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The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits
requires sophisticated tuning techniques that can accommodate continuous long-term
changes in sedimentation rates. However, most tuning methods use stationary filters that
are unable to take into account such long-term variations in accumulation rates. To
overcome this problem we present herein a new multiband wavelet age modeling
(MUBAWA) technique that is particularly suitable for such situations and demonstrate
its use on a 293m composite core from the Chew Bahir basin, southern Ethiopian rift. In
contrast to traditional tuning methods, which use a single, defined bandpass filter, the new
method uses an adaptive bandpass filter that adapts to changes in continuous spatial
frequency evolution paths in a wavelet power spectrum, within which the wavelength
varies considerably along the length of the core due to continuous changes in long-term
sedimentation rates. We first applied the MUBAWA technique to a synthetic data set
before then using it to establish an age model for the approximately 293 m long composite
core from the Chew Bahir basin. For this we used the 2nd principal component of color
reflectance values from the sediment, which showed distinct cycles with wavelengths of
10–15 and of ∼40m that were probably a result of the influence of orbital cycles. We used
six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an
approximate spatial frequency range for the orbital signal. Our results demonstrate that the
new wavelet-based age modeling technique can significantly increase the accuracy of
tuned age models.
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INTRODUCTION

When investigating paleoclimate records derived from lake cores, the reliability of the age model used is
crucial. This reliability depends largely on the density of independent age-control points, which should
ideally be evenly distributed along the entire length of the core. Such age-control points are derived from
radiometric age determinations obtained by, for example, 40Ar/39Ar dating of volcanic ash layers, 14C
dating of organic material, or luminescence dating of feldspar and quartz crystals. Datable material is,
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however, often scarce in sediment cores. Cyclostratigraphy can be
used in such cases to add additional age control points, evenly
distributed in time. This method has been applied since the mid-
1970s to marine records that extend beyond the range of the
radiocarbon dating technique (e.g., Hays et al., 1976; Imbrie and
Imbrie, 1980; Pisias et al., 1984; Martinson et al., 1987; Tiedemann
et al., 1994; Grant et al., 2017). Orbital tuning has often been used to
increase the temporal resolution between radiometric age control
points, more commonly in paleoceanography than in
paleolimnology (e.g., Grant et al., 2017).

Traditional tuning techniques first assume a maximum age for
the base of the core (the base age), which is typically derived from
existing radiometric dating and/or magnetostratigraphy, to derive a
preliminary linear agemodel assuming constant sedimentation rates.
(e.g., Hays et al., 1976; Pisias et al., 1984; Martinson et al., 1987;
Tiedemann et al., 1994). The next step involves using a bandpass
filter to reduce the proxy data to a single orbital frequency, which
should match that of the tuning target (TT). The TT is a reference
time series used during tuning, whose exact time course is known
and whose frequency is also expressed in the proxy data. The final
step is then to align the peaks of the filtered time series with those of
the TT (fine tuning the preliminary age model) and to interpolate all
core data to the new tuned age model.

Variants of this technique use frequency shifts by applying a
moving-window Fourier technique Meyers et al., 2001), a method
that tracks the dominant harmonic in the data series (Park and
Herbert, 1987), an average spectral misfit method (Meyers and
Sageman, 2007), a method that identifies the time scale that
simultaneously optimizes eccentricity amplitude modulation of the
precession band (Meyers, 2015), or a spectral moment approach
(Sinnesael et al., 2018), to establish an age model (Hinnov, 2013, and
references therein). Some published applications of the method have
been criticized for over tuning (e.g. Tiedemann et al., 1994; Raymo
et al., 1997) which is why Muller and MacDonald (2002) proposed
the use ofminimal tuning, for which only a few age control points are
required (for example ages obtained from magnetic field reversals or
radiometric ages) obtained from within the core. One of the main
assumptions of the minimal tuning methods is a relatively constant
sedimentation rate, which allows a stationary bandpass filter to be
used. This tuning method, which is increasingly popular in
paleolimnology (e.g., Wagner et al., 2019), consequently needs to
be adapted in order to be applicable to lake environments, where the
sedimentation rate is unlikely to be constant.

In this paper we present a new tuning technique that is suitable
for use with paleoclimate records that have few radiometric age
determinations but show significant orbital cyclicity. The
fundamental difference between this new technique and other
tuning techniques is that instead of a fixed bandpass filter we
use a new adaptive filtering method that takes into account
continuous long-term changes in sedimentation rates. The
multiband wavelet age modeling (MUBAWA) approach uses a
continuous wavelet spectral analysis to identify and trace the orbital
signal within a user-defined range of possible base ages for the core.

We first used a synthetic example to demonstrate the advantages
of the new method compared to a traditional method of
cyclostratigraphy similar to the minimal tuning approach of
Muller and MacDonald (2002). We then applied the technique to

a 292.87 m composite core collected from the Chew Bahir basin in
southern Ethiopia. The results demonstrate how this method can be
used to further improve orbital tuning as an age-modeling technique
and facilitate its use in a broad range of applications.

METHODS

The Principle of the MUBAWA Approach
The MUBAWA approach is based on the application of a
continuous wavelet transformation (CWT) to a depth series,

FIGURE 1 | Flow chart of the multiband wavelet age modeling algorithm,
showing the individual steps involved in the analysis. Gray boxes represent
MATLAB functions provided in the supplementaries. Please note that the
spatial frequency range approximation step can be skipped, as indicated
by the bypass arrow.
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with the aim of generating a tuned age model. We use the CWT to
track variations in the spatial frequency of the astronomical
component with depth (which we refer to as the spatial
frequency path), in order to be able to adaptively bandpass
filter the astronomical component from the proxy data. The
MUBAWA technique is specifically designed for lacustrine
depositional environments such as that of the Chew Bahir
basin, with their continuous, long-term changes in
sedimentation rates, whereas methods using stationary filters
are not suitable for such complex depositional environments.

The MUBAWA algorithm consists of several modular
functions, which are wrapped in a MATLAB live script
and are available in the Supplementary material. The
algorithm is divided into the following four steps
(Figure 1). Step 1: preprocessing, which involves
resampling and evenly spacing the input data defined by
the frequency of the TT and the maximum possible base
age (tmax). Step 2: spatial frequency range approximation
(SFRA), which is an optional step that uses the available age
control to approximate the spatial frequency range of the
targeted orbital component, Step 3: spatial frequency path
mapping, which involves determining spatial frequencies
using a CWT and applying a weighting function to prevent
the inclusion of unrealistic sedimentation rates, and Step 4:
identification of the best continuous spatial frequency path,
adaptive filtering by the consecutive application of Taner
filters along this spatial frequency path, and identification of
the best age model solution.

Preprocessing
The filter methods used in this method, as well as the CWT,
require evenly spaced data and the sample size should be
restricted in order to avoid long computation times. We
chose a sample size that did not exceed 20 data points for
each cycle occurring in the TT within the time interval between
t0 and tmax.We then established an evenly spaced depth vector
to match the new sampling rate and interpolated the proxy
values in order to obtain an evenly spaced subsampled data set.
The resulting computed depth series was then used in all of the
subsequent steps.

Spatial Frequency Range Approximation
(SFRA)
In this step we use the age control points and their
corresponding uncertainties to estimate a spatial frequency
range, which is defined by the frequency of the TT and the
maximum and minimum slopes of the ensemble of age model
solutions for each depth point. This procedure is based on the
assumption that every age model solution results in a
particular spatial frequency path for each depth point,
depending on the frequency of the TT and the slope of the
age model solution. This procedure can help to find tuned age
model solutions that conform with the age control points
(within their respective uncertainties). This is an optional
procedure that is not essential for the determination of a
frequency path, but it provides an auxiliary strategy with

which to improve the chances of approximating a path that
will yield results that conform with the age control points,
within their uncertainty ranges.

This resampling-based approach involves obtaining random
samples from the normal distribution of the available age control
points and computing an age model for each set of random
samples. A piecewise cubic Hermite interpolating polynomial
(PCHIP; Fritsch and Carlson, 1980) is used to interpolate
between the resampled age control points. Using a PCHIP
yields solutions that tend not to have any strong fluctuations,
since the interpolations are generally more gradual and do not
deviate markedly from each other in the way that they do with
other methods, such as the classic cubic spline interpolation
method.

The maximum and minimum slopes of the age models
derived from the resampling of the age control points, are then
computed for each depth point. Only monotonically
increasing solutions are accepted, in order to avoid any
solutions that describe time reversals. The slopes are
converted into a spatial frequency range with respect to the
TT. Two depth series are then generated in which the
maximum slope values lead to a depth series with a low
spatial frequency limit, and the minimum slope values to a
depth series with a high spatial frequency limit.

The spatial frequency limits are then used to adaptively
bandpass filter the regularly sampled depth series obtained
from the preprocessing, using Taner filters (Taner 1992).

Spatial Frequency Path Mapping
The following steps use either the adaptively filtered depth series
obtained from the SFRA or, if the SFRA has not been used, the
preprocessed depth data.

A continuous power spectrum (CWT) resolves the
evolution of frequencies through time or space.
Throughout this paper we focus on the perspective of
spatial frequencies, since we are dealing with depth series.
A spatial frequency path can be obtained by analyzing the
frequency evolution of a CWT-based wavelet power spectrum
of the input depth series. Further on in this section, we
describe how we identify these paths. We then use the
identified spatial frequency paths to adjust bandpass filter
center points for each point in the depth series, thus creating
an adaptive filter.

A wavelet is the basis function used for the wavelet
transformation (WT) and can be thought of a specific wave
defined by its frequency and amplitude, with the amplitude
decaying to zero toward either end. Since wavelets can be
stretched and translated in both frequency and space, with a
flexible resolution, they can easily map changes in the spatial
frequency domain (Figures 2A,B). We define β as the depth
variable such that y(β) is the signal under consideration (i.e.
the climate proxy data as a function of the core depth β). A
continuous wavelet transformation (CWT) mathematically
decomposes y(β) into the elementary functions Ψa,b(β),
derived from a mother wavelet Ψ(β) by dilation and
translation (Addison, 2017). The dilation indicates a
compressing or stretching of the mother wavelet Ψ(β),
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resulting in a variation in its frequency, controlled by the scale
parameter a. The spatial resolution of the CWT follows the
translation of the mother wavelet Ψ(β) along the depth β and

is controlled by the translation parameter b (Lau and Weng,
1995). The wavelet transform of the signal y(β) is then defined
as the convolution integral

FIGURE 2 | (A) To illustrate how to map spatial frequency paths we generated a demonstration depth series consisting of an insolation signal (from Laskar et al.,
2004) and superimposed sinusoids. The result was a depth series that had been stretched and compressed by variations in the sedimentation rate. (B)We computed a
CWT from the depth series and plotted the results in a wavelet power spectrum. Note that the frequency evolution followed curved paths. We extracted four profiles from
the CWT, labeled a, b, c, and d. (C) Showing how continuous spatial frequency paths are mapped along the profiles a, b, c, and d. (D) Showing how a peak is
detected and how the power spectrum of the next profile is weighted by application of the green weighting function. The gray peak is weighted and forms the orange
weighted power spectrum.
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CWTΨ(a, b) � 1�
a

√ ∫Ψp(β − b
a

)y(β)dβ  (1)

in which the asterisk indicates the complex conjugate of the
mother waveletΨ and the factor 1/

�
a

√
ensures the preservation of

energy. By varying b for a range of values for the scale parameter
a, the final wavelet power spectrum and the corresponding
scalogram can be obtained (Equation 4; Figure 2B).

The CWT can be computed for a broad spectrum of different
mother wavelets. In geoscience, however, the complex Morlet
wavelets are most widely used because they can be more easily
adapted to capture oscillatory behavior (Torrence and Compo,
1998):

ΨMorlet(β) � 1
π1/4

ei2πf0βe−β
2/2 (2)

from which the elementary functions

Ψa,b(β) � 1
π1/4

e(i2πf0β−ba )e−( β−b�
2

√
a
)2

(3)

are derived and then used in Equation 1. Computing the CWT of
the spatial data results in a complex spatial frequency output, of
which the absolute value represents a wavelet power spectrum for
a particular (a,b)-parameter configuration:

E(a, b) � |CWT(a, b)|2 (4)

This is called a scalogram, representing the energy density
surface of the fast Fourier transform, analogous to a spectrogram
(Addison 2017).Mapping E(a, b) for a variety of (a,b)-parameter
value pairs yields a three-dimensional frequencymap (Figure 2B)
in which the x-values represent core depth-values β (related to the
dilation parameter b in Equations 1, 3, 4, the y-values represent
frequencies (related to the scale parameter a in Equations 1, 3, 4),
and the color coded z-values represent the power of the (spatial)
frequencies at each given β/b-value, Eb(a) (Equation 1). We refer
to this as the wavelet power spectrum throughout this paper.
Finally the relationship between the scale parameter a and a
spatial frequency f , at depth β, is

a � fc
f

(5)

where fc is the center frequency of the Morlet wavelet used and
is chosen automatically, depending on the energy spread of
the wavelet in spatial frequency and depth (MathWorks,
2020a).

The wavelet power spectrum (Figure 2B) allows us to map
frequency paths by following the β-axis along a high energy ridge
(represented by a continuous color band and reflecting
sufficiently high energies), remaining at the highest local
energy level, following changes in spatial frequency without
jumping from one ridge to another (Figure 2C). These ridges
are referred to as spatial frequency paths. They represent
continuous changes in the spatial frequencies within a certain
power range of the signal (e.g. a color range of a band in
Figure 2B). To map a spatial frequency path we need to set
starting points in the wavelet transform plot, which are derived

from the absolute value of the first complex spatial frequency
output Ebfirst(a) (Equation 4) and its respective maxima in spatial
frequency, where each maximum represents a starting point.
Since we can in theory start our spatial frequency path
tracking from either end of the wavelet transform plot,
starting points are derived from maxima of the absolute value
of the complex frequency output of the CWT, Ebfirst(a), from
either end of the core (i.e. where β � 0 and β � max.):

Starting point � ζβfirst � max
a

Ebfirst(a)

In the application presented herein, in which spatial frequency
paths are used to derive cutoff frequencies for adaptive filtering of
the depth series, jumps in the spatial frequency paths represent
abrupt changes in the sedimentation rate. These need to be
avoided because the resolution of our method is limited to one
cycle of the TT, and it is therefore unable to detect such abrupt
changes. We therefore assume that any changes in spatial
frequency occur continuously. This is achieved by introducing
a weighting function that penalizes any sudden fluctuations in
spatial frequency, e.g., when going from Eb�β0(a) at depth β0 to
the next point in the path Eb�β1(a) at depth β1 (Equation 6, 7).
For an illustration of such a path through slices Eb(a) of the
wavelet transform plot see Figures 2C,D, in which the weighting
function is highlighted in green. The weighting procedure
prevents sudden jumps in the spatial frequency when
following along a spatial frequency path and avoids the
inclusion of a neighboring cycles. A suitable weighting
function is a negative exponential function with a decay
parameter κ � 20, which we place at the location of the
previous spatial frequency point in the wavelet transform plot
(ξβ0) before determining the next point (ξβ1):

ξ0 � max(Eb�β0(a))
ξ1 � max(Eb�β1(a) · fweighting) (6)

with

fweighting � e−κ·|a−ξ1| (7)

The frequency path analysis is sensitive to the directionality of
the weighting strategy, i.e. to whether the weighting is applied
top-down or bottom-up along the core. Our age model is based
on spatial frequency paths that are computed bottom-up, which
we interpret as the physically correct approach, assuming that the
preceding spatial frequency point contains information about the
subsequent spatial frequency point, proceeding along a positive
time scale.

Completing this step of the algorithm typically yields a
number of continuous frequency paths from which the best
approximation to the orbital component needs to be identified
in the following final step.

Adaptive Filtering Along the Spatial
Frequency Path
For our adaptive filter approach we use a series of Taner filters
(Taner, 1992; Zeeden et al., 2018). These filters have decisive
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advantages over the widely used Butterworth filters due to their
steep roll off rates for narrow bandpass configuration. On the
other hand, the longer computation times compared to
Butterworth filters are an obvious disadvantage. The method
proposed herein uses continuous spatial frequency paths,
identified by spatial frequency mapping, to design adaptive
bandpass filters for use on the depth series along these paths,
assuming that one of these paths approximates the orbital
component that we ultimately want to tune. Adapting the
cutoff frequencies used in the filtering process allows
continuous variations in sedimentation rates, which ultimately
cause changes in the wavelength of the orbital component, to be
taken into account.

The spatial frequency path mapping usually yields a
number of possibly suitable paths. The following steps are
performed with all of the spatial frequency paths that
resulted from the previously described spatial frequency
mapping. Each frequency path is first smoothed using a
20 data point Gaussian filter, in order to avoid abrupt
changes in frequency. Both forward and reverse filtering
are used to avoid phase shifts. The frequency paths are
then converted into a lower cutoff depth series and an
upper cutoff depth series. (For the lower cutoff frequency
we subtracted one sixth of the frequency of the spatial
frequency path and for the upper cutoff frequency we
added one sixth: these values were found to be practicable
for our purposes.) The result is a frequency tube enclosing
the frequency path used.

Each data point in the entire time series is then filtered
separately using Taner filters. From the results of the filtering
a new adaptively filtered composite depth series is created in
which each value is the result of an individual bandpass filter
setting that was derived from a particular spatial frequency
path. To reduce any noise that can derive from the adaptive
filtering, the resulting composite depth series is filtered with
a Taner filter. The upper cutoff frequency is set to the
maximum cutoff frequency of the spatial frequency path
that was used for the adaptive filtering and the lower cutoff
frequency to the minimum cutoff frequency.

The set of maxima appearing in each of the adaptively
filtered depth series is then determined. The first and last
maxima of the adaptively filtered depth series are rejected in
order to avoid edge effects at either end of the wavelet power
spectrum. An age model can be obtained for each of
the spatial frequency paths by assigning the remaining
maxima in the adaptively filtered depth series to the
minima of the TT, translating each adaptively filtered
depth series into a time series. Each age model is applied
to the filtered time series and an adaptively filtered time
series thus obtained.

In order to identify the most suitable age model on the basis
of its agreement with age control points and the TT, each age
model is ranked using the following procedure. For each age
control point (and uncertainty) that is included, the age model
corresponding to the time series is assigned a score of one
point. Pearson correlation coefficients between each of the
adaptively filtered time series and the TT are also used to

provide an indication of the degree of correlation. The age
model corresponding to the time series that has the highest
degree of correlation gains an additional point. The age model
and its corresponding time series that has the highest final
score is rated as the best age model. The full data set is then
interpolated using the best age model approximation and the
maximum sampling rate, as defined by the length of the
original data set.

Traditional Tuning
We compared the MUBAWA tuning technique with an
established tuning technique widely used in paleoceanography
(e.g., Hays et al., 1976; Imbrie and Imbrie, 1980). In contrast to
the MUBAWA method, established tuning approaches use a
preliminary estimate for the basal age of the core (e.g. from
magnetostratigraphy) and interpolate an environmental proxy
(such as benthic oxygen isotopes) to a preliminary age scale,
before then bandpass filtering and tuning this proxy to an orbital
cycle (e.g. Earth’s precession cycle) as the TT. The maxima of the
filtered time series are then interpolated to the minima of orbital
precession based, for example, on the solution by Laskar et al.
(2004). Both time series are then in phase and the age model is
complete.

FIGURE 3 | Location of the study area. The Chew Bahir basin is located
in southern Ethiopia, within the southern Ethiopian rift (indicated by the red
box). Rainfall in the area is determined by the annual migration of the tropical
rain belt (TRB), and on inter annual time scales by the migration of the
Congo air boundary (CAB). On millennial time scales rainfall shows a strong
correlation with orbital precession cycles.
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MATERIALS

Synthetic Data for Testing
To test the MUBAWA algorithm we produced synthetic data
using an insolation signal for 4°N and 35°E from Laskar et al.
(2004), covering the past 800 kyrs with a sampling interval of
100 years. In addition to the insolation signal, we added a distinct
10-kyr cycle and a distinct 100-kyr cycle as two sine waves. Adding
extra cycles to the quasi monochromatic insolation signal
produced synthetic data that was closer to real climate data, in
which multiple continuous frequencies can occur. We created an
artificial age model that was characterized by a continuous
increase in sedimentation rates down core from 0.3 to 0.9 m/
kyr, transferred the time series into a space series, and added white
noise. For age control points we generated randomly distributed
ages that were resampled from the time series, simulating, for
example, the presence of Argon-dated volcanic ash layers in the
core. The result was a synthetic depth series that was derived from
a time series and in which the sediment deposition rate varied with
time, simulating a climate proxy record.

The Chew Bahir Data
The Chew Bahir sediment cores described herein were collected
from the Chew Bahir paleolake basin in the southern Ethiopian
Rift (4.1–6.3°N, 36.5–38.1°E; Figure 3), a segment of the East
African Rift System (EARS). The Chew Bahir record discussed in
this work is a composite record from duplicate sediment cores,
HSPDP-CHB14-2A and HSPDP-CHB14-2B1. In the following

sections we use meter composite depth [m.c.d.] as our unit
for depth.

Rainfall in the area is determined by the migration of the
tropical rain belt, which in turn follows the zenith of the Sun and
results in two rainy seasons (Nicholson, 2017). During the
Pleistocene, African climatic changes on millennial time scales
are thought to have been caused by periodic (23–19 kyr)
variations in insolation resulting from Earth’s orbital
precession (e.g., Kutzbach and Street-Perrott, 1985; Berger
et al., 2006). Due to the geometry of precession, changes in
summer solar radiation are anti-phased between hemispheres,
resulting in maximum monsoonal circulation and maximum
precipitation every 19–23 kyrs in northern and southern Africa
(Partridge, 1997; Trauth et al., 2003; Berger et al., 2006). In
contrast, periods of increased humidity in equatorial East Africa
occurred at 10–11 kyr intervals following maximum equatorial
insolation in March and September (Trauth et al., 2003; Berger
et al., 2006).

For this study, with its focus on calculating an age model by
orbital tuning, we used the 39 band color reflectance data,
which show distinct continuous cycles at ∼10–15 and ∼40 m
depth intervals. Past variations in rainfall are reflected in the
color of the sediments of the Chew Bahir basin, with blue-
green colors during wet episodes and reddish-brown colors
during dry episodes (Foerster et al., 2012). The sediment color
can be primary, resulting from direct detrital sediment input,
or secondary, due to diagenesis of the deposited sediments by,
for example, redox processes at the sediment-water boundary
under lacustrine conditions (Giosan et al., 2002 and references
therein). Color reflectances within the blue green spectrum
suggest reactions at the sediment-water boundary as a result

FIGURE 4 | (A) To extract the environmental signal from the 39 band color reflectance data set we used a principal component analysis (PCA). The first three
principal components explained 99.88% of the total variance. We used the 2nd principal component (PC2) as an environmental indicator, with positive values indicating
wet periods. (B) The PC2 corresponds to red blue green color shifts that are characteristic for the sediments of the Chew Bahir core displayed at the bottom of the
diagram. The colors of the core have been photographically enhanced.

1Foerster, et al. submitted.
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of H2S production, fueled by organic matter and its
consumption by sulfate reducing bacteria. H2S in the
anoxic zone at the water-sediment boundary reacts with
iron hydroxides, reducing any Fe3+ that is attached to clay
minerals, bound in iron-hydroxides, or present in aqueous
solution. During this process mono-sulphides and pyrite form
on the lake floor and within the uppermost centimeters of
sediment (Giosan et al., 2002), resulting in a spectral shift
toward green/blue reflectances.

Organic matter input can derive from algal blooms within the
lake and from plant material washed into the lake from the Chew
Bahir catchment area. Algal blooms are in turn driven by nutrient
and iron influx to the lake system (Storch and Dunham, 1986).
Dissolved iron (Fe) and iron hydroxide may originate from the
catchment areas at the upper eastern edge of the Chew Bahir
basin, from the Teltele Plateau, and from the northeastern part of
the catchment, where volcanic rocks are exposed to weathering
(Foerster et al., 2012). Wind-blown dust from more distant
sources may also have contributed to the nutrient and iron

flux into the lake (Foerster et al., 2012). In the absence of
oxygen the reduced minerals retain their diagenetic signatures
and associated color reflectances until they are eventually sealed
off from the lake water and possible chemical alteration by
subsequent sedimentation.

We used a principal component analysis (PCA) (Pearson,
1901) to unmix the environmental factors controlling
sediment color and to increase the signal-to-noise ratio, as
well as to assist in interpreting the multivariate data set. The
first principal component (PC1) showed similar loadings for
all color bands; it was interpreted to represent the total
reflectance of the sediment and was not used in this
method. We Instead used PC2 (3.4% of the total variance),
with positive loadings within the short wavelengths (blue
reflected light), as a proxy for precipitation within the
catchment area (Figures 4A,B). Complete linear unmixing
was, however, not possible because the intensity values within
individual wavelength bands were not perfectly Gaussian
distributed.

FIGURE 5 | (A) The wavelet power spectrum that resulted from the CWT of the synthetic depth data demonstrates the frequency shift that has been applied by the
continuous sedimentation rate changes induced by the synthetic age model. Blue colors refer to low power and red colors to high power. The green dots represent the
peak distances of the filtered linear interpolated time series from the first step of the traditional tuning method. Note that where the peak distances do not follow a
continuous frequency path, the traditional tuning method failed to reconstruct the synthetic sedimentation rate shown in (B). (C) The depth-age plot shows that
even though the traditional method failed to reconstruct the correct sedimentation history, it yielded a similar base age.
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We also used six Argon ages, which date the sediment at the
bottom of the core to 629 ± 11 kyrs BP (one sigma error) (Roberts
et al., submitted).

RESULTS

Synthetic Data Results
We first applied the new MUBAWA technique, including the
SFRA, to the synthetic data set. To visualize the frequency
evolution of the synthetic data we computed a wavelet power
spectrum (Figure 5A). We used the time series of orbital
precession between –1.0 and 0 Ma BP from Laskar et al.
(2004) as the TT and the synthetic ages as the age control
points for our hypothetical core. We selected a minimum base
age of 550 kyrs BP (tmin) and a maximum base age of 850 kyrs BP
(tmax).

The reconstructed accumulation rates calculated using
MUBAWA age modeling largely correspond to the true
(synthetic) accumulation rates (Figure 5C). A closer look at
the results reveals minor deviations of the modeled
accumulation rate from the true accumulation rate. The
maximum age of the core determined from the synthetic data
by MUBAWA age modeling, agrees well with the true
maximum age.

In order to compare the results obtained from the
MUBAWA method with those obtained using established
tuning methods, we reconstructed the accumulation rate of
the synthetic data using a traditional tuning method. We first

FIGURE 6 | Lomb-Scargle power spectrum derived from a simple linear
age model. The green color represents the precession frequency range (PFR)
within which the precession frequencies can be expected to occur. The red
line indicates the 95% detection probability. Frequencies within the PFR
are above the detection probability suggesting that there is enough power
within the precession band to run the multiband wavelet age modeling
approach.

FIGURE 7 | Results of the SFRA. (A)We computed 100,000 realizations (blue lines) between the randomly resampled age control points to approximate a spatial
frequency range depending on the frequency of the TT and the minimum and maximum slopes of the age model ensemble. (B) The wavelet power spectrum of the
adaptively filtered PC2, with blue colors indicating low power and red colors high power. The SFRA resulted in the black dashed lines that have been used to adaptively
filter the depth series. The white lines are spatial frequency paths that resulted from the spatial frequency mapping. Note that we left out the age at 230 m.c.d. from
the SFRA because it was very close to a better dated age with less uncertainty (close ages expand the SFRA).
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transformed the space series into a time series with a
maximum age of 800 kyrs BP. We then bandpass filtered
the signal to extract the 19–23 kyr cycle that we wanted
to use as the TT. Since we knew that the time series had
been compressed and stretched by varying sedimentation
rates, we chose a relatively wide passband with cutoff
frequencies of 1/15 and 1/30 kyr−1 for the filter. Finally, we
aligned the maxima of the filtered time series with the minima
of the TT.

Although the traditional tuningmethod found the correct base
age for the synthetic data, it did not reconstruct the accumulation
rates of the synthetic example correctly. In order to visualize
which spatial frequencies resulted in the final traditionally tuned
age model we used peak distances, these being the distances
between each of the peaks in the filtered depth series. The
variations in these distances ultimately determine the age
model. A projection of the inverse of the peak distances into a
wavelet power spectrum reveals which of the spatial frequencies

FIGURE 8 | (A) Each frequency path was converted into an upper and lower cutoff frequency to adaptively filter along the spatial frequency path. The cutoff
frequencies that resulted in the best age model are shown as black dashed lines. (B) The peaks of the adoptively filtered signal were consecutively projected onto the
peaks of the tuning target (TT) to generate an age model. (C) The results of each processing step are shown from top to bottom, starting with the sub sampled PC2, the
results of the SFRA, and the adoptively filtered depth series.
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the tuned age model is based on. The projection of the inverse of
the peak distances into the wavelet power spectrum showed that
the traditional method generated an age model on the basis of
different spatial frequency paths from our original insolation
signal. The reconstructed accumulation rates diverged from the
“true“ accumulation rates where the peak distances projected into
the wavelet power spectrum failed to follow the continuous
spatial frequency evolution of our initial insolation signal
(Figures 5A–C). The result obtained using the traditional
tuning method cannot be considered satisfactory, indicating
the need for a different strategy that avoids such a failure. The
MUBAWA approach, which clearly follows a continuous spatial
frequency path, provides such an alternative strategy.

Chew Bahir Data Results
We first created a linear age model by extrapolating through the
age control at 240 m (400 kyrs). We used this age because a

similar age has been obtained from the same depth in the parallel
core (Roberts et al., submitted). The age model yielded a base age
of 570 kyrs. We calculated a Lomb-Scargle power spectrum for
the time series and computed the detection probability limit
(Lomb, 1976; Scargle, 1982) (Figure 6). We found power above
the detection probability limit within the precession frequency
range (PFR). The possible precession cycles indicated by the
simple linear age model suggested that the cycles already observed
in the depth scale were indeed related to orbital precession.

We then used the MUBAWA algorithm to calculate an
orbitally tuned age model for the Chew Bahir composite core.
We used PC2 from the color reflectance data, an orbital
precession (according to Laskar et al., 2004) of between –1
and 0 Ma BP as the TT, and the Argon ages (together with
their uncertainties) as age control points. We rejected the Argon
age at a depth at 234.066 m.c.d. because of its large uncertainty
and its proximity to the age date at 234.048 m.c.d., which had a
smaller uncertainty. We chose 850 kyrs as the maximum base age
(tmax) and 550 kyrs as the minimum base age (tmin).
Preprocessing with the MUBAWA function resulted in a
sampling rate of 0.3661 m−1. The resulting evenly spaced
subsampled data set contained 800 data points.

We then used the SFRA to approximate the frequency range
that corresponded to the age control (within their uncertainty
ranges) by randomly resampling the age control points to create
an age model ensemble (Figure 7A). The SFRA resulted in a
relatively broad frequency range in the top and bottom sections of
the core, where more radiometric ages were available, and a
narrower range in between (Figure 7B).

We used Taner filters to adaptively bandpass filter the y-values
using the upper and lower frequency limits from the SFRA, thus
obtaining an adaptively filtered depth series. We performed the
spatial frequency path mapping using the data from the SFRA.
Ten different spatial frequency paths were mapped. All paths had
different starting positions but merged after a certain depth
(Figure 7B). We adaptively filtered along the frequency paths
by adjusting the cutoff frequencies of the Taner filters according
to the values of each individual frequency path.

Each frequency path resulted in an adaptively filtered depth
series. We computed the maxima of the depth series and the
minima of the TT, as negative precession resulted in an increase
in monsoon strength within the study area. The interpolation
points were then arranged in chronological order so that the
second maximum of the filtered time series and the second
minimum of the TT were assigned to each other, until the
penultimate maxima of the filtered time series. We omitted
the first and last maxima to avoid any edge effect of the
wavelet power spectrum.

We then used a PCHIP to interpolate between the new tie-
points, derived by assigning the maxima of the adaptive filtered
depth series to the minima of the TT, and generated an age model
for each spatial frequency path. We used the agreement between
the age models resulting from the interpolation and the age
control points (within their uncertainties) to evaluate the age
models. We also used the Pearson correlation coefficient to rate
the age models. The cutoff frequencies that eventually led to the
best age model are shown in Figure 8A. The adaptively filtered

FIGURE 9 | Two additional age models have been developed for the
Chew Bahir project: a direct-dated age model (Roberts et al., submitted.) and
a traditionally tuned age model. Note that the multiband wavelet age modeling
(MUBAWA) age model is in strong agreement with the age controls.
MUBAWA2 represents an additional age model that has resulted from one of
the frequency paths, but was ranked second.
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time series then correlated with the TT (Figure 8B). The
individual steps and their results that were applied to the
depth series are shown in Figure 8C. This analysis resulted in
an age model that was in agreement with most of the age control
points (within their two sigma errors) and indicated a maximum
age for the base of the core of 632.62 kyrs BP (Figure 9). We
applied our MUBAWA-based age model to the PC2 of the 39
band color reflectance record (Figure 10A).; the wavelet power
spectrum of the resulting time series showed significant orbital
cycles with periods of 100, 60, 19–25, 10–15, and 5 kyrs
(Figure 10B).

In order to further compare our MUBAWA approach with the
traditional method we also applied the previously described
traditional tuning method to the Chew Bahir data. For this we
first assumed a preliminary base age of 500 kyrs. We generated a
time series based on this simple linear preliminary model and
then applied a relatively wide bandpass filter with cutoff
frequencies of 1/28 and 1/16 kyr−1. Both methods can be seen
from the peak distances to operate in the same frequency domain
(Figure 11A). The accumulation rates show a strong correlation
with the peak distances (Figure 11B). The age-depth gradients
differ only slightly and remain within the uncertainties of the
Argon ages (Figure 11C).

DISCUSSION

We have developed a new age modeling technique that is
specifically suited to climate records with distinct orbital cycles
and limited age control. The approach involves statistical analysis
of an age model ensemble to delimit the spatial frequency range of
the targeted orbital frequency. It uses a wavelet power spectrum

derived from the CWT to trace the evolution of the orbital
frequency and ultimately adapt the bandpass filter to its
variations, allowing for continuous long-term changes in
sedimentation rates. This new technique is in improvement on
traditional tuning techniques that use a single bandpass filter to
tune paleoclimate records. The method depends on a number of
parameters that may need to be adjusted when using data sets
other than those presented herein. These include the amount of
weighting, the sampling rate, and the bandwidth of the adaptive
filter.

By applying a traditional tuning method to synthetic data
we have shown that when the data to be tuned are
characterized by continuous long-term changes in
sedimentation rates, jumps occur in the spatial frequency
that lead to misinterpretation of the spectral data and
ultimately to a false age model. We have shown that such
misinterpretation of the data set can be detected by plotting
the peak distances of the filtered, but untuned, time series into
a wavelet power spectrum of the untuned raw spatial data. If
the peak distances correspond to a continuous frequency
evolution, the traditional tuning method will produce
accurate results. If, however, the peak distances show no
match with a continuous frequency evolution the method
will fail to deliver accurate results. It is specifically for cases
resembling the synthetic data, which are common in nature,
that we have developed the MUBAWA method. The
MUBAWA technique has demonstrated its ability to handle
such special circumstances by correctly solving the synthetic
example.

Application of the MUBAWA approach to the Chew Bahir
record and using PC2 from its color reflectance data set has
produced a tuned age model that is in strong agreement with

FIGURE 10 | (A) Resulting time series. The multiband wavelet age modeling age model was used to convert PC2 depth series into a time series, as shown. (B)
Wavelet power spectrum, with the age along the x-axis and the period along the y-axis. The colors indicate the power of the cycle, with red colors for high power and blue
colors for low power. The wavelet power spectrum computed from the PC2 time series shows the anticipated precession cycles, since the age model was tuned to that
cycle. The continuity of the longer wavelength periods at 60 and 100 kyrs shows that the tuning has been successful.
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independent age controls and shows continuous orbital cycles in
the wavelet power spectrum. As expected, the tuning revealed
particularly distinct cycles corresponding to frequencies
contained in the TT. Furthermore, a set of higher frequencies
with periods of ∼5 kyr that, according to Berger et al. (2006), are
attributable to fundamental harmonics, can be identified in the
tuned time series. The occurrence of a distinct ∼10–15 kyr cycle
suggests half precessional forcing of the Chew Bahir
environmental conditions, as previously suggested by Berger
et al. (2006), Berger et al. (1997), and Trauth et al. (2003). We
also identified a distinct continuous 63 kyr cycle. Its occurrence
can possibly be attributed to heterodynes, as described by
Clemens et al. (2010), Clemens et al. (2018) and recently
identified in South Asian precipitation records (Gebregiorgis
et al., 2018). We also recognized a continuous 100 kyr cycle
that can be ascribed to eccentricity in the earth’s orbit
(Figure 10).

We also created a traditional tuned age model (according to
common practice) using the Chew Bahir data, for comparison
with the MUBAWA age model. The result again revealed a

strong agreement with the age control points (Figure 11C),
with the exception of the oldest age at the base of the
composite core. This model would certainly be a
satisfactory result for users of established tuning methods.
To compare the resulting filtered depth series of the
MUBAWA approach with the traditionally tuned filtered
depth series we plotted the peak distances of the
traditionally tuned filtered depth series and the peak
distances of the MUBAWA filtered depth series into the
wavelet power spectrum (Figure 11A), as demonstrated
previously for the synthetic example.

The peak distance analysis revealed that, despite the
agreement with the age control points and the increase in the
power of the eccentricity cycle, a discontinuous spatial frequency
evolution had been used through parts of the composite core. The
synthetic data example showed that such jumps in spatial
frequency can lead to misinterpretations (Figure 11A).
Although real data are far more complex and the exact
sedimentation history of such data is largely unknown, we
believe that the continuity assumption in our MUBAWA

FIGURE 11 | (A) Wavelet power spectrum, with frequency along the y-axis and depth along the x-axis. The power is indicated by color, with red colors for high
power and blue colors for low power. The peak distances can be used to compare the traditional approach with the new multiband wavelet age modeling (MUBAWA)
approach. Both methods follow approximately the same cycle until 230 m.c.d., after which they showmarked differences. (B)Where the peak distances differ in (A), the
accumulation rates are significantly different. (C) The two age models only vary insignificantly in the depth age plot. However, the MUBAWAmodel tracks to higher
frequencies below 250 m.c.d. on, which allows it to reach the argon age at the base of the composite core.
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approach enables it to make an important contribution to tuning-
based age modeling.

CONCLUSION

We have demonstrated in our synthetic example that tuning
methods using stationary bandpass filters have difficulty
reconstructing the correct accumulation history, whereas
the MUBAWA algorithm presented herein, using the
CWT to track a continuous frequency evolution, yielded
the correct solution. Application of the MUBAWA approach
to the Chew Bahir record and the PC2 of its color reflectance
data revealed that the method is also applicable to real
climate data sets. A comparison with traditional tuning
showed that, whereas the traditional tuning method is
limited to rather linear age models, the MUBAWA
approach is capable of detecting and taking into account
continuous long-term changes in sedimentation rates. Not
only was the MUBAWA-generated age model in good
agreement with the available age control points (within
their uncertainties), but it was also able to reconstruct
continuous orbital cycles, as shown in the wavelet power
spectrum. We recommend the MUBAWA approach for use
with a wide range of climate data sets that require
sophisticated tuning methods.
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