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The Carpathian Basin is a key region for understanding modern human expansion into
western Eurasia during the Late Pleistocene because of numerous early hominid fossil find
spots. However, the corresponding archeological record remains less understood due to a
paucity of well dated, contextualized sites. To help rectify this, we excavated and sampled
Crvenka-At (Serbia), one of the largest Upper Paleolithic sites in the region to obtain
radiometric ages for the archeological artifacts and evaluate their depositional context and
subsequent site formation processes. Our results confirm that this locality represents a
multiple-occupation Aurignacian site that dates to 36.4 ± 2.8 ka based on modeling of
luminescence ages. Electrical resistivity tomography measurements indicate that the site
formed on a sandy-gravelly fill terrace covered by overbank deposits. Complex grain size
distributions further suggest site formation in contrasting depositional environments
typically occurring alongside fluvial channels, at lakeshores, in alluvial fan or delta
settings. The site is thus the closest (ca. 50 km) known Aurignacian site to the earliest
undisputedmodern human remains in Europe at the Peştera cu oase and some intervals of
the occupation may therefore have been contemporaneous with them. This suggests that
modern humans, during their initial settlement of Europe, exploited a wider range of
topographic and ecological settings than previously posited. Our findings indicate that
lowland areas of the Carpathian Basin are an important part of understanding the early
settlement patterns of modern humans in Europe.
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INTRODUCTION

While it is generally accepted that the initial dispersal of modern
humans into western Eurasia originated in Africa, the timing,
trajectory and conditions of this spread are still not fully
understood (e.g., Davies et al., 2015; Obreht et al., 2017;
Staubwasser et al., 2018; Teyssandier and Zilhão, 2018;
Bösken, 2020; Hublin et al., 2020). An often-discussed
potential trajectory of human migration into Central Europe is
along the Danube, where river valleys and/or piedmonts have

been suggested as possible ecological corridors (Kozłowski, 1992;
Zilhão et al., 2007; Conard and Bolus, 2008; Hauck et al., 2018;
Chu, 2018). Central to this discussion is the Banat, a
geographically and environmentally diverse region in the
southeastern Carpathian Basin shared by Romania, Serbia and
Hungary. This region holds a key geographical position
immediately northwest of the Iron Gates, the only
hydrological connection between Central and Southeastern
European continental drainage systems (Schwarz, 2014;
Krézsek and Olariu, 2020).

FIGURE 1 | Location (A–C) and geology (D) of the research site Crvenka-At (red diamond) east of the Deliblatska Peščara dune field and the Alibunar Depression
(1) and west of the Vršac Mountains (2; map B). The site is located at the border to two morphological depressions (black lines). Several sites that contain early Upper
Palaeolithic artifacts are indicated (yellow circles). Caves containing early modern human remains are marked with yellow triangles. Furthermore, the location of the Vršac
borehole is shown (white triangle; Zeeden et al., 2021). The ALOS Global Digital Surface Model (AW3D30) builds the basemap for the surface elevation ©JAXA
(JAXA EORC, 2016). The extend of Figure S1 is indicated (red rectangle). The Banat region is located within the white lines. Map (C) shows a close-up of the At I site
including the ERT transects and the excavation trenches. The arrows indicate electrodes 48 of each transect. The google base map (Bilder © 2020 CNES/Airbus, Maxar
Technologies, Kartendaten ©) shows a satellite photo. The geological map in D uses the map provided by the Geological Institute of Serbia, 2009.
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Archeological interest in the Banat area increased after the
discovery of early modern human remains at the Pesțera cu oase
(ca. 42–37 ka cal BP; Trinkaus et al., 2003a; Trinkaus et al., 2003b;
Trinkaus et al., 2012). The conspicuous absence of accompanying
archeological artifacts stimulated the re-investigation of the open-
air sites of Românesţi, Cosa̧va and Tincova (Figure 1) that
highlight the archeological importance of the Banat during the
early Upper Paleolithic (e.g., Anghelinu et al., 2012; Sitlivy et al.,
2012; Kels et al., 2014; Sitlivy et al., 2014; Chu et al., 2016b).
Furthermore, abundant, nearby loess archives have augmented
our understanding of the prevailing palaeoenvironmental
conditions during the Late Pleistocene (e.g., Schmidt et al.,
2013; Kels et al., 2014; Schulte et al., 2014; Obreht et al., 2015;
Zeeden et al., 2016; Gavrilov et al., 2018; Pötter et al., 2020).

Many open-air archeological sites from the early Upper
Paleolithic in the Banat (and many sites within the wider
Carpathian Basin) have been recovered in an approximate
altitudinal belt of 200–300 m above mean sea level (AMSL;
Hauck et al., 2018) where artifacts have been mainly excavated
in pedogenic complexes that developed in the Carpathian
foothills during Marine Isotope Stage (MIS) 3 (Kels et al.,
2014). Research has thus far focused on archeological sites
along the western foothills of the Carpathian Mountains.
However, those sites are characterized by short sections
(<3 m) of Upper Pleistocene sediments thereby hindering
high-resolution dating and palaeoenvironmental analyses (e.g.,
Kels et al., 2014; Chu et al., 2016b; Chu et al., 2019). On the other
hand, other geomorphological settings (e.g., lower altitudes) of
the Carpathian Basin have received little attention, thereby
limiting a broader understanding of how modern humans
interacted with the landscape (Dobos and Chu, 2019). This
may be related to either a true absence of archeological sites,
problematic sedimentological archives with high deposition rates
that obscure archeological findings (Tourloukis, 2016) or limited
systematic research (Fitzsimmons et al., 2012; Iovita et al., 2014;
Chu et al., 2016b; Mihailović, 2020).

To examine the latter possibility, a re-excavation campaign
was undertaken at Crvenka-At in the vicinity of Vršac, in
northern Serbia, between 2014 and 2015. The site was chosen
for proximity to the Pesțera cu oase, its unique topographic
position and its well attributed stratified Aurignacian
assemblages that remained undated by absolute dating
methods. The aim of the study was to extend our knowledge
of early modern human occupation in the lowland areas of the
Carpathian Basin by investigating its timing and environmental
context.

BACKGROUND

Research Site and Site History
Crvenka-At (45°08.104′ N, 21°16.853′ E) is an archeological site
complex comprising at least two separate localities (Crvenka and
At) and other find spots located approximately 3 km north of the
town of Vršac (northeastern Serbia) in the southeastern part of
the Carpathian Basin (Figure 1). Both localities are situated
within a ridge (top ∼93 m AMSL; At I ∼87 m AMSL; At II

∼86 m AMSL; bottom of depressions ∼76–82 m AMSL)
separating depressions north of Vršac and east of Alibunar
The Alibunar Depression (Figure 1B) was described as a
morass (i.e., mire/mud/swamp) in the map of 1769 but was
later drained at the turn of the 18th century (Müller, 1769;
Timár et al., 2008). The depression is bounded by the
Deliblatska/Banatska Peščara loess and dune fields to the west
and the Vršac Mountains to the east. Middle and Upper
Paleolithic artifacts from the northern foothills of the Vršac
Mountains were first discovered during sand extraction in the
19th century. More systematic collection at the Crvenka-At sites
was undertaken by R. Rašajski (1952–1978) that highlighted the
technological homogeneity of the recovered artifacts (Mihailović
et al., 2011). A test excavation in 1984 identified three separate
archeological levels containing 19 flints and several dozen quartz
artifacts (Radovanović, 1986). These were later attributed to
“typical” Aurignacian (IIa at At and IIb at Crvenka) and
“Krems” style Aurignacian assemblages (Layer IIb at Crvenka;
Mihailović, 1992) based on their typological characteristics.
Against this background, the site was relocated through a
series of trench excavations and its sedimentary and
environmental contexts were investigated through
chronostratigraphical dating and sedimentological analyses (cf.
Chu et al., 2014; Chu et al., 2016a).

Geological and Geomorphological Setting
The area of the Vršac Mountains is part of the southeastern
margin of the Carpathian Basin that tectonically formed during
the Neogene and Quaternary periods (Matenco and Radivojević,
2012; Sušić et al., 2016; Bartha et al., 2018; Rundić et al., 2019).
The present-day landscape in the Carpathian Basin is also
strongly affected by neo-tectonic processes, with the youngest
tectonic deformations characterized by positive and negative
vertical motions (Toljić et al., 2013). The central and
southeastern part of the basin, where the research area is
located, is dominated by northeast-southwest and northwest-
southeast oriented strike-slip faults (Marović et al., 2007; Sušić
et al., 2016). This tectonic regime resulted beside rapidly uplifting
blocks (e.g., Vršac Mtns.) in the development of the Alibunar
Depression (Figure 1), which was filled with fluvial sediments as
it is connected to a river system, something that is typical for such
structural depressions. The geological map in Figure 1D depicts
the ridges as Pleistocene silts (green) and the basins as Holocene
wetland and floodplain deposits (blue). This underlines the
ongoing subsidence of the basin. The Vršac Mountains as
push-up structure contain crystalline basement rocks of
Paleoproterozoic–Paleozoic age (purple) covered by Pliocene
marls, sands and silts (orange). Further information on the
dynamic landscape evolution can be found in the
Supplementary Material (cf. Supplementary Figure S1).

MATERIALS AND METHODS

Excavation and Sampling
In 2015, eight test trenches were prepared at the edge of two pre-
existing sand extraction pits (At I and At II). The first trench was
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excavated to locate the 1984 excavation trench by Radovanović
(At II). Seven other trenches were excavated at the margins of an
adjacent sand pit (At I) to clarify the sedimentary setting and to
correlate the stratigraphy of At I and At II with the Crvenka
locality (see Chu et al., 2014; Chu et al., 2016a). Here, we focus on
two of these trenches: trench 3 and 5. All finds and the excavation
areas were piece-provenienced in a local coordinate system using
both traditional analogue methods and a total station.

Eight luminescence samples and corresponding radionuclide
concentration samples were extracted at two trench profiles (At I-
3B and At I-5) with the highest artifact density in order to
chronostratigraphically constrain the archeological levels. In
addition, sediment samples were collected for grain size
analyses and color measurements in 2 cm intervals to
investigate the palaeoenvironmental setting of the site.
Supplementary Figure S2 shows photographs of the sampled
profiles.

Electrical Resistivity Tomography
Electrical resistivity tomography (ERT) was conducted to detect
stratigraphic differences within the near-surface deposits and to
map the underlying bedrock topography. A Syscal R1+ Switch 48
device (Iris Instruments) and a Wenner-Schlumberger electrode
array with 3 m electrode spacing were used allowing for an
investigation depth of approximately 18 m below surface. The
elevation and geographical position of each electrode were
measured using a differential GPS (type Topcon HiPerPRO).
GPS altitudes were corrected to m AMSL based on known
altitudes from topographical fixed points at the excavation site.
Data were then inverted incorporating the topography using the
Res2Dinv inversion program (Geotomo Software).

Optically Stimulated Luminescence Dating
of Sediments
Samples were separated into 100–150 and 150–200 µm fractions.
Only for sample C-L4241, grain sizes between 100 and 250 µm
were used due to a low amount of sample material. Both quartz
and potassium feldspar grains were extracted. Further sample
preparation and measurement facilities are described in detail in
the Supplementary Material. A single aliquot regenerative dose
(SAR) protocol (Murray and Wintle, 2000; Murray and Wintle,
2003) was applied for quartz. A preheat plateau test (Murray and
Wintle, 2000) and a dose recovery test (DRT, e.g., Murray and
Wintle, 2003) were performed on sample C-L4240 before De

(equivalent dose) measurements to assess the proper
measurement settings.

For potassium feldspar measurements, post-infrared infrared
stimulated luminescence (pIRIR290 and pIRIR225) protocols were
tested (Buylaert et al., 2009; Thiel et al., 2011). Prior infrared (IR)
stimulation temperature tests were performed (Buylaert et al.,
2012). Furthermore, DRTs using bleached samples (24 h Hönle
Sol2 solar simulator) were conducted. These tests were carried out
on samples C-L4239–C-L4242. Finally, the equivalent dose was
determined on a minimum of 28 aliquots per sample using an
arithmetic mean. Residual doses were assessed after bleaching the
aliquots for 24 h in a solar simulator. Fading tests were conducted

on sample C-L4240 using three aliquots per tested protocol and
pause times of 6,000, 12,000, 24,000, and 48,000 s.

For the determination of dose rates, radionuclide
concentrations were measured on a high-purity germanium
gamma-ray spectrometer. Additionally, the saturation water
content of one sample representative for the sand layer (unit
C in Figure 2) was determined by centrifuging and adding water
until the sediment reached its maximum absorption capacity
(following the example of Nelson and Rittenour, 2015). The dose
rates and ages were calculated using the Adele software (Kulig,
2005).

The luminescence dating results were further analyzed using
the Bayesian ADMin model (Zeeden et al., 2018) to build an age-
depth model. The model runs in the R environment (R Core
Team, 2020). The corresponding R script can be found in the
Supplementary Material (Section 4). Prior to modeling, the pIR
ages of both profiles were combined by transferring the depths of
samples in trench 3B into the depth scale of trench 5.

Grain Size Analysis
All grain size samples were prepared following the methods
described in Nottebaum et al. (2015) and Schulte et al. (2016).
Grain size was measured with a Laser Diffraction Particle Size
Analyzer (Beckman Coulter LS 13 320) calculating the
percentaged size frequency of 116 classes within a size range
of 0.04–2,000.00 µm (2% uncertainty). The measurement
accuracy was increased by measuring each sample four times
in two different concentrations. The grain size distributions were
determined using the Mie theory (ISO, 2009; Fluid RI: 1.33;
Sample RI: 1.55; Imaginary RI: 0.1; Özer et al., 2010; cf.; Schulte
et al., 2016).

Spectrophotometric Analysis
The colorimetric properties of the sediments were determined as
described in e.g., Eckmeier et al. (2013) and Vlaminck et al. (2016)
using a Konica Minolta CM-5 spectrophotometer after the
samples were homogenized and dried. The L*a*b* values
indicate the extinction of light, on a scale from L* 0 (absolute
black) to L* 100 (absolute white) and express color as
chromaticity coordinates on red-green (a*) and blue-yellow
(b*) scales. Measured colors were plotted in R using the
‘drawProfile.R’ script (Sprafke, 2016; Zeeden et al., 2017).

RESULTS

Stratigraphy
The stratigraphic succession of At I trench 5 started with fine
white sands showing a fining up trend as coarser sands and mica
flitters occur at the profile base (4.45–4.20 m depth; see Figure 2;
Supplementary Figure S2; description follows ISO 11277, 2009).
At a depth of 4.20 m, some organic material was present,
potentially from rootlets. On top of this, layered orange, beige,
and white sands with fine gravels with diameters up to 4 mm
accumulated (4.20–4.06 m). Above, from 4.06 to 3.95 m, beige
sands with occasional fine gravels (within the sandy matrix) were
deposited. These were overlain by a homogeneous bed of beige
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silty sands (3.95–3.85 m). At a depth of 3.85 m, dark brown
organic material with bedding-parallel orientation was present.
The horizon from 3.85 to 3.60 m consisted of dark brown sands
and silts that fined upwards. Numerous rootlets were also present.
The upper ∼3.60 m of the profile belonged to the same
stratigraphic unit as the dark brown silts, but were not
investigated in detail. Figure 2 shows the stratigraphical
column of the section.

In trench 3, two profiles were investigated (cf. Figure 2;
Supplementary Figure S2). Their stratigraphy was similar to
trench 5, but contained rootlet channels throughout the profiles.
A composite profile for trench 3 was made using both profile
descriptions and the grain size data for correlation (Figure 2).
The profile descriptions of the sub-profiles is found in the
Supplementary Material. The composite profile At I-3 has a
depth of 2.40 m. The sequence started with a layer of mica-
bearing (loamy) sands (2.20–2.40 m), followed by mica-rich
golden sands (2.17–2.20 m). Above, a clast-supported layer of
white sands and fine gravels accumulated (2.03–2.17 m). This was
overlain by a matrix-supported ash-gray (reductimorphic) bed of

intercalated coarse sands and very fine gravels (1.74–2.03 m) that
contained humic rootlet channels and was overlain by matrix-
supported clayey sands with orange mottles (redoximorphic
features; 1.15–1.74 m). The upper part of the sequence was
characterized by an ochre-gray, bioturbated and
inhomogeneous bed of sandy loam (0.15–1.15 m) containing
occasional fine gravels. The top unit comprised the recent brown
humic soil (0.15 m to the top). Approximately 1.6 m of sediment
was missing on top due to agricultural activities (deduced from
the maximum height measured at the outcrop using the total
station).

Excavation
Trenches installed at the margins of the sandpits preserved
deposits dating to the Neolithic Vinča (ca. 5500–4500 BCE)
and Starčevo (ca. 6200 BCE and 5500 BCE) cultures
(Chapman, 2000, 237–239; Chu et al., 2016a), followed by
sterile sediments overlaying two layers of early Upper
Paleolithic artifacts, corresponding in raw material and form
to those collected throughout the 20th century now in museum

FIGURE 2 | Profile sketches show a composite of At trench 3A and 3B on the left and trench 5 on the right. The artifact find levels are shown with black triangles. For
trench 3 these include the faunal remains. Location of luminescence samples are illustrated and labeled with the last two digits of the laboratory numbers in yellow circles.
Luminescence ages are shown in red next to these. Letters A–D indicate the different units as used in Figure 7.
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collections. The artifacts were found in a relative depth of ∼1.90
and ∼2.05 m in trench 3 and ∼3.90 m and ∼4.10 m in trench 5
(∼83 m AMSL). Excavations uncovered early Upper Paleolithic
Aurignacian lithic artifacts (usually placed around 43–35 ka),
including several bladelet cores (e.g., thick endscrapers, nosed
endscrapers), blades and endscrapers (Figure 3). Most or all of

the blades come from single-platform cores and the high blade-
to-flake ratio of the lithic assemblage made primarily from so-
called Banat flint (Ciornei et al., in press) that is technologically
consistent with the Aurignacian artifacts from the open air sites of
the Romanian Banat (Anghelinu et al., 2012; Sitlivy et al., 2012;
Sitlivy et al., 2014; Chu et al., 2016b; Chu et al., 2019). Some of the

FIGURE 3 | Selected lithic artifacts from the Crvenka-At 2015 excavations (from Chu et al., 2016a).

FIGURE 4 | Inversion models of ERT-transects CRV ERT 3 (upper) and CRV ERT 4 (lower). The coarse-grained sediments that were found at the bottom of the
excavation trenches are depicted by a unit of high resistivity values while overlying cover sediments show significantly lower resistivity values. The shape of these units
indicates the presence of a fill terrace with overlying cover sediments. The base suggests incision into underlying strata at identical elevation AMSL. Stratigraphic
information for the underlying units that are characterized by low resistivity values rising toward the northwest is not available. The location of the transects is
depicted in Figure 1C.
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FIGURE 5 | Luminescence dating results from Crvenka-At. Preheat plateau test (A) and dose recovery test (B) of the quartz fraction of sample C-L4240; first IR
stimulation temperature tests using the pIRIR290 (C) and pIRIR225 (D) protocols, dose recovery test (E) of the feldspar fractions of samples C-L4239–C-L4242, and age-
depth plot showing the age data of the pIRIR225 and the IR80 signals of all samples (F).
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lithics in the upper layer were recovered in sandy deposits and
showed fine-grained fluvial abrasion (sensu Chu, 2016, p. 123),
while others were found in fresher condition within finer-grained
deposits. Bone preservation from these levels was infrequent and
poor, however identified species include Bos primigenius and
Equus sp. that were found in the find layers in trench 3. None of
the remains retained suitable collagen for 14C-dating.

Electrical Resistivity Tomography
ERT transects CRV ERT 3 and CRV ERT 4 (Figure 4) were
conducted to obtain information on the near-surface stratigraphy
of the site and its surroundings. In both transects, the lowest unit
is characterized by low resistivity values sloping upward toward
the northwest. On top, a unit of higher resistivity values is limited
to the central and southeastern parts of the transects (from 48 m
toward the end) showing a sharp lower boundary and a gradual
transition to the overlying unit of lower resistivities. In the
excavation area, the find layers occur within and on top of
sandy gravels below a layer of finer sandy and silty sediments.
The transition between these layers is marked by a gradual
decrease of resistivities in both transects. The sharp lower
boundary was not disclosed in the profile sections, thus no
information on the strata characterized by low resistivities is
available.

Luminescence Dating
The quartz fraction results were variable with some aliquots
(2–8 mm) approaching saturation and exhibiting a small IR
signal, although no feldspars were detected under the
microscope. The measurements focused on the 100–150 µm
grain size fraction. The preheat plateau test of sample C-L4240
did not show a plateau, but the dose recovery test behaved
satisfactorily with recovered/given dose ratios between 0.95 ±
0.02 and 1.05 ± 0.07 (Figures 5A,B). The different
characteristics of the single aliquots are demonstrated in
Supplementary Figure S3 that show shine down and dose
response curves of three quartz aliquots from sample C-L4240.
De measurements were performed with a preheat temperature of
240°C. However, the Abanico plot in Supplementary Figure S4
demonstrates a large spread in the De data, as only 43.6% of the
data points lie in a 2σ range. Due to this problematic behavior, the
quartz fraction was not further measured.

For the potassium feldspar fraction of samples
C-L4239–C-L4243, a first IR stimulation temperature test was
conducted using the pIRIR225 and the pIRIR290 protocols (see
Figures 5C,D). For the latter, no plateau region could be
identified, but the pIRIR225 showed less scatter with a first IR
stimulation temperature plateau between all tested temperatures.
Therefore, a dose recovery test was applied using solely the
pIRIR225 protocol. Figure 5E shows recovered/given dose
ratios between 0.96 ± 0.03 and 1.12 ± 0.03. Fading
measurements indicate low fading rates of g2days � 0.08 ±
0.77% (pIR50IR225), g2days � 0.01 ± 0.77% (pIR80IR225) and
g2days � 0.21 ± 0.78% (pIR110IR225; given as average and
standard deviation; see Supplementary Figure S5). Due to the
satisfactory behavior of the measurements using the pIR80IR225

protocol within the first IR stimulation temperature test, dose

recovery test and fading experiment, the De measurements were
also carried out with this protocol. Supplementary Figures S6
and S7 present shine down and growth curves for all measured
samples from both trenches, which show bright luminescence
signals. Supplementary Figures S8 and S9 depict the
corresponding Abanico plots. There is variability in the data,
but this is likely from the small aliquot sizes (2 mm) derived from
coarse-grained sediments possibly transported by fluvial
processes. A summary of the luminescence and age data is
given in Table 1 and the dose rate data of the sediment layers
is given in Table 2. The saturation water content measurements
indicate a value of ∼24% for the sandy layer (unit C in Figure 2).
To account for a range (50%) of possible moisture conditions, a
water content of 12 ± 6% was used for all samples in the age
calculations. A higher water content of 20 ± 8% was assumed for
C-L4242 and C-L4246 from unit D, because the measured water
contents were higher than within the other samples.

To further investigate the luminescence results, the IR80

signals contained in the pIR80IR225 measurements were
analyzed (Supplementary Figure S10). Dose recovery ratios
were satisfactory for all tested samples (average: 0.95 ± 0.04,
Supplementary Figure S11). Equivalent doses were between 100
and 144 Gy. The fading rate for sample C-L4240 was with g2days �
0.65 ± 0.70% slightly higher than for the pIRIR measurements (cf.
Supplementary Figure S12). This value was used to correct the
IR80 ages of all samples. The resulting fading corrected mean ages
were all slightly younger than the corresponding pIRIR ages, but
age estimates agreed within 1σ uncertainty (Figure 5F). A
summary of the IR80 luminescence data is provided in
Supplementary Table S1. Figure 5F shows an age-depth plot
of the two profiles At I-3B and At I-5 and highlights the
consistency between the obtained ages.

The age model places the sediment deposition of the dated
samples between 38.9 ± 3.0 and 32.6 ± 2.5 ka (1σ; Figure 6, Tab.
S2). The Aurignacian artifacts were found between samples
C-L4240 and C-L4241 and C-L4244 and C-L4245, indicating
the deposition of the find-bearing sediments according to the OSL
data between 44.1 ± 3.4 and 33.9 ± 2.9 ka (1σ; cf. Table 1,
Supplementary Figure S13). It should be noted that the
timing can be pinpointed more precisely at At I-5, but more
artifacts were found at At I-3B. Considering the age model, which
incorporates the stratigraphic information (i.e., order of the
samples), the sediments of the upper artifact level deposited at
35.3 ± 3.6 ka (2σ), while the lower level deposited between 35.3 ±
3.6 ka (2σ) and 37.8 ± 4.2 ka (2σ). Averaging all the modeled ages
within the archeological context, gives an overall modeled average
timing of 36.4 ± 2.8 ka (2σ).

Grain Size Analysis
Grain sizes were clustered into four units related to their
stratigraphy and textural characteristics (see Figure 7). The
most completely sampled trench 3A (Figure 7A) shows a
well-sorted pattern in all units. The upper unit (0.00–1.20 m)
depicts a bimodal grain size distribution (GSD) with a minor peak
in coarse silt and a distinct peak in medium sand. A shoulder in
medium and coarse clay can be also observed. Unit B
(1.20–1.75 m) shows a similar pattern, but here the sand
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fraction is divided into two peaks at ca. 245 and 567 µm. The clay
content of Unit C (1.75–2.08 m) is lower than in units A and B
and three local maxima are found at 35, 200, and 517 µm. Unit D
(2.08–2.3 m) is composed of fine and medium sand with a

bimodal distribution that peaks around 170–180 and 567 µm
as well as negligible amounts of clay and silt.

Despite its proximity to profile 3A (ca. 1.5 m), profile 3B
shows a different pattern (Figure 6B). The GSD is poorly-sorted
and the sediments are generally coarser than in profile 3A.
While the GSD of units A and B (0.90–1.56 m) show minor
contributions of clay and silt, these are absent in units C
(1.50–1.78 m) and D (1.78–2.14 m). All units are primarily
comprised of coarse sands, but also show high values of fine
and medium sand.

Grain sizes of profile 5 show a well-sorted distribution
(Figure 7C). Unit A (3.60–3.87 m) is characterized by a
trimodal distribution with peaks in coarse silt (ca. 35 µm), fine
(ca. 200 µm) and medium sand (517–623 µm). Unit B cannot be
clearly identified, but the upper part of unit C (3.87–4.03 m)
shows small amounts of silt and medium sand (623 µm) and may
be contemporary to unit B. The rest of unit C shows a GSD that
generally peaks in medium and coarse sand (684–993 µm). The
GSD of the lowermost sample (only representative of unit D in
this profile) peaks in fine sand (140 µm) with a shoulder in
medium sand.

Sediment profiles 3A and 3B were correlated based on
stratigraphy and grain size data. The mode of the grain size
shows good agreement between the profiles (see Fig. S14). Further
details on the in-depth variations are depicted in Figures 8, 9.

Spectrophotometric Analysis
The color data of trenches 3A and B follow the same pattern
with high L*, a* and b* values in unit D and decreased values
in unit C. a* and b* are elevated again in unit B and fluctuate
slightly in unit A. L* is slightly lower in unit B than A and
decreases at the top of profile 3A. Mean values are 59/62 (L*),
2/1 (a*) and 17/15 (b*) for trenches 3A and 3B, respectively
(Figure 8).

The color data of trench 5 shows less fluctuations than in
trench 3. L* has a decreasing trend in the lower 10 cm, which is
followed by a gradual increase. At ∼490 cm, values drop
sharply to be followed by a gradual increase again. The
mean L* value is 63. a* and b* show a similar pattern with
local maxima at 396 and 418 cm. The upper 36 cm have an
increasing trend in b*. Mean a* and b* values are 2 and 18. See
Figure 9 for full details.

TABLE 1 | Summary of the luminescence data of the potassium feldspar samples from At trench 5 and trench 3B. The used grain size (GS), depth considering erosion of
∼1.6m, number of accepted (n) and measured (N) aliquots measured (Wm) and used (Wused) water contents, cosmic (Dcos) and total dose rates (Dtotal), residual doses,
equivalent doses (De) and ages are shown.

Code GS (µm) Depth
(m)

n/N Wm

(%)
Wused

(%)
Dcos

(mGy/
ka)

Dtotal

(Gy/ka)
Residual

(Gy)
De

(Gy)
Age (ka)

C-L

4239 150–200 3.6 28/34 8 12 ± 6 143 3.33 ± 0.34 1.4 ± 0.1 100.62 ± 5.25 30.2 ± 2.6
4240 150–200 3.9 43/46 3 12 ± 6 139 2.81 ± 0.28 1.3 ± 0.2 103.60 ± 5.67 36.8 ± 3.1
4241 100–250 4.1 28/34 1 12 ± 6 136 2.85 ± 0.28 1.3 ± 0.1 118.00 ± 6.11 41.3 ± 3.4
4242 150–200 4.3 30/31 20 20 ± 8 133 2.57 ± 0.27 1.4 ± 0.1 100.04 ± 5.12 38.9 ± 3.5
4243 150–200 3.1 36/37 8.3 12 ± 6 150 3.25 ± 0.35 1.3 ± 0.2 113.1 ± 6.83 34.8 ± 3.2
4244 150–200 3.3 39/40 3.8 12 ± 6 148 3.25 ± 0.33 1.4 ± 0.1 110.05 ± 5.96 33.9 ± 2.9
4245 150–200 3.5 51/55 5.7 12 ± 6 144 3.85 ± 0.41 1.4 ± 0.1 158.84 ± 9.24 41.3 ± 3.6
4246 150–200 3.7 32/34 13.4 20 ± 8 142 3.13 ± 0.34 1.3 ± 0.1 118.23 ± 6.45 37.8 ± 3.5

TABLE 2 | Summary of the dose rate data shown for the individual stratigraphic
layers of At trench 5 and trench 3B.

Layer U (Bq/kg) Th (Bq/kg) K (Bq/kg)

At1-5A 20.71 ± 1.01 25.34 ± 1.31 636.29 ± 9.46
At1-5B 4.93 ± 0.43 6.96 ± 0.51 647.13 ± 9.49
At1-5C 5.51 ± 0.42 6.66 ± 0.48 686.17 ± 9.98
At1-5D 4.58 ± 0.35 5.85 ± 0.46 645.46 ± 9.52
At1-3B A 20.91 ± 1.07 23.97 ± 1.30 613.94 ± 9.15
At1-3B 12.43 ± 0.72 15.67 ± 0.94 713.57 ± 10.38
At1-3B C 6.62 ± 0.54 10.12 ± 0.71 1,024.52 ± 14.37
At1-3B D 12.68 ± 0.73 17.89 ± 1.02 712.63 ± 10.49

FIGURE 6 | Age-depth plot showing the pIR ages (green stars, blue
triangles), the modeled mean ages (red circles), and their upper and lower 1σ
of credibility (dashed red lines).

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 5999869

Nett et al. Lowland Early Upper Paleolithic, Crvenka-At

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 7 | Grain size distribution of At trench 3A (A), trench 3B (B), and trench 5 (C). Position according to stratigraphy is indicated by A–D; see Figure 2. In
trench 5 only one sample represents the fine white sands of unit D because sampling did not continue further down. Random colors are used to differentiate between the
single samples.
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DISCUSSION

Geochronology
After thorough investigation of the quartz and potassium feldspar
luminescence characteristics, it was shown that the pIR80IR225

protocol using potassium feldspars is most suitable for De

measurements. The problematic behavior of the quartz
fraction (i.e. approaching saturation, IR signal, wide scatter, no
preheat plateau) might be due to metamorphic source rocks,

which are fairly abundant in the Vršac Mountains. Additionally,
the OSL samples contained a high amount of muscovite, which
were difficult to remove during sample preparation. While quartz
crystals sourced from metamorphic rocks reportedly are affected
by problematic luminescence behavior (cf. Nelson et al., 2015),
the occurrence of IR signals might also point to feldspar
inclusions within the quartz crystals, but this was not
investigated further. Popov et al. (2012) who investigated late
glacial fluvial terrace deposits of the Tisza River in northern

FIGURE 8 | Proxy data of At trench 3A (black line) and 3B (red line) show the grain size distribution in classes <6.3, 6.3–63, 63–200, and >200 µm, and the mode.
Further, spectrophotometric color data (L, a*, b*) is shown. Measured colors are plotted in the background using the ‘drawProfile.R’ R script (Sprafke, 2016; Zeeden
et al., 2017). A simplified sketch of the stratigraphy is shown on the left and the stratigraphic units are indicated by A–D (see legend in Figure 2).

FIGURE 9 | Proxy data of At trench 5 showing the mean and mode, grain size distribution in classes <63, 63–200, and >200 µm and the spectrophotometric color
data (L, a*, b*). Measured colors are plotted in the background using the ‘drawProfile.R’ R script (Sprafke, 2016; Zeeden et al., 2017). A simplified sketch of the
stratigraphy is shown on the left and the stratigraphic units are indicated by A–D (see legend in Figure 2).
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Serbia encountered complex luminescence characteristics in their
quartz samples. Most of their aliquots exhibit an IR signal, which
they tried to remove using a double-SAR protocol (Banerjee et al.,
2001), prior to the De measurements. However, even then large
variability between aliquots and shine down curve shapes as well
as poor recycling ratios were observed. In a later study, this
complex behavior was not encountered, but overestimated dose
recovery ratios led the authors to caution the quartz OSL results
(Vandenberghe et al., 2018).

The potassium feldspar samples, however, showed excellent
luminescence characteristics. Our samples exhibit no laboratory
fading, even though fading rates have been reported in literature
(Vasiliniuc et al., 2012). Residual doses are <1.5 Gy. Also the IR80

signal shows little fading and the fading corrected ages agree
within 1σ uncertainty with the pIRIR225 ages. The difference
between both sets of ages is slightly higher in samples
C-L4240–C-L4242 and C-L4245, which may be due to a
minor degree of incomplete bleaching (cf. Murray et al., 2012;
Klasen et al., 2018) or the fading correction (cf. Thomsen et al.,
2008; Guérin et al., 2015). Further uncertainty is likely introduced
by the estimation of the moisture content. Therefore, the
saturation water content was determined to achieve a better
estimate of the average moisture conditions since deposition.
Nevertheless, some uncertainty remains because this was only
done for one sample. This uncertainty might also explain why in
both profiles, the lowermost samples from layer D have slightly
younger mean ages than the samples above. Here, also the
measured water content was higher than within the other
samples. Of course, one might also argue that the age
estimates of samples C-L4241 and C-L4245 are overestimated,
but this seems unlikely considering that their ages are identical.
Nevertheless, when the Bayesian age model is applied, it shifts
these ages to their lower uncertainty limit (cf. Figure 6).

Although the luminescence tests (first IR stimulation
temperature tests, dose recovery tests and fading experiments)
were only carried out on the samples of At I-5, the
geochronologies of both profiles agree. This further supports
the robustness of the luminescence ages. Nevertheless, the
Abanico plots (Supplementary Figures S8 and S9) show more
scatter in the De distributions of the samples from At I-3B, which
is likely connected to post-depositional mixing due to rootlet
penetration (as observed in the field) and/or may be linked to the
unsorted grain size distributions (Figure 7). However, most De

distributions resemble a normal distribution and only samples
C-L4240 and C-L4245 show a skewed distribution toward higher
De values. Nevertheless, this does not significantly affect the
average De and only a few outliers are present (cf.
Supplementary Figures S8 and S9). Our investigation shows
that potassium feldspars at Crvenka-At can be successfully dated
using the pIRIR225 protocol. This shows potential for other
studies on coarse-grained feldspars in the Carpathian Basin, as
was already suggested for the deposits of the paleo Tisza River (cf.
Popov et al., 2012; Vandenberghe et al., 2018). Nevertheless, it
should be noted that the dated grain size fraction does not reflect
the dominant sedimentological grain size (cf. Figure 7).

Agemodeling of the luminescence age data reduced the overall
uncertainty and evened out some age estimates (Figure 6). For

example, the ages of samples C-L4239 and C-L4244 are modeled
to be slightly older, while the ages of samples C-L4241 and
C-L4245 are modeled to be younger. It also allowed for more
precise age estimates for the artifact layers.

Environmental and Geomorphological
Evolution
The results from the ERT-measurements characterized the
sedimentary composition of the shallow subsurface at the
study site, allowing the identification of the broader
stratigraphic context. The find-bearing layers occur in sand-
dominated, in parts gravelly, deposits that are depicted by
relatively high resistivity values (up to 300Ωm in CRV ERT 3;
Figure 4). The sharply developed lower boundary of this unit
probably indicates an erosional phase cutting into the underlying
strata followed by an accumulation of sand and gravel (as evident in
the trenches). Shape and distribution are indicative of a fill terrace.
Remarkably, the deepest incision does not occur downslope but in
the center of the ERT-transects. Thus, it is possible that erosion and
accumulation of the coarser grained material was related to fluvial
(channeled) runoff evidenced by high resistivity values followed by
the accumulation of overbank deposits. There are no other ERT
studies conducted in this region, but the observed values compare
well to the cover sediments on top of fluvial terraces in the Rhine
area (Gerlach, 2019; Fischer et al., 2021).

Based on the sediment characteristics (Figures 7–9), the
drainage patterns and the overall geomorphology, one can
presume that the sediments were related to fluvial deposition
close to a river mouth draining into a paleolake in the Alibunar
Depression. This is similar to the morass mapped by Müller
(1769) and will be investigated in a forthcoming publication
(Zeeden et al., 2021). Additionally, a differentially compaction
may have influenced the bedding inclination toward finer grained
sedimentary units as they undergo higher compaction than sandy
and gravelly units (e.g., Bjørlykke, 2015).

Similar to the ERT-measurements, the grain size data shows
coarser sandy and gravelly deposits in units C and D and finer
deposits in units A and B. The GSD of trench 3A, with its peaks
in coarse silt and medium sand, can be interpreted as reworked
sand (cf. Chu et al., 2019). The GSD of trench 3B points to fluvial
sand deposits, shown by high amounts of poorly-sorted fine to
coarse sands. Variations in grain sizes in unit C and the clast-
supported appearance point to higher transport velocities
during deposition in comparison to unit D, where the mode
of the grain size decreases in both trenches. The grain size
differences within trench 3 can be interpreted as contrasting
depositional environments typically occurring alongside fluvial
channels, at lakeshores or in alluvial fan or delta settings (cf.
Xiao et al., 2012; Brooke et al., 2018; Vandenberghe et al., 2018).
The absence of finer material such as silt in units C–D of trench
5 highlights that the fluvial sedimentary system was complex,
even at a local scale. The relatively well sorted GSD, especially
GSD, especially in unit A of trench 5, might point to an eolian
origin of these sediments, while the GSD of this unit in trench 3
is more turbulent, possibly confirming the interpretation of
overbank deposits.
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The consistency of bleaching/graying as seen in the field and
imprinted in decreased L* and b* values (unit C; Figures 7, 8) is
interpreted as post-depositional hydromorphic alteration of the
sediments. It implies phases of water saturation at least in trench
3 (compare color data in Figures 8, 9). This might be related to
high groundwater tables or slack water conditions in the vicinity
of a water body and close to a groundwater table little below the
land surface. Moreover, elevated a* and b* values in unit B
indicate preservation or subsequent formation of iron (hydr-)
oxides such as hematite (tentatively indicated by a*) and goethite
(tentatively indicated by b*) due to in situweathering (Barron and
Torrent, 1986). The fine material in units B and A suggests a low
energy deposition that might have occurred in a less fluvial and
possibly (episodic) overbank or lacustrine environment.
Additional eolian sediment input might have been possible.
These sediments were subsequently heavily bioturbated, which
is especially evident in trench 3.

Additionally, the observed bones of Bos primigenius and Equus
sp. found in the artifact levels of trench 3 may suggest a general
limnic/fluvial woodland environment: Bos primigenius preferred
floodplain habitats in river valleys, river deltas and bogs (Tikhonov,
2008) and the occurrence of Equus sp. suggests a grass-dominated
habitat in proximity. While this needs to be considered with
caution, as only two identifiable faunal fragments were found, it
matches well with our sedimentological interpretation of a river
stream (units D, C) changing toward a floodplain or lakeshore
environment (units B, A). From a sequence stratigraphic point this
change in time will apply to space as well, inferring overbank or
lakeshore sediments in the vicinity.

Changes in fluvial systems in this complex setting (see
Geological and Geomorphological Setting section) do not
readily correlate to climatic changes (cf. Starkel et al., 2015)
and we can expect that large rivers, oxbow lakes or lakes were
likely always present in tectonic depressions such as Alibunar
Nevertheless, the timing of fluvial sediment deposition (∼42–31
ka; units D-C) coincides with the formation of Middle
Pleniglacial (MIS 3) paleosols and pedocomplexes of the
southern Carpathian Basin (e.g., Fuchs et al., 2008; Antoine
et al., 2009; Schmidt et al., 2010; Zeeden et al., 2016; Avram
et al., 2020). This suggests a phase of warmer and moister
climatic conditions with higher fluvial discharge velocities,
although the southern parts of the Carpathian Basin were
generally arid (e.g., Obreht et al., 2019). For unit A and B,
only one date of 30.2 ± 2.6 ka is available, thus, we cannot infer
much. It is possible that the upper non-investigated parts of the
trenches were formed during MIS 2, when loess sedimentation
is reported in the region (e.g., Marković et al., 2014; Obreht
et al., 2015; Marković et al., 2018; Perić et al., 2019; Perić et al.,
2020). This might be connected to enhanced eolian sand and
silt input at Crvenka-At as suggested by the well-sorted GSDs
(trench 5), but needs further investigation.

Archeological and Paleoanthropological
Implications
The results indicate that Aurignacian artifacts at Crvenka-At were
found in sediments that accumulated 36.4 ± 2.8 ka (2σ modeled

ages). With this, the assemblages are firmly ascribed to MIS 3 and
correspond with the nearby early modern human remains from
the Peştera cu oase (ca. 42–37 ka cal BP1; Trinkaus et al., 2003a;
Trinkaus et al., 2012), the Peştera Muierii (ca. 35 ka cal BP;
Soficaru et al., 2006) and the Peştera Cioclovina (ca. 35.5 ka cal
BP; Soficaru et al., 2007). If the full range of the OSL ages is
considered, these additionally overlap with other dated
Aurignacian sites in the Banat at Românesţi (40.6 ± 1.5 ka;
Schmidt et al., 2013), the small (<15 artifacts) assemblages
from the Baranica Cave (layer 4b; 40.76 ± 0.73 ka cal BP,
Mihailović et al., 2011), Tabula Traiana Cave (Layer 207;
41.3 ka cal BP to 34.5 ka cal BP; Borić et al., 2012; Mandić
and Borić, 2015) and the poorly-contextualized Peştera
Hoţilor (30.90 ± 0.37 ka cal BP; Anghelinu and Niţă, 2014;
Păunescu, 2001, p. 142).

Crvenka-At’s main interest is its lowland setting; an
outlier in the Carpathian Basin’s Aurignacian record.
While lowland Aurignacian sites are occasionally
encountered elsewhere in Europe (e.g., Masières Canal;
Miller, 2014), it has previously been suggested that the
occurrence of Aurignacian sites in short stratigraphic
sequences in the Carpathian Basins foothills, between 43
and 30 ka BP are a genuine reflection of modern human
behavioral preference for this specific biome (Hauck et al.,
2018). Our results provide a first direct indication that
modern humans made use of riparian landscapes
possibly to avoid mountainous regions as a result of late
Neanderthal territoriality until c. 39 ka cal BP in the
Central Balkans (Alex, 2016, 112; Marín-Arroyo and
Mihailović, 2017; Alex et al., 2019; Mihailović, 2020). In
the Banat however, the situation may have been more
nuanced given the recent Neanderthal/modern human
hybridization at the Peştera cu oase in the nearby Anina
Mountains indicating territorial and temporal overlap (Fu
et al., 2015).

Our results also suggest that fluviolacustrine environments
were exploited by early modern humans potentially even
representing a favorable location in the landscape where
vital aquatic food sources rich in micronutrients could be
harvested (Brown et al., 2013). Two technologically analogous
layers at At along the wider Crvenka-At complex suggest
multiple site visits or at least a more sustained occupation
of the area. This is in agreement with isotopic findings from
the region’s early Upper Paleolithic human record that have
high δ15N values, suggesting higher consumption of
freshwater foods compared to previous indigenous
populations (Richards and Trinkaus, 2009; Trinkaus et al.,
2009).

Excavation results thus document the site formation
processes of Crvenka-At and interpret the site as a
palimpsest of a series of hominin visits of short duration
captured within fine-grained, water-lain sediments. This
highlights the potential for finding large, well-preserved
Late Pleistocene archeological sites within the Carpathian
Basin lowlands that may provide important archaeological
context (Fitzsimmons et al., 2020) and recommends further
(geo)archeological work in these environs to fill the current
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research gap. All radiocarbon ages were calibrated using
Calpal2007-Hulu (Weninger et al., 2008)

CONCLUSION

We confirm and date the Aurignacian site of Crvenka-At in the
Banat region of the southeastern Carpathian Basin using
luminescence dating of potassium feldspars. The Aurignacian
artifacts were found in sediments with a modeled age of 36.4 ±
2.8 ka (2σ). This age range agrees with other dated Aurignacian
findings in the Banat region and further confirms the early
chronological position of the Aurignacian in the Carpathian
Basin. Moreover, it is suggested that the site served for
repeated/sustained hominin visits as evidenced by numerous
multi-layered find spots within the sand ridge. The
combination of ERT and sedimentological analyses confirm a
position of the site within a complex fluviolacustrine
environment. Shape and distribution of the ERT-transects
suggest an interpretation as sandy-gravelly fill terrace and also
the diverse grain-size distribution of the investigated trenches
support a formation within fluvial channels, at lakeshores or in
alluvial fan or delta settings. Subsequent weathering and phases of
water saturation further altered the deposited sediments. Further
association to a potential paleolake needs to be investigated in
future studies. Our study demonstrates that not only the upland
regions, but also lowland areas were attractive to early modern
human hunter-gatherers and demonstrates the need for more
comprehensive geoarcheological investigations including the
analyses of different sedimentary archives.
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Alex, B., Mihailović, D., Milošević, S., and Boaretto, E. (2019). Radiocarbon
chronology of middle and upper paleolithic sites in Serbia, central Balkans.
J. Archaeol. Sci. Rep. 25, 266–279. doi:10.1016/j.jasrep.2019.04.010
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