taking temporal means in time windows
to compare, one needs to make sure that all the mode estimates
corresponding to different years have the same orientation.We do this
by picking a reference year and flipmodes in other years if they do not
have the same orientation as the one in the reference year. We check
whether they do by checking the sign of the cross-correlation with the
mode in the reference year. However, if modes are corrupted too
much, then we are in fact checking the agreement of the orientation of
mostly the random components, not those of the underlying true
modes. In our experience, mistakes of wrongly flipping modes are
made already in the case of the second modes. Nevertheless, the fewer
themistakes, the less error ismade in determining the forced response.
Furthermore, this problem should affect the smoothed modes to a
lesser degree.

In conclusion, to represent the teleconnection, we shall use r of
Niño3–AISMR, Niño3.4–AISMR, CCA-AISMR, R, and TFSTVE.
We provide results separately for the constituents of R including r
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of PC1-AISMR and PC2-AISMR in association with EOFs on the
Pacific side. Furthermore, we show in the SupplementaryMaterial
that r of CCA-AISMR and R are one and the same thing. We shall
not consider as a representation any individual r(PCn,PCn) for
EOF, MCA, CCA, but the latter quantities also characterize some
aspect of the teleconnection and will support our analysis.

We will explain some findings about these r’s by comparing spatial
patterns of different modes. Nevertheless, we show in the
Supplementary Material that forced changes of spatial patterns do
not necessarily have robust implications for the change of the
teleconnection strength: r of CCA-AISMR may be dominated by r
of EOF1–AISMR even if the spatial pattern of CCA-AISMR in the
Pacific has a large weight from EOFi, i> 1, thanks to the small
variability that is associated with that given EOFi compared to EOF1.
This also means that we may not want to refer to CCA-AISMR as a
representation of the ENSO–IM teleconnection from the point of view
of the weights of Pacific EOFs in this CCA mode, but only as a
representation of an Equatorial Pacific–IM teleconnection, whereas
wemay do regarding theweight of r’s associatedwith those EOFs. As a
further point of reference, we shall also consider the map displaying
the correlation coefficient of the precipitation at each grid point with
EOF1 or EOF2 on the Pacific side.

2.3 Decomposition of the Forced Change of
the Teleconnection Strength
Once the r(t) signal is established, we can ask about the origin of
the observed time dependence. Instead of trying to find physical
mechanisms, here we pursue only a statistical attribution. We
consider the linear regression model (Eq. 2) which underpins the
correlation coefficient r. In this model, we can attribute changes
in r to three factors, via considering the relationship

.r � 1��������������
1 + ((σξ/a)/σΦ)2√ (6)

These three factors are:

• The ENSO variability σΦ � std[Φ];
• The ENSO-IM coupling a, being the regression coefficient;
• The noise strength σξ � std[ξ].

Note that, like r, both σΦ and σξ are defined in terms of the
variability wrt. the ensemble, for every year separately. That is, like
r(t), we have time series σΦ(t) and σξ(t), and also a(t). Attribution
is then based on a simple comparison of these time series. For
instance, we can say that a change in r(t) is due to a change in σΦ(t)
in a time period if no change is seen in a(t) and σξ(t) in the given
time period. Note that we can already say the same if σξ/a shows no
change. In fact, what is outlined in this example has been suggested
to us as a plausible explanation: “perhaps the strengthening of the
ENSO-IM teleconnection is due to an increasing ENSO variability
in this model.” Although apriori this possibility is hard to exclude,
we note that it would be rather specific and could be seen accidental
to the ENSO-IM teleconnection given that ENSO-precipitation
teleconnections can either strengthen or weaken in different
places on Earth (Power and Delage, 2018). This is shown in

Figure 2 of (Haszpra et al., 2020a) for the CESM1-LE; and the
MPI-GE dataset shows a rather similar picture as seen in our
Supplementary Figure S1 in the Supplementary Material.

Concerning the numerical evaluation of the quantities in
question, the first step is to evaluate σΦ directly, i.e., we
compute the standard deviation of Φ over the ensemble. Then
we compute σξ/a by inverting Eq. 6, as r is already available. Note
that with this calculation, the sign of a remains undetermined;
however, it can be easily recovered being the same as that of r.
Anticipating that σξ/a is not constant in time, we can evaluate a by,
first, directly evaluating the IM variability σΨ, and, subsequently,
using the textbook equation Eq. 3. (We could, of course, evaluate a
directly by linear regression, but calculating the standard deviation
is easier, andwe already have r on hand.) In turn, having now also a
on hand, σξ can be obtained by multiplying σξ/a by a.

For a quantitative assessment of which factor dominates the change
in r out of the ENSO-related variability (σΦ) and the combination of
the noise strength and the coupling (σξ/a) in a time period [t1, t2], we
set up a simplified framework. We assume that the ENSO-related
variability increases; in particular, it increases as σΦ(t2) � βσΦ(t1),
β> 1, and that we also have a decrease σξ(t2)/a(t2) � ασξ(t1)/a(t1),
α< 1. From Eq. 6 we see that αβ> 1 would mean that the increase in
ENSO-related variability has a larger effect on the increase of r(t) than
the decrease in σξ/a. Given the very noisy time series, the appropriate
approach would be a statistical test attempting to reject the null
hypothesis of αβ � 1. However, it is not clear to us how this can be
done. As for a preliminary analysis, we simply estimate αβ by
estimating α and β separately before taking their product. E.g., α is
estimated froma least-squares linear fit of the time series of σξ(t)/a(t)
in a time period [t1, t2], obtaining the ordinates at the beginning and
end of the period, σξ(t1)/a(t1) and σξ(t2)/a(t2), respectively. β is
estimated similarly from the time series of σΦ(t). We estimate αβ in
all possible time periods [t1, t2], similarly as done with the MK-test.
Note that the results are not robust in situations when r is near zero
and estimates change sign with time. This is the case typically already
with PC2’s, as well as with the use of BOXSR instead of AISMR, and,
so, we provide results only for unaffected representations/
characteristics. When r is small, so is a, resulting occasionally in
large spikes of σξ(t)/a(t), therefore, we will instead plot the
reciprocal a(t)/σξ(t).

Note that such an attribution proposed here is not
generically applicable to representations or characteristics of the
teleconnection based onMCA and CCA. This is because the signal
σΦ(t) typically cannot be attributed solely to the ENSO/Equatorial
Pacific when the associated mode also changes, which latter is
determined by the mutual relationship of the ENSO and IM, not
just the ENSO alone.

3 THE FORCED RESPONSE OF THE
ENSO-IM TELECONNECTION

3.1 Spatial Aspects
We start by inspecting spatial characteristics of the ENSO and IM
variability by means of SEOFs and by comparing them to those
corresponding to largest covariances and correlations defined
through SMCA and SCCA whereby on the IM side the domain of
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the AISMR is considered only. We pay particular attention to the
forced changes of these patterns.

Figure 1 shows the first modes of these analyses on the side of
the ENSO based on the SST, averaged within four subsequent 50-
year periods starting from 1900. We only show these temporal
means of the smoothed modes, which were described in Section
2.2. The year-to-year changes of the modes are presented in
Supplementary Videos13.

At the beginning of the simulations, EOF1, which is the most
important pattern associated with ENSO variability, looks very
similar to results in the literature, featuring its main “bump” in

the central Pacific. Furthermore, hardly any forced change is
visible in it even upon the strong RCP8.5 forcing. In comparison,
Carréric et al. (2020) suggests that the maximum of the EOF1
mode shifts to the east in the CESM1-LE by showing that some
center (C) mode (Takahashi et al., 2011) shifts to the east more in
comparison with the westward shift of some east (E) mode14. This
does not appear to be so here.

The first SST MCA mode looks practically the same when
evaluated with respect to the full field and to the first three SST
EOFs as seen in Supplementary Figure S2, and it is very similar
to EOF1 in both cases. This suggests that MCA1 mainly reflects
ENSO variability, which is further supported by the similarity in
the forced changes of these patterns. We recall that these changes
are minor.

FIGURE 1 | Forced change of the first modes of JJA-mean SST variability in the Equatorial Pacific. Temporal means are taken in four consecutive 50-year periods
starting from 1900. The top row displays the temporal mean in the first period, and the subsequent rows display the difference with respect to that in the following periods.
Leftmost column: EOF-, 2nd column: MCA-, third column: CCA first mode, last column: the only mode of CCA-AISMR. For the MCA and CCA analysis the domain on the
side of the Indian monsoon is the area associated with the AISMR, as seen in Figure 2. The Niño3 and Niño3.4 boxes are marked in gray and black, respectively.

13SST mask mode 1: https://youtu.be/2AVETrcfBVU
SST mask mode 2: https://youtu.be/EZQ7r2v7-zk
SST box mode 1: https://youtu.be/C62BKGVDQvQ
SST box mode 2: https://youtu.be/QgLQCbS3ZRU
SLP mask mode 1: https://youtu.be/HbxJjOz1RUA
SLP mask mode 2: https://youtu.be/fahPv_fLgx0
SLP box mode 1: https://youtu.be/PQHv7B8B2sw.
SLP box mode 2: https://youtu.be/74_ltkeOiqg.

14This situation is not shown conclusively in (Haszpra et al., 2020a) because only
three snapshots are shown belonging to single years, and it is not clear how much
statistical error is associated with them, leaving an uncertainty about the locations
of the peaks.
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In contrast to theMCA1modes, the first CCAmodes, evaluated
with respect to the first 10 SST EOFs, once with the full Indian
precipitation field and once with AISMR (in which case CCA1 is
the only CCA mode), show considerable differences when
compared to EOF1. Perhaps the main difference is a much
weaker weight of the central Pacific (with more weight being
concentrated to the west, perhaps because it is geographically
close to India), and this might give even more importance to
the observation that variability in some off-equatorial regions
seems to have an opposite contribution to the teleconnection
than to the main ENSO mode (EOF1). (Although, recall that
the relative weights of EOFs in CCA-AISMR do not imply a similar
relationship concerning the corresponding correlation
coefficients.) One such region is next to South America, and
another is to the east of Australia, at least at the beginning of
the simulations.

The contrast in spatial features persists for the forced
changes. The first CCA modes do undergo a considerable
change by the late 21st century. It is even more interesting
to observe this change to have a different sign in the middle of
the ENSO domain (highlighted by the Niño3 and Niño3.4
boxes) compared to the sign of the minor change in the EOF1
and the MCA1 mode. On the other hand, the region to the east
of Australia seems to revert its sign, finally conforming with
that in EOF1.

Although each panel of Figure 1 blends 50 separate entities,
the mostly monotonic emergence of the changes in consecutive
rows suggests that we can see meaningful signals. Otherwise, the
Supplementary Video https://youtu.be/2AVETrcfBVU shows
ample year-to-year change in the form of a flickering. Given
that the forcing is rather smooth and gradual (except for volcanic
eruptions), this is likely just a fluctuation stemming from the
error of sampling by a finite-size ensemble.

EOF2 for SST also exhibits a well-known pattern, which is
practically a dipole or tripole, see Supplementary Figure S12.
Its central part undergoes some degree of attenuation until
2100, except perhaps in the very middle, which can be regarded
as a westward shift of one “pole” of the tripole. At the same
time, areas in the north of the box gain importance. However,
all changes are moderate.

CCA2, which is likely not orthogonal to CCA1, seems to be
also shaped—beside EOF1—by higher-order EOFs other than
EOF2 or even EOF3, which is prompted by Supplementary
Figure S2. MCA2 is just in between EOF2 and CCA2, which
is not surprising given that an association between MCAi and
EOFi and also between MCAi and CCAi is expected. The
strength of the association is determined by the regions’ own
variances, on the one hand, and their interrelation, on the
other.

We would like to remind though that the temporal means of
the second modes are less reliable than those of the first modes, as
discussed in Section 2.2, which can be seen in the Supplementary
Videos https://youtu.be/EZQ7r2v7-zk and https://youtu.be/
fahPv_fLgx0.

The Supplementary Figures S6, S14 suggest very similar
conclusions for the first two modes in the SLP-based
representations and characteristics as for SST on the side of

the Pacific, except that the patterns look rather trivial for the
EOFs and the MCA modes.

On the side of the IM, Figure 2 shows that the leading mode
of precipitation variability (EOF1) is concentrated to the middle of
the AISMR region. The MCA1 mode is somewhat different in
putting more weight on the foothills of the Himalayas. This is
consistent with the rmap featuring the strongest correlations over
land at this region; and it is epitomized by the CCA1 mode putting
an overwhelming part of its weight here. CCA1 misses practically
any similarity with EOF1. At the same time, the similarity of the
patterns of the forced changes of the four fields shown (rows 2–4) is
remarkable, even though these changes are minor over the land.

EOF2 for the precipitation is also very different from CCA2,
see Supplementary Figure S16. EOF2 is a dipole, with an emphasis
on the northeast of India but not yet at its edge. CCA2 also features
important areas in the southern part of India, not coinciding with
the peaks of EOF2 or EOF1. Interestingly, MCA2 is very similar to
CCA2 and is thus very different from EOF2. The rmap computed
for the subleading mode, EOF2, of the Pacific SST field is also very
different from any of these patterns. Surprisingly, it is quite similar
to that computed for EOF1 (seen in Figure 2). Note that the second
modes presented in Supplementary Figure S16 undergo moderate
changes in time, which do not affect the conclusions of this
paragraph.

Recognizing the importance of areas off the AISMR
region, we repeat all computations of this section based on
the precipitation field of the complete Indian box instead of
the AISMR region. Surprisingly, there is hardly any alteration
on the Pacific side (Supplementary Figures S5, S13). On the
Indian side, as expected, CCA1 (Supplementary Figure S10)
features peaks where the r maps also do, with a special
emphasis on the Himalayas. Regions over the Indian
Ocean lose importance with time. Interestingly, EOF1 and
MCA1 (in the same figure) become similar to CCA1, although
with the stronger peak appearing over the ocean (but also
weakening with time).

The second modes of the complete Indian box
(Supplementary Figure S18) are mainly concentrated on the
sea. While CCA2 exhibits considerable similarity with the r map
corresponding to EOF2 of the Pacific SST field, there are major
differences with MCA2 and EOF2 in the same figure, not
attenuated over time either.

So far, all joint modes presented in the analysis of the Indian
patterns were based on SST on the Pacific side. Supplementary
Figures S9, S11, S17, S19 illustrate that almost identical
results are obtained with SLP. We thus conclude that the
patterns on the Indian side are very much insensitive to the
representation of variability on the Pacific side.

3.2 The Forced Evolution of Correlation
Coefficients
The time evolution of the quantifiers defined in Section 2.2 is
given in Figure 3 for the SST-based representations of the ENSO-
side variability and applying the AISMR mask on the IM side.
Concerning the affected representations involving MCA and
CCA, the Mann–Kendall test statistics corresponding to the
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meaningful conservative r estimates are plotted for every
subinterval in Figure 4, etc.

From a technical point of view, the different estimates of r featuring
a positive (blue curves) and a negative bias (brown curves) are further
apart for themore erroneousMCA2 andCCA2modes in Figure 3, as
can be expected. Furthermore, even their nonstationarity is likely
considerably corrupted by the positive biases. From the point of view
of detectability, however, the positive bias goes with smaller statistical
fluctuations. It is interesting to note that the result with positive bias
does not feature much nonstationarity for either CCA1 or CCA2,
while it does with CCA-AISMR. As for the result with negative bias,
the nonstationarity for CCA-AISMR is in between those of CCA1
and CCA2.

A very distinct separation of the results with positive and negative
bias is also seen for TFSTVE which quantifies the predictability of also
the spatial variation. Furthermore, performing MCA using PC1-3 of
the SST field (yellow line) is hardly different from using the full fields
(brown line), which underlines that TFSTVE does represent an ENSO-
IM variability. This result could perhaps be expected considering the
rapid decay of the variance explained by higher-order Pacific EOFs as

presented in Figure 5. Furthermore, in fact, TFSTVE is dominated
overwhelmingly by MCA1, which latter on the Pacific side is in turn
dominated by EOF1 (Figure 1). This is prompted by the decay of the
variance explained by higher-order IM EOFs, on the one hand, and
those of ri(PCi, PCi) with the mode number i, on the other, seen also
in Figure 5. In this regard we note that a further source of bias
originates from taking the square of Rm � rm in Eq. 5 in conjunction
with statistical errors of a near-zero rm. This bias amounts to a
systematic error of about 0.02, as will be indicated in Section 4.

Having said these, we conclude that TFSTVE is reasonably
high to represent a strong teleconnection, and its time evolution is
detected to be a long-term increase in Figure 4G. An increase is,
however, not detected in shorter intervals around 1900, 2000, and
in the very late 21st c.; instead, slight drops are suggested by the
test statistics.

The PCs of MCA1, the leading contributor to TFSTVE, exhibit a
relatively high r (MCA1 in Figure 3) with a time dependence very
similar to that of TFSTVE, which carries over to the MK-test results
in Figures 4E,G. r of the PCs ofMCA2 is lower; in fact, it is relatively
close to zero in the lower estimate (MCA2 in Figure 3). The

FIGURE 2 | Same as Figure 1wrt. the first three columns, but concerning the Indian summer monsoon. In the fourth column a correlation map and its changes are
shown concerning the gridpoint-wise JJAS precipitation and the PC1 of the EOF1 of the SST in the box seen in Figure 1.
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dominant feature in its time dependence is also a long-term increase
(Supplementary Figure S38C).

We recall here from the previous section that MCA modes
have a similar pattern to EOFs, which may suggest that the
relationship expressed by the MCA modes should be observable
between the EOFs, characterizing variability of local importance,
of either side. Indeed, r between the PCs of EOF1s (EOF1-EOF1
in Figure 3) is only slightly smaller than for MCA1. It undergoes
a more pronounced long-term increase (Figure 4D). At the
same time, r between the PCs of EOF2s (EOF2-EOF2 in
Figure 3) is practically zero and is not detected to change at
all (Supplementary Figure S38B). This suggests that the
phenomena expressed by EOF1s are quite important for the
teleconnection, but the same is not true for EOF2s.

Correlation is preserved for EOF1 and somewhat regained for
EOF2 on the Pacific side when the IM side is chosen to be
respresented by AISMR instead of EOFs, see EOF1-AISMR and
EOF2-AISMR in Figure 3. AISMR is thus more strongly
correlated with the Pacific variability than PCs of individual
EOFs of the AISMR region. Temporal changes are generally
also a bit more pronounced (Figure 4C; Supplementary
Figure S38A).

One can then go further and take the coefficient of multiple
correlation, R, of all Pacific EOFs with AISMR, which is the same
as r corresponding to the single CCA-AISMR mode, a full
representation of the ENSO-IM teleconnection. It is very high
(see CCA-AISMR in Figure 3). It undergoes a relatively strong
increase in the 20th c. with a more definite stop in the late 21st c.
(Figure 4H), especially in comparison with the time evolution of
TFSTVE (Figure 4G), but also with other MCA- or EOF-based
characteristics (Figures 4C–E). Such differences may be related to
the differences in the changes of the corresponding patterns as
described in Section 3.1. Nevertheless, all main features are
shared by these representations or charactersistics.

This is also true for the Niño3-AISMR and Niño3.4-AISMR
representations (Figures 4A,B, both showing a high correlation in
Figure 3). On the level of details, the increase of r of Niño3-AISMR
extends very late to the 21st c. For r of Niño3.4-AISMR, the
increase is more moderate, and a drop is undoubtedly detected
after 2000, which is exceptional among the representations and
characteristics discussed so far. The relative suppression of the
overall increase for r of Niño3.4-AISMR may be related to the
opposing changes of EOF1 andCCA-AISMR in the Niño3.4 region
as discussed in Section 3.1.

FIGURE 3 | Time-evolution of the ensemble-wise correlation coefficients r associated with different representations of the ENSO-IM teleconnection or some
relationship between the two domains seen in color in Figures 1, 2. In addition, in the bottom left corner we show the (square-root of the) total fraction of spatio-temporal
IM variability explained, TFSTVE (Eq. 5), by PCs of the ENSO-side SMCA modes, as a further represenation of the ENSO-IM teleconnection. Blue curves show the
straightforward naive estimates, and brown curves show the “conservative” estimates (see Section 2.2). In the case of TFSTVE, the yellow curve shows the
estimate obtained by performing SMCA based on only 3 Equatorial Pacific SEOFs.
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CCA1 and CCA2 evaluated with the precipitation field within
the AISMR region do not fit the picture outlined so far. Remember
from Section 3.1 that their spatial patterns look very different from

EOFs andMCAmodes on the IM side and are concentrated on the
very edges of the AISMR region, so that moderate importance
should be associated with the corresponding results from the point

FIGURE 4 | Test statistics of the Mann-Kendall test for the stationarity of (the “conservative estimates” of) r(t) or −r(t) (shown by the brown curves in Figure 3),
depending onwhich of these gives an overall positive value. The diagrams correspond to panels ofFigure 3 as: (A)Niño3-AISMR; (B)Niño3.4-AISMR; (C) EOF1-AISMR; (D)
EOF1-EOF1; (E)MCA1; (F) CCA1; (G) TFSTVE; (H) CCA-AISMR. Red and blue shades correspond to p < 0.05, i.e., a detection of nonstationarity at that significance level.
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of view of the teleconnection, in spite of the high correlations
(CCA1 and CCA2 in Figure 3).

The shape of CCA1 and CCA2 on the IM side, together with
the r maps, suggests that important areas for the teleconnection
fall outside of the AISMR region and prompts to evaluate modes
of spatiotemporal variability in the complete Indian box. As
mentioned in Section 3.1, this brings modes of the same
order similar to each other and to the r maps of the Pacific
EOFs, reveals the importance of the bulk of the Himalayas and of
oceanic areas, and a loss of this importance with time. This
importance loss might imply that characteristics of the
teleconnection might strengthen more when they are based
solely on the AISMR region rather than the complete box.

We do observe in Supplementary Figures S26, S34 that
results for TFSTVE, the MCA modes and the paired EOFs are
very similar for the complete box as for the AISMR region except
that the signal of strengthening is much weaker (and turns to a
pronounced weakening for EOF2-EOF2). At the same time,
CCA1 and CCA2 now exhibit strengthening (with the
previously described intermittent periods), even stronger than
the other characteristics. However, for characteristics for which
AISMR is replaced by the mean box precipitation (BOXSR), the
correlation becomes unreasonably low. These characteristics do
not deserve further analysis and illustrate that applying
appropriate techniques to select IM-related precipitation
within the box is essential.

Using SLP instead of SST in a suitable subset of the Pacific box
does not yield any difference that would be worth mentioning
(Figure 6; Supplementary Figures S25, S27, S33, S35, S39, S41,
except for SOI and box-SOI). This means that SLP reflects the same
phenomenology as SST in the respective domains. The results with

SOI and box-SOI are similar to the rest, and differences in the details
are not possible to interpret without extending the currently used
domain to the west.

3.3 The Drivers of Changes in Correlation
Coefficients
Having established the observable changes, we can now ask
about their drivers in terms of the linear regression model as
introduced in Section 2.3. We emphasize again that attribution
in the case of characteristics involving MCA and CCA is in
general not possible. Furthermore, we do not perform statistical
tests here regarding these drivers. Therefore, the attribution of a
change in r to different factors is not rigorous but rather
tentative.

Figure 7 suggests that ENSO-side variability, σΦ, first stagnates
then increases with time in the early 21st c. irrespective of which
dominantmode is taken. This seems to be followed by an equally fast
decrease starting from the mid 21st c., with seemingly all of the gain
lost by the end of the century in view of Niño3 and PC1. The
decrease is a bit more moderate with Niño3.4, which should
contribute to the result that ENSO variability can dominate
changes in the correlation coefficient by the late 21st c. as seen in
Figure 8B. Although, no doubt another reason is that in this
representation the coupling a increases less and σξ increases
more than for other characteristics. Beside the decrease of σΦ
in the second half of the 21st c., a continued increase of a/σξ
might still make r continue to increase. However, a/σξ might
also experience a nonmonotonicity, although likely starting to
decrease later than σΦ. If that happens, clearly r(t) would be
also nonmonotonic. However, this is not detected (Figure 6),

FIGURE 5 | Fraction of variance explained FVE by (“raw”/“unsmoothed”) SEOF and SMCA modes. In addition, the rightmost diagram shows the “conservative”
estimate of the correlation coefficients for the paired PCs of SMCAmodes. Results of temporal averages for the full data span of 1880–2100 are shown in log-log diagrams.
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perhaps because of the shortness of the time period when this
happens. Another important nontriviality in the time evolution of
a/σξ is a drop at the turn of the 20th–21st centuries. This drop is
related to a drop in the time evolution of a and serves as a possible

explanation for the drop in the correlation coefficient at the same
time. It turns out from Figure 7 that both a and σξ typically
undergo a considerable increase otherwise, with a “winning,” but
only slightly.

FIGURE 6 | Same as Figure 4 but the ENSO side is characterized based on the SLP.
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Making use of the SLP mostly agrees with the findings obtained
with the SST, see Figures 6, 9. The only but important exception is a
decreasing ENSO-side variability in view of PC1. We note that the
same domain as used for the SST is not suited for the SLP: the
corresponding principal modes (whether SEOFs, SMCA and SCCA
modes) are unrelated to the essence of the ENSO phenomenon, as a
concentration of the high-amplitude areas on the edges of the domain
indicates (Bódai et al., 2020a).

Although second modes were found to be relatively unimportant
for the teleconnection, there seems to be considerable
nonstationarity in σΦ for EOF2, which might still have an impact
on an other important teleconnection representation, CCA-AISMR.

4 COMPARISON OF THE MPI-GE TO
OBSERVATIONS AND REANALYSIS

Results and conclusion that derive from a large ensemble apply only
to the model that generated the data. However, the ultimate enquiry
pertains to the actual Earth system, and, in that regard, one should

perform some comparison of the model with observations. Clearly,
it has its limitations given that the observational record corresponds
to a single realization, and, so, it provides proportionally less
information about the system. In (Bódai et al., 2020b) we
compared long-term means and trends of the SST fields and
precipitation in South Asia, as well as temporal correlation
coefficients pertaining to areal means like e.g. the AISMR and
Niño3. Our conclusion was, however, that it is not possible to detect
nonstationarity from single realisations. In terms of spatial modes of
variability and associated correlations, it is likewise doubtful to be
able to establish the forced response from observational data. What
we can compare here are modes and correlations that are in a way
overall “representative of a time period.”

Calculations are carried out with respect to temporal variability,
not only for observations, but also for eachmember of the ensemble,
so as to make a comparison meaningful. In turn, the different
realisations for the model will provide some statistics for the finite-
size temporal estimates. As proper anomalies cannot be obtained for
observations, we instead feed the calculations with data that
represent “high-frequency variability.” It is obtained by

FIGURE 7 | The forced evolution of correlation coefficients r(t) and the drivers of change; see Section 2.3. The different columns correspond to different
representations of the relationship between the variability in the regions of ENSO and the IM. For columns 1–3 and 5 the IM is represented by the average monsoon rain
AISMR. Columns 1–4 concern the dominant modes of variability, and columns 5–6 concern the next-to-dominant modes of variability.
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subtracting a low-frequency component from every data point,
which is approximately a 21 years moving window mean. We
use the same method as in (Bódai et al., 2020b), applying a
Savitzky–Golay filter of order 3 to the running window means.
We obtain conservative estimates e.g. for r associated with PCs
belonging to modes by parting the data into two consecutive periods
of equal length, computing the modes from the first part, and
computing PCs by projecting the fields given by the second part onto
those modes.

The data representing observations are obtained from the
20th century CERA 20C reanalysis product (Laloyaux et al.,
2018) for Pacific SST, and the CRU PRE v4.03 gridded
precipitation data (Harris, 2019a; Harris, 2019b) for the
Indian summer monsoon rain. We analyze the time period
of 1901–2010. Precipitation variables are not available for
CERA 20C, hence, we can make a comparison with the
model only with respect to the representation where the
AISMR domain is used. This is not a problem from the
point of view that only land areas have a practical
relevance. The precipitation data of the 20th Century
Reanalysis V2 data (Compo et al., 2011) is not so faithful to
reality; it does not reproduce the AISMR time series
(Parthasarathy et al., 1994) well, and yields only an
r(Niño3, AISMR) � –0.2.

The results for the SST principal modes are displayed in
Figure 10. The ensemble means of the temporal modes in the
top row are hard to distinguish from the temporal means of the
snapshot modes as seen in Figure 1. In the second row the
ensemble standard deviations reveal that the sampling error is
much bigger to do with the CCA compared to the MCA and EOF.
The observational EOF1 is more concentrated on the Eastern
Equatorial Pacific, or, at least, it does not feature a second peak in
the Western Equatorial Pacific like the model does. The weight of
the observational MCA1mode is somewhat shifted to the west wrt.
EOF1. The observational CCA1 and CCA-AISMR modes are
similar to one another, just like those of the models, but the
respective observational modes are much less similar to the model
modes as compared to EOF1 andMCA1. The observational CCA1
and CCA-AISMR modes are concentrated to the middle of the
Equatorial Pacific while the model modes on the westernmost of
the Equatorial Pacific and even on off-equatorial areas. Yet, the
associated correlation coefficients match very closely (Figure 11F).

As for the IM side, the modes are shown in Figure 12. Again,
regarding the model, the resemblance of the ensemblemeans of the
temporal modes in the top row and the temporal means of the
snapshot modes as seen in Figure 2 is uncanny. It is rather
surprising that the CCA1 modes on the IM side match rather
well between observation and model. Otherwise, so do the r maps

FIGURE 8 |Relative importance of σΦ versus a/σξ to the change of r(t). The diagrams correspond to those of Figure 4 showing theMann–Kendall test statistics for
r(t). Color is applied only where r(t) changes significantly. The color saturates where αβ is outside of the range indicated in the colorbars.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 8 | Article 59978516

Bódai et al., Nonlinear Forced Changes of Teleconnections

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


and the MCA1 modes match rather well. The observational EOF1,
however, does not appear to closely resemble the observational
MCA1 mode, unlike for the model, which might have only to do
with the fact that the model does not resolve the very wet
climatology over the Western Ghats. The fact that the
observational MCA1 mode does not have a strong weight over
the Western Ghats despite the high resolution should have to do
with the weak correlations with PC1 of the Equatorial Pacific SST
in this area, as shown by the r maps.

Some of these observations apply also to the second modes. It
is particularly surprising how the observational and model CCA2
modes both on the Pacific (Supplementary Figure S42) and IM
side (Supplementary Figure S43) resemble one another, even
despite the large sampling fluctuations as shown in the
middle rows.

As for the correlation coefficients r and TFSTVE, seen in
Figure 11, the estimate from observations is always smaller,
except for the Ninõ3-AISMR representation [in panel (A)]. It is
not clear how this exception could be explained by the restriction of
the observational EOF1 to the east (Figure 10, bottom left), if it could
be at all. It is the CCA-AISMR representation (F) that yields the

largest (conservative estimate of) r also for observations, very slightly
below the figure for the model. In contrast, the TFSTVE (E) is
considerably smaller for observations, which is prompted by both r
(C) and FVE (D) being smaller for the observational MCA1 mode.
Nevertheless, these diagrams suggest that this can be just a statistical
fluctuation of the single observational realization. Note also that r for
the higher-order MCAmodes is practically zero; that is, only MCA1
contributes to the TFSTVE.

We emphasize once again that the above comparison cannot
confirm confidence that the MPI-GE correctly features a
strengthening ENSO-IM teleconnection. Neither can it
undermine the confidence thanks to the fairly close match in
most aspects, the observational results falling seemingly within
the ensemble-wise variation of the MPI-GE estimates.

5 NONERGODICITY

Whenever the forced change is nonlinear, whether due to a
nonlinear progression of the forcing or a nonlinear response
characteristic, an estimation of the momentary ensemble-mean

FIGURE 9 | Same as Figure 7 but the ENSO side is characterized based on the SLP.
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climatology by a temporal mean in a finite window should be
biased (Drótos et al., 2016). That is, the ensemble mean of the
temporal mean would not be equal to the ensemble mean itself
(say, at the middle of the time window), which is termed
nonergodicity. Higher-order statistics should be biased even in
the unlikely case that the forced change of the ensemble mean is
linear and the internal variability would not feature a forced
change. The linear Pearson correlation coefficient is no exception,
i.e., its time-based evaluation (the traditional choice) will be
biased even if the ensemble means of the correlated quantities
exhibit a temporally linear forced response. Notwithstanding, a
linear time evolution of the Pearson correlation coefficient r(t)
itself may lead to a vanishing bias, and this is what we will
elaborate on in this section.

In fact, r(t) clearly features a nonlinear change in various
representations and characteristics of the ENSO-IM
teleconnection and related quantifiers in the MPI-GE, whether
it is a monotonic but degressive change (represented by a concave
graph) or a nonmonotonic one, as seen in Figures 4, 6, 7, 9.
However, the evaluation of the bias or the degree of nonergodicity
is not straightforward in this case since the “signal-to-noize ratio”
is rather poor thanks to the relatively small ensemble size.
Nevertheless, we can attempt to at least detect the presence of
nonergodicity by performing a statistical test. The quantity of the
so-called test statistics can in turn serve as some quantifier of the
degree of nonergodicity.

To the end of constructing a suitable test, we observe that the
Fisher transform ẑ � arctanh(r̂) (r̂ distinguishes the finite-N
sample estimate of r) provides approximately normally

distributed independent identically distributed random variables
(wrt. the different years) with a standard deviation ≈ 1/

�����
N − 3

√
for

large enoughN and any true value r of the correlation coefficient.15

The same applies, of course, to the finite-τ-window sample
correlation coefficient rτ when Φ(t), Ψ(t) are not auto-
correlated and their ensemble means and standard deviations
remain constant in time. In such a case, the only reason that
the expectation

〈(ẑτ − z)2〉 (7)

at any time does not match the theoretical value (τ − 3)− 1 is the
existence of a bias:

〈ẑτ〉≠ z, (8)

i.e., nonergodicity.
We have four issues to consider. First, z is not available because

of the finite N ensemble size. Therefore, we cannot evaluate
nonergodicity at any time (every year). Instead, we can consider
nonergodicity overall in an interval of length T calculating

v � ∑T
t�1

∑N
n�1

(ẑτ,t,n − ẑt)2. (9)

Second, had ẑτ and ẑ in the above been computed from
combinations from the same sample of size T � N (without

FIGURE 10 |Comparison of principal SSTmodes obtained by temporal EOF analysis, MCA, CCA (the columns corresponding to those of Figure 1) between the MPI-
ESM (top row) and observation (bottom row). In the middle row the ensemble-wise standard deviations are shown in the same color range as the modes themselves.

15This approximation assumes the correlated variables to follow a Gaussian
distribution, but non-Gaussianity has been checked to have a farly negligible
effect for some basic ENSO-quantifiers and AISMR in (Bódai et al., 2020b).
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repetition), Cochran’s theorem (Cochran, 1934) would dictate that
cv (where c is an appropriate constant factor) would be distributed
according to a χ2-distribution. This would allow for calculating the

p-value in the usual way by evaluating the χ2-distribution at the level
given by the calculated test statistics. However, our setting is
somewhat different T � N, which might not be possible to tackle

FIGURE 11 | Comparison of temporal correlation coefficients r (A-C,F), FVE (D), TFSTVE (E), between the MPI-ESM (blue, black, gray, green curves) and
observation (magenta curve) for various representations of the ENSO-IM teleconnection. Panel (E) indicates that the systematic error for the conservative estimate of
TFSTVE (brown curve) in Figure 3 is about 0.02.
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analytically. Nevertheless, one can sample the test statistics and,
therefore, determine its quantiles to arbitrary precision. We have
performed this sampling simply by generating sample correlation
realisations by generating realisations of correlated random variables
X and Y, where Y � aX + ξ, and X and ξ are normally distributed
independent random variables. This is a further assumption for the
nature of our variables, from which deviations certainly exist but
which are presumably moderate enough to have a secondary effect
for the results. Note that the moving-window temporal correlation
coefficient r̂τ,t is calculated upon pregenerating xt and yt ,
t � 1, . . . ,T . We have checked that cv does seem to follow a
χ2-distribution even in our setting, but we do not utilize it.

Third, Φ is in fact auto-correlated, regardless of the choice to
represent ENSO-related variability. As a simple test, we tookX to be
governed by an auto-regressive process of order 1, Xt+1 � ϕXt + ξt ,
such that the lag-1 autocorrelation is 0.3, and we have found only
little shift in the distribution of vwrt. its standard deviation.We also
took this value of 0.3, and calculated the 0.95 quantile of v, obtaining
about 670 using the parameters T � 220, τ � 31,N � 63; while it is
667 with a serially uncorrelated Xt .

As a fourth issue, there might be a low-frequency influence on the
teleconnection, say, via a time-dependent a (Gershunov and Barnett,
1998; Torrence and Webster, 1999; Krishnamurthy and Goswami,
2000; Krishnamurthy and Krishnamurthy, 2014; Watanabe and
Yamazaki, 2014). This should increase the width of the
distribution of the sample temporal correlation coefficient, i.e., it
should be larger than 1/

�����
N − 3

√
. We tested the effect of this by

introducing an additive perturbation, at � a0 + δat , where δat is
modeled again as an AR(1) process, setting ϕ � 0.8 and such a noise

strength that std[δat] � 0.05. With this the 0.95 quantile is 674; that
is, the effect is rather small. This corroborates well with the findings of
(Gershunov et al., 2001; Yun and Timmermann, 2018), namely, that
even if there was a low-frequency modulation of the ENSO-IM
teleconnection strength, it would be too weak to detect from
century-long observations. The cancellation effect described by
Krishnamurthy and Goswami (2000) may be an alternative view
of this.

Turning to our application, the test statistics is found to be 756
for the ENSO-IM teleconnection representation given by the
Niño3-AISMR pair. That is, it is well above the 0.95 quantile,
corresponding to a minuscule p-value, so that the hypothesis of
ergodicity can be rejected with extremely high confidence. We
also evaluate the test statistics corresponding to the global
correlation maps seen in Supplementary Figure S1. The
result of this can be presented as a global map, too
(Figure 13), in which a contour for the 0.95 quantile, 670,
encloses regions where ergodicity can be rejected at the usual
significance level of 0.05. We can see such regions not just in
the tropics or in the Equatorial Pacific, but all over the world.
Nevertheless, the highest levels of bias/nonergodicity is
indeed found at the center of ENSO variability and
elsewhere in the Equatorial Pacific.

We note that even if r(t) changes linearly, or not at all, there
could be a trivial source of the bias, namely, a changing ensemble
mean or standard deviation ofΦ orΨ. We redo the calculation of
the test statistics in order to exclude the former trivial source. In
particular, we subtract the respective ensemble-mean time series
from the Φ and Ψ time series, separately for each ensemble

FIGURE 12 | Same as Figure 10, but for the Indian summer monsoon precipitation (the columns corresponding to those of Figure 2).
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member, before calculating the temporal correlation coefficient
r̂τ . The result (Supplementary Figure S44) is hardly
distinguishable from the original one (Figure 13) with respect
to the patterns, only the values of v are slightly off. That is, in this
case the change of the mean state hardly contributes to the bias.
As mentioned, the forced change of the standard deviation can
also be a source of bias. We believe that, just as the ensemble-
mean change, this is also a negligible effect, considering especially
that in windows of τ � 30 yr the changes of the σΦ time series
seem unlikely to be detectable in Figures 7, 9. For this reason,
nonergodicity should robustly imply the nonlinearity of r(t).

6 DISCUSSION AND CONCLUSION

We have re-examined the forced response of the ENSO-Indian
monsoon (IM) teleconnection as conveyed by the MPI-GE data.
One main increment taken by the new analysis is the
consideration of spatial aspects of any forced change. This was
achieved by determining empirical orthogonal functions (EOFs)
and modes of Maximum Covariance Analysis (MCA) and
Canonical Correlation Analysis (CCA), and considering
various characteristics and representations of the
teleconnection defined through these tools. Beyond individual
correlation coefficients, we defined the total fraction of the spatio-
temporal IM variability explained (TFSTVE) by the Pacific
variability, and interpreted results in the spirit of the
coefficient of multiple correlation, R. We found that both
TFSTVE and R are dominated by the first-order modes, both
wrt. their magnitude and forced changes. Characterizing different
aspects of the relationship between the variability of the two
regions allowed us to build a robust picture of forced changes.

We have found almost all characteristics and representations
to convey a picture of a strengthening teleconnection in terms of a

statistical test, confirming earlier findings. One or two slight
drops around the turn of the 20th–21st centuries have also
been detected, and the increase in strength has been found to
slow down in the late-21st c. The latter aspect is more prominent
when spatial variability is taken into account on a wider region
around India, including the Himalayas and surrounding oceanic
areas. We have found indications that using such a region may be
more suited to analyzing and understanding the teleconnection
between ENSO and the IM, but aspects specific to the traditional
observational product of all-Indian summer monsoon rainfall
(AISMR) may be underrepresented and overlooked in this way.

The late-21st c. slowdown mostly has to do with a curious
nonmonotonicity in the change of the ENSO variability: in most
representations of ENSOvariability, aboutmidway in the 21st c. rather
suddenly it starts to decline. In terms of a linear regression model that
can be associated with evaluating the (linear) Pearson correlation
coefficient, the typically increasing regression coefficient—which can
be viewed as an ENSO-IM coupling strength—also plays a strong role.
Although the model’s noise strength undergoes a similar increase,
which has an opposing role, the change of the coupling is found to
dominate. The latter turns out to be the central piece of the robust or
consistent picture of the strengthening ENSO-IM teleconnection. We
conjecture that the temporary drop or drops in the teleconnection
strength at the turn of the 20th–21st centuries are also related to
corresponding changes in the coupling strength.

We leave it for future work to attribute these features to
physical effects. In any case, the change of both the coupling
and noise strength should involve both thermodynamic and
dynamic factors.

Some differences between different characterstics and
representations are due to changes in the relevant spatial
patterns. The most interesting finding is that the pattern of
maximal ENSO variability and that of maximal correlation with
the IM precipitation undergo opposing trends in the middle of the
ENSO domain: the middle becomes more important for ENSO
itself, while it loses importance for the teleconnection. On the side
of the IM, the AISMR region gains relative importance for local
variability and even more for the teleconnection with ENSO.

It is essential to note that based on observations the ENSO-
IM teleconnection appears to have weakened since about 1980
(Kumar et al., 1999; Bódai et al., 2020b). In (Bódai et al., 2020b)
we argued that several reasons could be responsible for this
mismatch. Among them one is that the MPI-ESM associated
with the MPI-GE is not consistent with the observations of the
20th c. Indian Ocean (IO) warming and IM precipitation
decline: in terms of the long-term trend, the ranges of
simulated realisations, wrt. both the IO temperature and
ISMR, do not contain the observations as respective single
realisations–by far [see Figures 12, 13 of (Bódai et al.,
2020b)]. See (Aneesh and Sijikumar, 2018), for example, for
the role of the IO warming regarding the decline of ISMR,
concerning La Niña years, in particular. However, it is a
question yet to be answered if the decline of precipitation
does actually translate into a weakening of the ENSO-IM
teleconnection in the precise sense of a forced change.

Another possibility for the reason for the said mismatch was
posited in (Bódai et al., 2020b) to be the very considerable

FIGURE 13 | Test statistics of our ad hoc test of nonergodicity regarding
the Pearson correlation coefficient. The contours mark the 0.95 quantile. Here,
ENSO is represented by PC1 of EOF1.
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fluctuations of temporal correlation coefficients—the larger in
magnitude the shorter the time window—even under stationary
unforced conditions, and even without decadal variability of the
correlated signals. Evaluating temporal correlations is troubled by
further problems when there is a forced change, namely, that 1)
when the forced change is nonlinear, the temporal correlations
are biased (Section 5), and that 2) the forced signal is not known,
and, therefore, the anomalies that are meant to be correlated
cannot even be constructed. A detrending, say, removing a linear
slope in a time window, does not seem to be a good fix, as even
under stationary conditions one would find spurious trends due
merely to internal variability, and, so, we would remove a signal
that should not be removed.

When an ensemble is available, concerning a singlemodel at least,
the biases to do with point 1) above can be detected and, to a certain
extent, quantified. We have developed an ad hoc statistical test to do
just that, and applied it to the ENSO-IM teleconnection as well as the
relationship of global precipitation and ENSO.We have foundmany
regions of the world where a bias could be detected. The reasons for
the nonlinearities that such biases imply can be manifold, not only
driven by the nonlinearity of the change of ENSO variability, and it
should be carefully examined in the future.

Our methodology indeed ensures that the detected biases imply
nonlinearity (i.e., not only nonlinearity implies biases, but also the
other way round). In our context of the historical and scenario
change of ENSO-precipitation teleconnections, robust nonlinearity
has been found. Given that nonlinearity implies (presupposes) a
forced change, we turn out to have on hand a statistical test for the
nonstationarity of teleconnections (linear correlations). This can be
seen to complement the Mann-Kendall test (in the special case of
the nonstationarity of the correlation coefficient), because the latter
takes the alternative hypothesis of a monotonic change, while our
test includes nonmonotonic changes too.
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