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Machine learning with extensively labeled training samples (e.g., positive and negative
data) has received much attention in terms of addressing earthquake-induced landslide
susceptibility mapping (LSM). However, the extensive amount of labeled training data
required by machine learning, particularly the precise negative data (i.e., non-landslide
area), cannot be easily and efficiently collected. To address this issue, this study presents a
one-class-classifier-based negative data generation method for rapid earthquake-induced
LSM. First, an incomplete landslide inventory (i.e., positive data) was produced with the aid
of change detection using before-and-after satellite images and the Geographic
Information System (GIS). Second, a one-class classifier was utilized to compute the
probability of landslide occurrence based on the incomplete landslide inventory followed
by the negative data generation from the low landslide susceptibility areas. Third, the
positive data as well as the generated negative data (i.e., non-landslide) were compounded
to train a traditional binary classifier to produce the final LSM. Experimental results suggest
that the proposed method is capable of achieving a result that is comparable to methods
using the complete landslide inventory, and it displays good correspondence with recent
landslide events, making it a suitable method for rapid earthquake-induced LSM. The
findings in this study would be useful in regional disaster planning and risk reduction.

Keywords: earthquake-induced landslide, landslide susceptibility mapping, one class classifier, incomplete
landslide inventory, negative data

1 INTRODUCTION

Many mountainous areas in the world, such as southwest China, are prone to seismic events and,
consequently, landslides (Fan et al., 2018; Cao et al., 2019). Seismic landslides are widely
distributed and of large scales, and the damage they cause is often great. In addition, large
earthquakes may change the local geological structure and create unstable slopes that may slide
in the future (Huang and Li, 2014; Yunus et al., 2020). For instance, after the Wenchuan Mw 7.9
earthquake and Jiuzhaigou Mw 6.5 earthquake, many landslides occurred and brought about
extensive damages to southwest China (Gorum et al., 2011; Fan et al., 2018). Therefore, timely
monitoring of landslide susceptibility after the earthquake is very critical for post-earthquake
rehabilitation and reconstruction as well as early disaster monitoring and prevention (Guzzetti
et al., 2006).
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Multiple methods have been designed for landslide
susceptibility mapping (LSM). Field surveys are utilized with
great frequency due to their high accuracy and robustness. This
method, however, depends heavily on expert experience and is
time-consuming and labor-intensive, so it is not suitable for
regional/global LSM (Keefer, 2002). Furthermore, it is
challenging for field surveys to map landslide susceptibility at
full spatial coverage, particularly for some inaccessible areas. In
recent years, automated and/or semi-automated LSM has been
developed based on remote sensing technology and the
Geographic Information System (GIS), and the methods
include the heuristic method (Ruff and Czurda, 2008),
deterministic method (Jibson, 1993; Jibson et al., 2000; Tsai
et al., 2019), and machine learning method (Reichenbach
et al., 2018). By use of the heuristic method, investigators rank
and weigh the causative factors based on their importance in
causing landslides. The result depends on the investigator’s
understanding of the real causative factors, which may lead to
subjective LSM results (Mandal and Mandal, 2018). The
deterministic method employs the simplified and physically-
based landslide modeling schemes to analyze the stability
using simple limit equilibrium models (e.g., the Newmark
model) or more sophisticated approaches. The accuracy of this
method depends on the reliability of the geotechnical and
hydrological input data (Dreyfus et al., 2013). The machine
learning method comprehensively considers the correlation
between landslide distribution and regional geological
environment and thus obtains reliable landslide susceptibility
map (Reichenbach et al., 2018). It also has the widest application
in LSM among the three methods (Pourghasemi et al., 2018).

A complete and accurate coseismic landslide inventory map
(LIM) is an important prerequisite for landslide susceptibility
analysis. An ideal coseismic LIM would cover the entire
earthquake-affected area, accurately locate all the landslides
triggered by the earthquake, and depict the true shapes of
landslides in the form of a vector polygon (Harp et al., 2011).
The landslide distribution information from such inventories can
then be used for the seismic landslide susceptibility analysis and
other quantitative analyses (Tanyaş et al., 2017). However, it is
difficult or even impossible to obtain a detailed and complete
landslide inventory after an earthquake. On the one hand, due to
the cloudy and rainy weather, the available optical images are
limited and do not have sufficient spatial coverage for the whole
earthquake area. On the other hand, a large earthquake often
induces many landslides, which are widely distributed and often
deeply seated. Existing technology thus faces challenges to
mapping all these landslides quickly in the short time
following the earthquake.

Besides the detailed LIM, massive labeled training data are also
important for the machine learning methods. Most statistical
learning methods for predicting landslide-prone distribution
depend on data sets with both positive (landslide presence) and
negative (landslide absence) data (Conoscenti et al., 2016). The
positive data are relatively fixed and are mainly selected from the
landslide body cells in the inventory. The negative data are usually
uncertain and are randomly selected as individual pixels outside of
the landslide body. Then, the LSM can be established using the

machine learning models trained on both positive and negative
data. To improve the LSM reliability, efforts have been made to
optimize the selection strategy of negative data. First, we randomly
select negative data from the non-landslide area or the area with a
certain distance from the landslide body (Su et al., 2017). This is the
most commonly used method for generating negative data, but it
requires a complete LIM that covers all landslides. Besides, the
earthquake changes the local geological structure, resulting in a lot
of shatter mountains or unstable slopes, which still belong to the
non-landslide area in LIM but are unsuitable to serve as the
negative data. Secondly, we convert positive data into negative
data by changing the feature space attribute information. The most
representativemethod of this type is the target space exteriorization
sampling (TSES) (Xiao et al., 2010). Since the negative data
constructed by this method are from the feature space and the
corresponding location cannot be found in the real world, it is
difficult to conduct field verification. In addition, this method also
requires a complete LIM. Lastly, generate the negative data by
clustering analysis. This method clusters the data sets into multiple
categories based on feature similarities and automatically generates
negative data in the category that contains the fewest landslides.
The commonly used clustering methods include the self-
organizing map (SOM) (Huang et al., 2017) and similarity-
based sampling (SBS) Zhu et al. (2019). Since this method is
based on feature similarity, a complete LIM is still required to
reflect the true feature space of seismic landslides.

All these negative data generation methods require a complete
LIM, which is very difficult to obtain in a short time. It is easy to
establish an incomplete LIM using remote sensing and GIS
technologies. Thus, if the incomplete LIM can be used for
generating reliable negative data, rapid LSM after the
earthquake is possible. However, there are only a few studies
on the LSM based on incomplete LIM, and this is due to the
uncertainty in the generation of negative data (Chen et al., 2020).
Therefore, efforts should be made on the generation of negative
data based on incomplete LIM.

Based on the aforementioned analysis, this study presents a one-
class-classifier-based negative data generation method for
earthquake-induced LSM. Using the proposed method, we
calculate the landslide susceptibility based on the incomplete
LIM, and then automatically generate pseudo labeling of negative
data from areas with low landslide susceptibility. After that, the
generated negative data and the positive data (i.e., the incomplete
LIM) are applied to train the traditional binary classifier to produce
the final landslide susceptibility map. Figure 1 shows the flowchart
of the presented method. The left of this study is organized as
follows. Section 2 presents the study area and materials used in this
study. Section 3 introduces the proposed one-class-classifier-based
negative data generation method for earthquake-induced LSM.
Section 4 presents the experimental results and discussions, and
Section 5 draws some conclusions.

2 STUDY AREA AND MATERIALS

Wenchuan, situated in Sichuan province, southwest China, has
complex terrains and is the site of much intense neotectonic
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activity. The region features high ridges, lofty mountains, and
crisscrossing gorges and valleys. The elevation fluctuates greatly
from 782 m to 5,896 m. The neotectonic activities in this area are
intense, and the Longmenshan thrust belt, which is composed of
three main faults, namely, the Yingxiu-Beichuan fault, Guanxian-
Anxian fault, and Mao-wen fault, runs across the whole of
Wenchuan. Among them, the Yingxiu-Beichuan fault is
inferred as the main structure of the 2008 earthquake (Li

et al., 2008). The complex terrain and intense structure make
this region a area prone to seismic and geological disasters (Wu
et al., 2020). For instance, the 2008Wenchuan Mw7.9 earthquake
occurred in this region and induced a large number of coseismic
landslides, see Figure 2.

The data sources used in this study include pre- and post-
earthquake Landsat 7 satellite images (acquisition dates: April 22,
2008, and May 25, 2008), a digital elevation model (DEM), river,

FIGURE 1 | Flowchart of the presented method.
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FIGURE 2 | Distribution of coseismic landslides induced by the 2008 Wenchuan earthquake.
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lithology, land use, soil, peak ground acceleration (PGA), and the
complete LIM (see Table 1). The slope and aspect were derived
from the DEM. The complete LIM was produced by the
integration of field survey and rigorous analysis of very-high-
resolution satellite images acquired by multiple platforms/sensors
(e.g., aerial photo, IKONOS, andQuickBird) (Xu et al., 2014). The
post-earthquake images used for the complete landslide
inventory ranged from May 23, 2008, to June 13, 2008. The
acquisition date of images used for two landslide inventories have
a substantial overlap, which compresses the influence of the area
and spatial distribution differences of landslides caused by time.

3 METHODOLOGY

3.1 Data Preparation
3.1.1 Acquisition of the Incomplete LIM Through
Change Detection
This study compares satellite images before and after the
earthquake to extract the landslides by change detection. To
reduce the influence of terrain, atmosphere, and sensors, these
images are preprocessed through radiation correction,
atmospheric correction, orthographic correction, image
registration, and a cloud mask. As the landslides will cause
surface damage, especially vegetation damage, the normalized
difference vegetation index (NDVI) (Ramos-Bernal et al., 2018),
sensitive to vegetation change, is adopted as the main feature for
change detection. Finally, the change area is separated from the
background by the image difference method (Fung, 1990) in
which the threshold is determined by Eq. 3 (Lv et al., 2018).

NDVI � (NIR − R)
(NIR + R) (1)

Idiff �
∣∣∣∣NDVIpost − NDVIpre

∣∣∣∣ (2)

XIdiff � { landslide if Idiff >m + kpσ
background n � x + 2y

(3)

where m and σ are the mean value and standard deviation
corresponding to Idiff , respectively. k is an adjustable
parameter, and we determine the value of k in this study by
trial-and-error method and get k � 1.5. After we remove the
interference of pseudo-change information by morphology
operation and manual interaction, the co-seismic LIM is
finally obtained.

Figure 3 shows the coseismic LIM obtained from multi-
temporal Landsat images. This inventory contains most
medium-large landslides but fails to detect landslides in
cloudy areas. Besides, limited by the image resolution, this
inventory does not include small landslides with an area less
than 5,000m2. A complete LIM (Xu et al., 2014) was taken as
the ground truth to validate the extracted LIM. The
completeness of the landslide extraction results is
determined by the ratio of the area of the correctly
extracted landslides to that of the real coseismic landslides.
Specifically, the correctly extracted landslide in this study is
159.46 km2, and the real coseismic landslide is 359.6 km2, so
the completeness of the result is 49%, which is far less than the
real coseismic landslide. Therefore, the established landslide
inventory is an incomplete LIM.

3.1.2 Slope Unit Generation
Mapping units, fundamental to LSM (Van Den Eeckhaut et al.,
2009; Erener and Düzgün, 2012), include the pixel unit, slope unit
(SU), watershed, unique condition unit, and terrain unit
(Reichenbach et al., 2018). The pixel unit and slope unit are
more widely used than the other three types. The pixel unit is a
regular raster unit and capable of processing the resolution
differences of data sources using very simple operations.
Despite its popularity, the pixel unit is difficult to work with
in complex terrain and struggles to distinguish landslide sources
from accumulation areas, impacting the performance of LSM. SU
represents a slope or a part of a slope. Landslides are geological
hazards that develop on slopes; the number of landslides that
occur on a slope reflects the slope stability (Sun et al., 2020). Also,
SU suppresses the bias introduced by the incomplete LIM
(Reichenbach et al., 2018). Based on its advantages, we chose
SU as the mapping unit.

This study applies the hydrological analysis of DEM to extract
SUs, including the acquisition of positive and negative DEM,
extraction of flow direction and accumulated flow, generation of
the river network and watershed, and SU generation (Wang et al.,
2017). In this process, the accumulative flow threshold
corresponding to the river network is the key to obtaining
satisfactory SUs. This study sets the optimal accumulative flow
threshold through trial and error. To further improve the
accuracy of SUs, we use GIS editing tools to manually adjust
the boundaries of SUs and eliminate unqualified SUs. Finally, we
get 1,351 SUs, see Figure 4.

TABLE 1 | Data sources used in this study.

Data Resolution Application Data source

Landsat 7 Panchromatic: 15 m; Multispectral: 30 m Co-seismic landslide https://earthexplorer.usgs.gov/
DEM 30 m Causative factor https://gdex.cr.usgs.gov/gdex/
River Vector Causative factor https://www.webmap.cn/
Lithology 1:200,000 Causative factor http://geocloud.cgs.gov.cn/
Land use 30 m Causative factor http://www.resdc.cn/data.aspx/
Soil 30 m Causative factor http://www.resdc.cn/data.aspx/
PGA Vector Inducing factor https://earthexplorer.usgs.gov/
Complete LIM Vector Evaluation https://earthquake.usgs.gov/earthquakes/

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 6098965

Chen et al. OCC Based LSM

https://earthexplorer.usgs.gov/
https://gdex.cr.usgs.gov/gdex/
https://www.webmap.cn/
http://geocloud.cgs.gov.cn/
http://www.resdc.cn/data.aspx/
http://www.resdc.cn/data.aspx/
https://earthexplorer.usgs.gov/
https://earthquake.usgs.gov/earthquakes/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


3.1.3 Selection of Causative Factors
A landslide is controlled by a series of causative factors (Pradhan
and Lee, 2010), and thus accurately identifying the causative
factors is critical for reliable LSM. Through analysis of the
publication from 2005 to 2016 (Pourghasemi et al., 2018), this
study selected the seven most widely used causative factors for
earthquake-induced LSM inWenchuan: slope angle, slope aspect,
distance to river, lithology, soil, land use, and peak ground
acceleration (PGA).

3.1.3.1 Slope Angle
Slope angle is a key factor that determines the failure of a
landslide. Generally, slope angles between 30° and 40°are
considered to be prone to landslides (Xu et al., 2014), as slope
angles in this interval can enhance the shear force and surface
water penetration, which provide favorable conditions for
landslide occurrence. The slope information of the study area
is obtained based on the digital elevation model (DEM), and the
spatial analysis tool of ArcGIS is used to calculate the ratio of the
maximum elevation difference between adjacent grids to the
horizontal distance, which is the slope information of this

grid. In this paper, the extracted slope information in the
study area was divided into nine categories at an interval of
10°: 1) <10°; 2) 10–20°; 3) 20–30°; 4) 30–40°; 5) 40–50°; 6) 50–60°;
7) 60–70°; 8) 70–80°; and 9) >80°, see Figure 5A.

3.1.3.2 Slope Aspect
The slope aspect also affects the distribution of coseismic
landslides, as slopes with different aspects carry different
seismic effects (Zhou et al., 2016). In addition, there are
differences in sunshine and rock weathering in different slope
aspects, which leads to obvious differences in coseismic landslides
in different slope aspects. For example, the spatial distribution of
coseismic landslides in Wenchuan shows that the east, southeast,
and south are the dominant slope aspects of seismic landslides
[1]. Based on the DEM, this paper uses the spatial analysis tool of
GIS to identify the downhill direction with the largest change rate
from the current grid to the upper value of its adjacent grid
direction, namely, the slope aspect, and divides the slope aspect
into nine groups: 1) Flat (-1); 2) N (North, 0–22.5°and
337.5–360°); 3) NE (Northeast, 22.5–67.5°); 4) E (East,
67.5–112.5°); 5) SE (Southeast, 112.5–157.5°); 6) S (South,

FIGURE 3 | The incomplete LIM extracted from multi-temporal Landsat images.
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157.5–202.5°); 7) SW (Southwest, 202.5–247.5°); 8) W (West,
247.5–292.5°); and 9) NW (Northwest, 292.5–337.5°); see
Figure 5B.

3.1.3.3 Distance to Rivers
The river controls the seismic landslide distribution through the
action of groundwater and the erosion of water flow (Kamp et al.,
2008). This study considers the distance between slopes and rivers
and creates buffers around rivers to analyze the correlation
between seismic landslides and their distance to rivers.
According to the basic geographic information provided by
the National Geographic Information System (NGIS), the
initial river network in the study area was extracted. To
guarantee the river network quality, we overlayed the initial
river network on a cloud-free Landsat-5 mosaic in 2007 of the

study area. We deleted parts of the initial river network that did
not exhibit rivers on our Landsat mosaic images. Rivers exhibited
on Landsat mosaic image but not on the initial river network were
added to the initial river network. Finally, we divide the distance
to rivers into 10 groups with a step of 2.5 km: 1) 0–2.5 km; 2)
2.5–5 km; 3) 5–7.5 km; 4) 7.5–10 km; 5) 10–12.5 km; 6)
12.5–15 km; 7) 15–17.5 km; (8)17.5–20 km; 9) 20–22.5 km, and
(10) >22.5 km see Figure 5C.

3.1.3.4 Lithology
The lithology is considered to be another important factor in
dealing with landslide susceptibility assessment and hazards
(Reichenbach et al., 2018). Lithology influences the
topographic character of the landscape and how seismic
energy is transmitted, particularly through elastic and

FIGURE 4 | Slope units of the study area.
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brittle/elastic properties of the rock, chemical weathering and
its control of erosion and slope, fracture development and
fault displacement, and seismic wave interactions with
topography and lithological structures (Kargel et al., 2016).
Using rock mass rating containing lithologic factors to
conduct landslide hazard assessment is reasonable but, due
to lack of enough field and laboratory data, cannot be applied
to a large area (Tang et al., 2011). To determine the relative
influence of bedrock lithology on the occurrence of landslides
in a large area, the sensitivity index of the landslide
occurrence of each rock type is calculated by comparing
the landslide density in the area occupied by each rock
type. In this paper, the relative influence of rock mass is
determined by referring to the existing studies on Wenchuan
earthquake landslides. The lithology data in the study area
was generated by digitizing the hard copies of the 1:200,000
geological maps released by the China Geological Bureau.
After that, the digitized lithology data were re-projected to
WGS-84 coordinates and rasterized at 30 m resolution. Based
on lithological similarities, the rock types were grouped into
six classes, including 1) shale; 2) phyllite; 3) sandstone; 4)
glutenite; 5) magmatic rock; and 6) carbonate rock, as shown
in Figure 5D. The existing studies showed that the seismic

landslides in hard rock layers, including magmatic rock,
carbonate rock, and glutenite, were the most developed
and that the development density of shale, phyllite, and
sandstone were the second (Huang and Li, 2009; Li et al.,
2013).

3.1.3.5 Soil
The composition of the soil determines the permeability of the
soil, the better the permeability of the soil, the more conducive
it is to flood discharge; generally, sand particles are coarser, as
they do not as easily produce runoff or small flow. The
permeability of clay is poor; it is easy to erode, and
geological disasters are occur with relative ease. For
instance, granular, nonplastic, and low plasticity soils are
more susceptible than fine soils (Maharaj, 1993). The soil
data were generated from 1:1,000,000 soil distribution data
in China provided by the data processing center of the Chinese
Academy of Sciences. Similar to the vectorization process of
the lithology data, the digitized data of soil was re-projected to
WGS-84 and re-sampled to 30 m. The study area mainly
contains six soil types, including 1) semi-leached soil, 2)
leached soil, 3) primary soil, 4) alpine soil, 5) ferralsol, and
6) rock, see Figure 5E.

FIGURE 5 | The landslide causative factors used in this study. (A) Slope, (B) Aspect, (C) Distance to river, (D) Lithology, (E) Soil, (F) Land use, (G) PGA.
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3.1.3.6 Land Use
Human activities have changed the land surface and caused
great damage to the natural environment, making it easier for
landslides to form alongside earthquake disturbances. Studies
have shown that there is a strong correlation between the
distribution of landslides and land use. However, obtaining
land use data at a specific time is exceedingly difficult. Based on
the land use map of 2005 collected from the data processing
center of the Chinese Academy of Sciences, the initial land use
map of 2007 before the Wenchuan earthquake was obtained by
combining supervised classification and visual interpretation
with a cloud-free Landsat-5 mosaic image acquired in 2007.
Supervised classification consists of three steps: 1) to select
training samples for five land-use types by visual
interpretation, 2) to train the support vector machine using
the training samples and classify the whole Landsat-5 mosaic
image, and 3) to repeat the classification steps five times and
select the land-use map with the highest accuracy. We compare
the classified land use map and the initial land use map to
produce the most reliable land use map. The study area mainly
includes five land-use types: 1) residential area; 2) cultivated
land; 3) grassland; 4) the forest land; and 5) water, see
Figure 5F.

3.1.3.7 PGA
The strong ground motion that causes short-lived disturbances in
the balance of forces within hill slopes is the main reason for slope
failure (Li et al., 2013). Strong ground motion directly induces
coseismic landslides. PGA is simply the maximum peak
acceleration on the acceleration time history curve recorded at
a site in the earthquake. It is often used as a parameter to describe
strong ground motion (Ma and Xu, 2019). Previous studies have
shown that there is a positive correlation between PGA and
seismic landslide, and the greater the PGA value, the easier it is to
trigger a landslide (Xu et al., 2014). After the Wenchuan
earthquake, according to the ground motion peak recorded by
the seismic sensor, the United States Geological Survey (USGS)
established the PGA map of Wenchuan by interpolation method,
field amplification correction, and ground motion attenuation
model. In this paper, the latest PGA was download from USGS
website, and the study area was divided into six groups, including:
1) <0.2 g, 2) 0.2–0.4 g, 3) 0.4–0.6 g, 4) 0.6–0.8 g, 5) 0.8–1 g, and 6)
>1 g, see Figure 5G.

3.1.4 Multi-Collinearity Analysis of Landslide
Causative Factors
Landslide causative factors have intra-correlations, which
increases the data dimension and affects the model reliability.
To separate the influence of causative factors, we employ the
tolerance and variance inflation factor (VIF) (Chen et al., 2019) to
conduct a multicollinearity test. Tolerance and VIF are expressed
as follows:

Tolerance � 1 − R2
j (4)

VIF � [ 1
Tolerance

] (5)

where R2
j is the regression determination coefficient of landslide

causative factors. If the VIF is high, the multi-collinearity
influence is serious. This study sets VIF < 10 and tolerance >
0.1 (Chen et al., 2019) as the multi-collinearity threshold. Table 2
presents the tolerance and VIF values of the seven landslide
causative factors. The largest VIF and smallest tolerance are 1.385
and 0.722, respectively. The results suggest that there is no multi-
collinearity relationship among the seven landslide causative
factors, and thus all these factors are used for LSM.

3.2 Negative Data Generation
Traditionally, negative data are randomly selected from the areas
outside the LIM. However, non-landslide areas often contain a
large number of unstable slopes, which are not identified in the
LIM. Besides, there are also many unrecognized landslides in
non-landslide areas. The unstable slopes and unrecognized
landslides cannot be used to select negative data. To overcome
these shortcomings, this study presents a one-class support vector
machine (OCSVM) (Schölkopf et al., 2000) based negative data
generation method. The OCSVM maps the samples from low
dimension to high dimension space through the kernel function
and finds the optimal hyperplane between the origin and the high
dimension space. Specifically, the distance between the sample
and the hyperplane indicates the correlation between the sample
and a specific class. The decision function is defined as the
following:

f (x) � sign((ω.Φ(x)) − ρ) (6)

where Φ(x) represents the mapping function, weight ω, and
threshold ρ of the support vector are obtained by solving the
quadratic programming problem.

min
1
2
‖ω‖2 + 1

vN
∑
i�1

N

ξ i − ρ (7)

s.t.(ω.Φ(xi))Pρ − ξi ξ i ≫ 0

where ξi is the relaxation variable, and v ∈ (0, 1) controls the
proportion of support vectors in the training samples. By
introducing the kernel function k(x), the above optimization
problem is transformed into a dual form:

min
a

1
2
∑
i�1

N ∑
j�1

N

aiajk(xi, xj) (8)

TABLE 2 | Multicollinearity analysis for the landslide causative factors.

Causative factors Collinearity statistics

Tolerance VIF

Soil 0.907 1.102
Slope 0.913 1.096
Lithology 0.974 1.027
Land-use 0.787 1.27
Aspect 0.979 1.021
Distance to river 0.821 1.218
PGA 0.722 1.385
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s.t.0#ai#
1
vN

∑
i�1

N

ai � 1

where ρ � ∑ N
i�1aiK(xi, xj) denotes the threshold value, and

weight ω determines the optimal hyperplane. The Gaussian
kernel is selected as the kernel function to construct OCSVM
that is run with the LIBSVM software package (Chang and Lin,
2011). The optimal hyper-parameters are obtained through five-
fold cross-validation.

Selecting negative data from non-landslide areas is a commonly
usedmethod for LSM, but its feasibility relies on a complete LIM. By
contrast, this study uses an incomplete LIM obtained by change
detection to generate negative data. Suppose S represent the data sets
of the study area. Li and Lc represent landslides in the incomplete
LIM and in the complete LIM, respectively. Ni � Li∩ S and Nc �
Lc∩  S represent non-landslides in the incomplete LIM and in the
complete LIM, respectively.Np � Li∩  Lc represents the pseudo non-
landslide, andNOCSVM denotes the extremely low susceptibility areas
in the LSM produced by OCSVM.

To analyze the influence of different negative data generation
strategies on LSM, we designed four negative data generation
strategies:

1. Negative data Tc are randomly selected from
Nc (i.e., Tc ∈ Nc)

2. Negative data Tp are randomly selected from
Np i.e., Tp ∈ Np)

3. Negative data Ti are randomly selected from
Ni (i.e., Ti ∈ Ni)

4. Negative data TOCSVM are randomly selected from
NOCSVM (i.e., TOCSVM ∈ NOCSVM)

3.3 LSM
The aforementioned steps produce training samples to train a
statistical learning algorithm. The support vector machine (SVM)
is a commonmachine learning algorithm that is capable to build a
stable and reliable statistical model with a small number of
samples (Suykens and Vandewalle, 1999). Therefore, this study
selects SVM to compute the landslide susceptibility values for
SUs. The decision function is expressed as follows:

y � ∑n
i�1

ωixi + b (9)

where ω is the support vector weight and b the intercept. To
suppress the noise influence, the relaxation variables ξ is
introduced, and the corresponding convex quadratic
programming of SVM is expressed as follows:

min
ω,b

1
2
ω2 + C∑

i�1

n

ξ i (10)

s.t.yi(ω · xi + b)P1 − ξ i
i � 1, 2, 3, . . . n

where C represents the penalty coefficient. The optimal
hyperplane can be obtained by converting the appeal planning
problem into a dual problem that is expressed as follows:

min
a

1
2
∑
i�1

n ∑
j�1

n

aiajyiyj(xi · xj) −∑
i�1

n

ai (11)

s.t.∑
i�1

n

aiyi � 0

0#ai#C, i � 1, 2, 3, . . . n

where (xi · xj) represents the kernel function that projects
samples to high dimensional space to handle complex
nonlinear problems. This study chooses the Gaussian kernel as
the kernel function, and the optimal hyper-parameters are
obtained by the five-cross validation (Hong et al., 2017). This
study implements SVM by the LIBSVM package (Chang and Lin,
2011).

3.4 Model Evaluation
The reliability of LSM is mainly determined by the accuracy of
the model. But there is no uniform standard to assess the
model accuracy. The common method is to use a set of
independent data sets for accuracy assessment. Test sets
reserved in the early data preparation phase are widely used
for model evaluation (Irigaray et al., 2007; Dou et al., 2019).
Considering that the data set used in this study is the
incomplete LIM, and the actual complete LIM does not
participate in the model construction, the complete LIM is
taken as the test set for model evaluation.

Receiver operating characteristics (ROC) is an important tool
for model evaluation (Swets, 1988). It calculates the true positive
rate and false positive rate of the model according to different
discriminant standards and draws a curve with the true positive
rate and the false positive rate as the x-axis and the y-axis,
respectively. The area under the curve (AUC), generally
between 0.5-1, is often used to reflect the model performance.
The greater the AUC value, the better the model performance
will be.

TruePositiveRate � Sensitivity � TP
TP + FN

(12)

TrueNegativeRate � Specificity � TN
TN + FP

(13)

FalsePositiveRate � 1 − Specificity � FP
TN + FP

(14)

where TN, TP, FP, and FN represent true negative, true positive,
false positive, and false negative, respectively.

As LSM reflects the landslide occurrence possibility in the
earthquake-affected region (Guzzetti et al., 2006), this study
counts the number of new landslides that occurred in the
hazardous areas to further verify the model performance. To
this end, this study collected 11 landslide events that occurred in
the study area after 2008 from the website of the China Geological
Survey (referred to as new landslides hereafter). The higher
number of new landslides in hazardous areas of LSM, the
better the model performance will be. In this study, the
hazardous areas include areas with extremely high
susceptibility, high susceptibility, and moderate susceptibility
levels.
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4 EXPERIMENTAL RESULTS

4.1 Evaluation of the Reliability of the
Negative Data GenerationMethod Based on
OCSVM
Figure 6 shows the LSM derived from OCSVM. It can be seen
that 88.02% of the landslides fall into the hazard area (e.g.,
extremely high susceptibility, high susceptibility, and moderate
susceptibility areas). This suggests that OCSVM can obtain a
reliable landslide susceptibility map using positive data only.
Meanwhile, extremely low susceptibility areas cover 13.53% of
the study area and share 3.73% landslides. In other words,
landslides rarely occur in extremely low susceptibility areas
derived from OCSVM, which in turn guarantees the quality of
the generated labeled negative data sets.

4.2 Accuracy Assessment of LSMs Derived
From Different Strategies
Figure 7 shows the landslide susceptibility maps produced by
SVM based on different training sample sets. The hazard area
percentages of four methods ranges from 46.70% to 60.39%. The
generated LSM maps show apparent differences in the spatial
distribution of susceptibility area. As both the machine learning
algorithm and the positive data are fixed, this difference comes

from negative data generation strategies. This indicates that
negative data generation strategy and the LSM performance
have a close relationship. To quantitatively evaluate the model
performance, Figure 8 presents ROC curves for four methods.
The AUC values derived from ROC curves are 0.8164, 0.7673,
0.7928, and 0.8100, respectively. Among four methods, SVM
based on Tc achieves the highest AUC value (i.e., 0.8164), while
SVM based on Tp achieved the lowest AUC value (i.e., 0.7673).
The AUC value of the presented method is 0.81, which is close to
the best performance achieved by Tc. The AUC difference
between the presented method and Tc is marginal, suggesting
that the presented method based on the incomplete LIM is
capable of achieving a comparable performance to that of the
traditional method based on the complete LIM. Therefore, the
presented method is suitable for rapid earthquake-triggered
landslide susceptibility mapping when only the incomplete
landslide inventory is efficient and timely in terms of
obtaining data after the occurrence of an earthquake.

This study applies the natural break classification to divide the
landslide susceptibility into five levels: extremely high, high,
moderate, low, and extremely low susceptibility. By overlaying
the actual coseismic landslide distribution (i.e., the complete
LIM), the areas of different landslide susceptibility levels and
corresponding coseismic landslide areas were computed. Table 3
shows that the evaluation results corresponding to different
negative data sets are quite different, and thus the negative

FIGURE 6 | Landslide susceptibility map generated by OCSVM.
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FIGURE 7 | Landslide susceptibility map obtained based on the SVM using different negative data: (A) Tc, (B) Tp, (C) Ti , and (D).TOCSVM
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FIGURE 8 | ROC curves of four negative data generation strategies.

TABLE 3 | Landslide susceptibility levels and density of landslides in the study area.

Susceptibility level Area (km2) Percent of
area

Area of
landslide (km2)

Percent of
landslide

Density

Tc
Extremely low 536.28 0.13 6.88 0.02 0.01
Low 1,344.24 0.33 18.19 0.05 0.01
Moderate 519.34 0.13 27.66 0.08 0.05
High 429.85 0.11 36.23 0.1 0.08
Extremely high 1,201.32 0.3 267.48 0.75 0.22

Tp
Extremely low 958.07 0.24 58.03 0.16 0.06
Low 638.49 0.16 14.14 0.04 0.02
Moderate 1,077.06 0.27 18.86 0.05 0.02
High 434.34 0.11 35.81 0.1 0.08
Extremely high 923.08 0.23 229.61 0.64 0.25

Ti
Extremely low 1,461.92 0.36 31.85 0.09 0.02
Low 686.22 0.17 14.01 0.04 0.02
Moderate 483.12 0.12 27.33 0.08 0.06
High 329.85 0.08 28.27 0.08 0.09
Extremely high 1,069.93 0.27 254.98 0.72 0.24

TOCSVM
Extremely low 783.83 0.19 8.33 0.02 0.01
Low 998.04 0.25 22.29 0.06 0.02
Moderate 698.86 0.17 34.14 0.1 0.05
High 962.21 0.24 158.87 0.45 0.17
Extremely high 588.1 0.15 132.82 0.37 0.23
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data generation strategy has an essential influence on the
performance of LSM. Specifically, for negative data Tc, 93% of
the coseismic landslide exists in 54% of the hazardous areas of
LSM, which is consistent with the coseismic landslide
distribution. However, for negative data Tp, only 80% of the
coseismic landslides occurred in 61% of the hazardous area of
LSM. This indicates that the model does not evaluate the landslide
susceptibility well. The main reason is that the negative data are
from the pseudo-stability area, that is, the negative data belong to
the unstable area of the study area. Negative data Ti has
considerable uncertainty, due to the incomplete LIM and high
concealment of potentially unstable slopes, resulting in significant
fluctuations in the results. In this study, 87% of the coseismic
landslides are distributed in 47% of the hazardous area of LSM.
OCSVM can effectively obtain the stable area of the study area, so
the influence of the potentially unstable slopes and the incomplete
LIM can be well eliminated. Finally, 92% of coseismic landslides
occurred in 56% of the hazardous area of LSM, which is higher
than that of other negative data sources generated based on
incomplete LIM.

To analyze the site scale accuracy of the LSMs generated from
different negative data, we took towns and villages as the subarea
unit. We calculated the ratio of coseismic landslide to the
hazardous areas in each subarea. Table 4 shows the
percentage of the coseismic landslide distributed in the
hazardous areas in each subarea. The landslide susceptibility
maps show remarkable differences in towns and villages,
especially the unrecognized landslide area in the incomplete
LIM. Specifically, for the results of Tc, the percentage of the
coseismic landslides in the hazardous area of several towns is less
than 60%. Especially in Longxi Town, the coseismic landslide
distributed in the detected hazardous area is as low as 38%. The
results indicate that although the negative data are from the ideal
non-landslide area, there are some unstable slopes affecting the
accuracy of LSM. For negative data Tp, the distribution of the
landslide susceptibility area is inconsistent with that of a
coseismic landslide, especially in Longxi Town, where the
percentage of a coseismic landslide is only 3%. For Ti, the

percentage of coseismic landslides in the detected hazardous
areas is less than 60%. In Longxi Town, only 35% of the
coseismic landslide are distributed in the detected hazardous
areas, and the landslide susceptibility of this area was also not
well evaluated. Finally, for the negative data TOCSVM , the model
estimated results are consistent with the coseismic landslide
distribution for most towns. Only the percentages of two
towns are less than 60%. Longxi Town is not covered by the
incomplete LIM, but 98% of the coseismic landslides that
occurred here are in the detected hazardous area. Table 4 also
shows that Tc, Ti, and TOCSVM achieved the best performance in
five, two, and seven administrative districts, respectively. Tp

delivered the poorest performance among all subareas,
suggesting that Tp is not suitable to train statistical learning
algorithms for LSM. The third interesting finding is that
TOCSVM achieved a comparable or even better performance to
that of Tc in most cases. However, in two subareas (i.e., Keku and
Longxi), TOCSVM achieved a substantial improvement compared
to Tc. Thus, TOCSVM shows a great advantage in areas with a low
percent of coseismic landslides.

We also applied 11 new landslides that occurred after 2008 to
further verify the performance of LSM. Figure 7 shows the
superposition of new landslides over the landslide
susceptibility maps. We counted the number of new landslides
that occurred in the hazardous areas to assess the LSM reliability.
Table 5 shows that 9, 7, 9, and 10 new landslides occurred in the
hazardous areas produced by Tc, Tp, Ti, and TOCSVM , respectively.
Among four negative data generation strategies, TOCSVM achieves
the highest match rate with new landslides while Tp the lowest
match rate with new landslides. Therefore, the presented negative
data generation strategy can effectively assess the landslide
susceptibility in earthquake-affected areas.

4.3 The Influence of One-Class Classifier
Selection
To test the influence of one-class classifier (OCC) selection on the
performance of LSM, another two benchmark OCCs, including
SOM and TSES, are selected to compare with OCSVM. SOM is a
kind of autonomic learning neural network without tutors. Its
hierarchy consists of an input layer and competition layer (Huang
et al., 2017). The input layer accepts external input variables, and
the competition layer realizes clustering by analyzing and
comparing the input variables. The data of one class have
similar features, so the negative data can be generated by
cluster analysis. In this study, five classes were selected as the
final clustering results. TSES directly generates pseudo negative
data based on positive data in feature space (Xiao et al., 2010). It
exteriorizes positive data to become negative by replacing the
value of one of its features with a new one outside the value range
of this feature of all positive data.

We produced LSMs using the SVM based on different negative
data sets generated by OCSVM, SOM, and TSES, respectively.
The results are referred to as LSM-OCSVM, LSM-SOM, and
LSM-TSES, see Figure 9. LSM-OCSVM is consistent with the
distribution of coseismic landslides, suggesting the proposed
OCSVM method gets high accuracy landslide susceptibility in

TABLE 4 | The percentage of coseismic landslides in the hazardous areas of
towns and villages detected by the LSM using different negative data.

Subarea unit Percent of coseismic
landslide (%)

Coseismic landslides
distribution

Tc Tp Ti TOCSVM

Yinxing 24.85 1.00 0.99 0.98 1.00
Gengda 14.90 0.90 0.73 0.81 0.87
Miansi 14.13 0.96 0.92 0.96 0.97
Caopo 9.12 0.84 0.75 0.8 0.93
Yingxiu 8.24 0.95 0.89 0.94 0.93
Sanjiang 6.56 0.58 0.48 0.39 0.70
Yanmen 6.50 0.96 0.67 0.71 0.87
Weizhou 4.35 0.88 0.66 0.75 0.95
Wolong 4.24 0.45 0.41 0.55 0.44
Xuankou 3.66 0.85 0.75 0.93 0.83
Keku 1.47 0.59 0.25 0.58 0.98
Shuimo 1.18 0.57 0.45 0.50 0.36
Longxi 0.80 0.38 0.03 0.35 0.98
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the post-earthquake area. Most of the LSM-SOM is consistent
with the coseismic landslide distribution. However, the results are
quite different from the actual situation at the junction of Miansi
Town and Yingxiu Town. The TSES-based method
underestimates the degree of earthquake disturbance, so many
coseismic landslides are in the low susceptibility area.

To quantitatively evaluate the accuracy of the LSM obtained
from different negative data generation strategies, we used the
complete LIM to draw the ROC curves and calculate the
corresponding AUC values. Figure 10 shows that AUC
values of OCSVM, SOM, and TSES are 0.8100, 0.7909, and
0.7641, respectively. Among three OCCs, OCSVM achieves the
highest AUC value and TSES the lowest value. This result
suggests that the selection of OCC has an influence on the
performance of LSM, and thus the OCC should be carefully
selected. Table 6 shows the area percentage of coseismic
landslides that occurred in the hazardous areas. The
proposed OCSVM method has the highest value with a
percentage of 92%, and this was followed by the TSES

method at 86% and the SOM method at 84%. Specifically,
10 of 11 new landslides occurred in the hazardous area of the
landslide susceptibility map obtained by the OCSVM negative
data generation method. In contrast, the results based on SOM
and TSES correspond to eight and six new landslide events,
respectively. The main reasons for this result are as follows.
Firstly, the result of the negative data generation method based
on cluster analysis depends on two aspects. The clustering
analysis in this study was carried out based on the frequency
ratio of each causative factor, which depends on the LIM in the
study area. Therefore, the clustering analysis is also affected by
the incomplete LIM. Besides, as the clustering analysis needs
to determine the category in advance. To compare this with the
method presented in this study, the data sets in the study area
were also divided into five categories, and the categories with
fewer coseismic landslides were selected as the negative data
source. Similarly, there are still a small number of coseismic
landslides in the selected category, which affects the evaluation
results of the model. Secondly, TSES transforms positive data

TABLE 5 | LSM and new landslide events.

New landslides Lon Lat Tc Tp Ti TOCSVM

2009.7.25 (Chediguan bridge) 103.48 31.21 Extremely high Extremely high Extremely high Extremely high
2010.5.30 (Suoqiao village) 103.64 31.49 Moderate Extremely low Moderate Moderate
2010.6.12 (Jinbo village) 103.41 31.22 Extremely high Extremely high Extremely high High
2011.7.3 (Dongjienao village) 103.50 31.12 Extremely high High High High
2011.7.3(Fengxiangshu village) 103.50 31.06 High Extremely high Extremely high Moderate
2011.7.3 (Maojiawang) 103.50 31.17 Extremely high Extremely high Extremely high Extremely high
2013.7.22 (Zuwang village) 103.44 31.29 Extremely high High Extremely high Extremely high
2018.4.8 (Aer village) 103.54 31.67 Low Low Extremely low Extremely low
2018.7.26 (Minjiang bridge) 103.57 31.45 High High High Moderate
2019.8.20 (Longtan village) 103.3 31.12 Moderate Low Extremely high High
2020.6.20 (Kuapo village) 103.54 31.59 Extremely low Extremely low Extremely low Moderate

FIGURE 9 | Landslide susceptibility maps produced by: (A) OCSVM-based method, (B) SOM-based method, and (C) TSES-based method.
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into negative data by replacing the value of a randomly
selected causative factor with a value outside the range.
This method is also affected by two factors. The LIM
represents the landslide-affected area. On the other hand,
the SUs used in this study are small-scale units that cannot
accurately reflect the spatial differences of the feature
corresponding to coseismic landslides. Therefore, there is
still considerable uncertainty in the negative data
generation based on inaccurate feature space information.
In addition, TSES assumes that the weight of each causative
factor is equal, while the existing research shows that the
impact of the seismic landslide causative factor is different.
Therefore, simply replacing the attribute value of a causative
factor cannot generate a reliable negative data set. In summary,
the method proposed in this study can effectively obtain the
negative data, which has little dependence on the complete
LIM and can quickly obtain the landslide susceptibility map
after the earthquake.

4.4 DISCUSSION

A reliable and complete LIM is an important data source for rapid
assessment of earthquake-induced landslides (Van Westen et al.,
2008; Harp et al., 2011). As stated in the introduction, most
statistical learning methods for predicting the distribution of
landslide-prone areas depend on data sets with both positive
(landslide presence) and negative (landslide absence) data (Hong
et al., 2019). However, the complete LIM is difficult or impossible
to obtain, which hampers the rapid LSM and hazard analysis after
an earthquake (Reichenbach et al., 2018). By contrast, incomplete
LIM is easy to obtain and is a potential data source for rapid LSM
after an earthquake (Xu et al., 2013; Monsieurs et al., 2018; Chen
et al., 2020; Du et al., 2020). The results of this paper show that
satisfactory results of earthquake-induced LSM can also be
obtained based on incomplete LIM provided that the negative
data provided by the incomplete LIM is properly processed.
Compared with earthquake-induced LSM based on the
complete LIM, the approach by using incomplete LIM,
proposed in this paper, has the advantages of high efficiency
and low economic cost.

This study also finds that the one-class classifier can generate
reliable negative data based on incomplete LIM. In this study, a
comparative experiment is carried out for the uncertainty of negative
data come from incomplete LIM. Compared with using complete
LIM, the landslide susceptibility model has higher uncertainty when
the negative data come from incomplete LIM, which is basically
consistent with the existing research (Huang and Zhao, 2018; Dou

FIGURE 10 | ROC curves of the presented method based on three OCCs.

TABLE 6 | The co-seismic landslide and new landslide events in the hazardous
area of LSM with different negative data generation methods.

Methods Hazardous area of LSM

Co-seismic landslide (%) New landslides

SVM-OCSVM 0.92 10
SVM-SOM 0.84 8
SVM-TSES 0.86 6

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 60989616

Chen et al. OCC Based LSM

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


et al., 2020b). However, the negative data generation method based
on the one-class classifier can effectively reduce the uncertainty of
the negative data and obtain a more stable and reliable model.
Incomplete LIM provides negative data that may stem from
unrecognized landslides, and false-negative data will reduce the
reliability of the landslide susceptibility model. Even within the
negative data obtained from complete LIM, there are inevitably
unstable areas (Huang et al., 2017;Hong et al., 2019; Zhu et al., 2019),
that is, the potential landslide areas in the deformation process. The
data for such areas are between the negative data and the positive
data, and simply taking them as negative data also increases the
uncertainty of the samples. To overcome these challenges, the one-
class classifier can construct a screening negative data model based
on single class samples, which can eliminate the influence of
unrecognized landslide area and potential landslide area and
obtain more reliable negative data. Compared with other one-
class classifiers, OCSVM can deal with complex nonlinear
problems based on small sample data (Schölkopf et al., 2000),
which can precisely represent the complex nonlinear relationship
between seismic landslides and causative factors.

The performance of machine learning algorithms (e.g., SVM
and OCSVM, which are used in this study) varies in accordance
with topographic variables, suggesting that the patterns in
causative factors are highly complex and variable for the
different facets of causative factor attributes (e.g., spatial scale)
(Chang et al., 2019). Thus, finding a general approach suitable for
all regions and/or topographic variables is unlikely. And instead,
evaluation of multiple machine learning algorithms (Merghadi
et al., 2020; Wang et al., 2020) and/or ensemble of different
machine learning algorithms (Dou et al., 2020a; Pham et al., 2020)
should be standard procedure in developing satisfactory LSMs
with highly complex landslide causative factors.

Focusing on overcoming the uncertainty of negative data that
comes from an incomplete LIM, the method presented in this paper
can quickly carry out seismic LSM under data-scarce environments
conditions. Inevitably, some open problems require further study.
First, wemustfind out howwe can best define an incomplete LIMand
explore the relationship between the completeness level of LIM and
LSM performance, as these are not discussed in detail in this paper. In
addition, the method presented in this paper is mainly based on
incomplete LIM and is still a data-driven method. The quality of the
results still depends on source data quality (Broeckx et al., 2018).With
the rapid development of Synthetic Aperture Radar, 3D deformation
information of earthquake-affected area can be obtained quickly after
an earthquake, which can be effectively used to identify the hidden
landslide area (Xie et al., 2020). More reliable negative data may be
obtained by integrating the stable area in 3D deformation and the
non-landslide area in LIM. More accurate LSM may be achieved by
extending the proposed method based on OCSVM to incorporate
such negative data with higher quality.

5 CONCLUSION

This study proposed a negative data generation method based on
one class classifier, which can effectively make use of incomplete

LIM. Based on the binary classifier established by the generated
negative data, we performed LSM for the landslides of the 2008
Wenchuan earthquake. The reliability of the result was analyzed
and verified using the coseismic landslides and new landslide
events in the study area. The results show the following: 1) the
two-class support vector machine is susceptible to the negative
data, especially in the absence of complete LIM, and the landslide
susceptibility model/mapping obtained from different negative
data are quite different; 2) an incomplete LIM is easy to obtain,
which is important data for rapid evaluation of landslide
susceptibility; 3) the method presented in this study can
effectively reduce the uncertainty of negative data and can
significantly improve the performance of the landslide
susceptibility model even without complete LIM. To sum up,
the method in this study can be used to evaluate the landslide
susceptibility quickly after the earthquake and provide an
important reference for emergency rescue and land planning
in post-earthquake regions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

ZM, LW, and SC proposed and participated in designing the
study; SC, ZM, AZ and QL designed the study, analyzed the data
and wrote the manuscript; AZ and YH participated in designing
the study and improved the paper; AZ polished the paper. All
authors approved the final version of the manuscript.

FUNDING

This work was supported in part by the National Key R& D
Program of China under Grant 2018YFC15035, in part by
National Natural Science Foundation of China under Grant
41701500 and Grant 41930108, in part by the Natural Science
Foundation of Hunan Province under Grant 2018JJ3641 and
Grant 2019JJ60001, in part by Talents Gathering Program of
Hunan Province under Grant 2018RS3013, in part by
Innovation-Driven Project of Central South University under
Grant 2020CX036, in part by Early-Stage Research Start-up
Grants funded by Central South University under Grant
502045001 and Grant 506030101, and in part by Natural
Science Foundation of Jiangsu Province (BK20190785).

ACKNOWLEDGMENTS

The authors would like to thank two reviewers for their
constructive comments that greatly improve this article.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 60989617

Chen et al. OCC Based LSM

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


REFERENCES

Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J. (2018). A data-based
landslide susceptibility map of africa. Earth-Science Rev. 185, 102–121. doi:10.
1016/j.earscirev.2018.05.002

Cao, J., Zhang, Z., Wang, C., Liu, J., and Zhang, L. (2019). Susceptibility assessment
of landslides triggered by earthquakes in the western sichuan plateau. Catena
175, 63–76. doi:10.1016/j.catena.2018.12.013

Chang, C.-C., and Lin, C.-J. (2011). Libsvm. ACM Trans. Intell. Syst. Technol. 2,
1–27. doi:10.1145/1961189.1961199

Chang, K.-T., Merghadi, A., Yunus, A. P., Pham, B. T., and Dou, J. (2019).
Evaluating scale effects of topographic variables in landslide susceptibility
models using gis-based machine learning techniques. Scientific Rep. 9, 1–21.
doi:10.1038/s41598-019-48773-2

Chen, S., Miao, Z., Wu, L., and He, Y. (2020). Application of an incomplete
landslide inventory and one class classifier to earthquake-induced landslide
susceptibility mapping. IEEE J. Sel. Top. Appl. Earth Observations Remote
Sensing 13, 1649–1660. doi:10.1109/jstars.2020.2985088

Chen, W., Yan, X., Zhao, Z., Hong, H., Bui, D. T., and Pradhan, B. (2019). Spatial
prediction of landslide susceptibility using data mining-based kernel logistic
regression, naive bayes and rbfnetwork models for the long county area
(China). Bull. Eng. Geol. Environ. 78, 247–266. doi:10.1007/s10064-018-
1256-z

Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., and
Agnesi, V. (2016). Exploring the effect of absence selection on landslide
susceptibility models: a case study in sicily, Italy. Geomorphology 261,
222–235. doi:10.1016/j.geomorph.2016.03.006

Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., et al. (2020a).
Improved landslide assessment using support vector machine with bagging,
boosting, and stacking ensemble machine learning framework in a mountainous
watershed, Japan. Landslides 17, 641–658. doi:10.1007/s10346-019-01286-5

Dou, J., Yunus, A. P., Merghadi, A., Shirzadi, A., Nguyen, H., Hussain, Y., et al.
(2020b). Different sampling strategies for predicting landslide susceptibilities
are deemed less consequential with deep learning. Sci. total Environ. 720,
137320. doi:10.1016/j.scitotenv.2020.137320

Dou, J., Yunus, A. P., Tien Bui, D., Sahana, M., Chen, C.-W., Zhu, Z., et al. (2019).
Evaluating gis-based multiple statistical models and data mining for earthquake
and rainfall-induced landslide susceptibility using the lidar dem. Remote
Sensing 11, 638. doi:10.3390/rs11060638

Dreyfus, D., Rathje, E. M., and Jibson, R. W. (2013). The influence of different
simplified sliding-block models and input parameters on regional predictions of
seismic landslides triggered by the northridge earthquake. Eng. Geology. 163,
41–54. doi:10.1016/j.enggeo.2013.05.015

Du, J., Glade, T., Woldai, T., Chai, B., and Zeng, B. (2020). Landslide susceptibility
assessment based on an incomplete landslide inventory in the jilong valley,
tibet, Chinese himalayas. Eng. Geology. 270, 105572. doi:10.1016/j.enggeo.2020.
105572

Erener, A., and Düzgün, H. S. B. (2012). Landslide susceptibility assessment: what
are the effects of mapping unit and mapping method?. Environ. Earth Sci. 66,
859–877. doi:10.1007/s12665-011-1297-0

Fan, X., Scaringi, G., Xu, Q., Zhan, W., Dai, L., Li, Y., et al. (2018). Coseismic
landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake
(Sichuan, China): factors controlling their spatial distribution and implications
for the seismogenic blind fault identification. Landslides 15, 967–983. doi:10.
1007/s10346-018-0960-x

Fung, T. (1990). An assessment of tm imagery for land-cover change detection. IEEE
Trans. Geosci. remote sensing 28, 681–684. doi:10.1109/igarss.1989.577758

Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., et al. (2011).
Distribution pattern of earthquake-induced landslides triggered by the 12 may
2008 wenchuan earthquake. Geomorphology 133, 152–167. doi:10.1016/j.
geomorph.2010.12.030

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M. (2006).
Estimating the quality of landslide susceptibility models. Geomorphology 81,
166–184. doi:10.1016/j.geomorph.2006.04.007

Harp, E. L., Keefer, D. K., Sato, H. P., and Yagi, H. (2011). Landslide inventories: the
essential part of seismic landslide hazard analyses. Eng. Geology. 122, 9–21.
doi:10.1016/j.enggeo.2010.06.013

Hong, H., Miao, Y., Liu, J., and Zhu, A.-X. (2019). Exploring the effects of the
design and quantity of absence data on the performance of random forest-based
landslide susceptibility mapping. Catena 176, 45–64. doi:10.1016/j.catena.2018.
12.035

Hong, H., Pradhan, B., Bui, D. T., Xu, C., Youssef, A. M., and Chen, W. (2017).
Comparison of four kernel functions used in support vector machines for
landslide susceptibility mapping: a case study at suichuan area (China).
Geomatics, Nat. Hazards Risk 8, 544–569. doi:10.1080/19475705.2016.1250112

Huang, F., Yin, K., Huang, J., Gui, L., and Wang, P. (2017). Landslide susceptibility
mapping based on self-organizing-map network and extreme learningmachine.
Eng. Geology. 223, 11–22. doi:10.1016/j.enggeo.2017.04.013

Huang, R., and Li, W. (2014). Post-earthquake landsliding and long-term impacts
in the wenchuan earthquake area, China. Eng. Geology. 182, 111–120. doi:10.
1016/j.enggeo.2014.07.008

Huang, R. Q., and Li, W. L. (2009). Analysis of the geo-hazards triggered by the 12
may 2008 wenchuan earthquake, China. Bull. Eng. Geol. Environ. 68, 363–371.
doi:10.1007/s10064-009-0207-0

Huang, Y., and Zhao, L. (2018). Review on landslide susceptibility mapping using
support vector machines. Catena 165, 520–529. doi:10.1016/j.catena.2018.
03.003

Irigaray, C., Fernández, T., El Hamdouni, R., and Chacón, J. (2007). Evaluation and
validation of landslide-susceptibility maps obtained by a gis matrix method:
examples from the betic cordillera (southern Spain). Nat. Hazards 41, 61–79.
doi:10.1007/s11069-006-9027-8

Jibson, R.W., Harp, E. L., andMichael, J. A. (2000). Amethod for producing digital
probabilistic seismic landslide hazard maps. Eng. Geology. 58, 271–289. doi:10.
1016/s0013-7952(00)00039-9

Jibson, R. W. (1993). Predicting earthquake-induced landslide displacements using
newmark’s sliding block analysis. Transportation Res. Rec. 1411, 9–17.

Kamp, U., Growley, B. J., Khattak, G. A., and Owen, L. A. (2008). Gis-based
landslide susceptibility mapping for the 2005 kashmir earthquake region.
Geomorphology 101, 631–642. doi:10.1016/j.geomorph.2008.03.003

Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A.,
Fielding, E. J., et al. (2016). Geomorphic and geologic controls of geohazards
induced by nepals 2015 gorkha earthquake. Science 351, 8353. doi:10.1126/
science.aac8353

Keefer, D. K. (2002). Investigating landslides caused by earthquakes–a historical
review. Surv. Geophys. 23, 473–510. doi:10.1023/a:1021274710840

Li, W.-l., Huang, R.-q., Tang, C., Xu, Q., and van Westen, C. (2013). Co-seismic
landslide inventory and susceptibility mapping in the 2008 wenchuan
earthquake disaster area, China. J. Mt. Sci. 10, 339–354. doi:10.1007/s11629-
013-2471-5

Li, X., Zhou, Z., Yu, H., Wen, R., Lu, D., Huang, M., et al. (2008). Strong motion
observations and recordings from the great wenchuan earthquake. Earthquake
Eng. Eng. Vibration 7, 235–246. doi:10.1007/s11803-008-0892-x

Lv, Z. Y., Shi, W., Zhang, X., and Benediktsson, J. A. (2018). Landslide inventory
mapping from bitemporal high-resolution remote sensing images using change
detection and multiscale segmentation. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sensing 11, 1520–1532. doi:10.1109/jstars.2018.2803784

Ma, S., and Xu, C. (2019). Assessment of co-seismic landslide hazard using the
Newmark model and statistical analyses: a case study of the 2013 Lushan,
China, Mw6.6 earthquake. Nat. Hazards 96, 389–412. doi:10.1007/s11069-018-
3548-9

Maharaj, R. J. (1993). Landslide processes and landslide susceptibility analysis from
an upland watershed: a case study from st. andrew, Jamaica, west indies. Eng.
Geology. 34, 53–79. doi:10.1016/0013-7952(93)90043-c

Mandal, B., and Mandal, S. (2018). Analytical hierarchy process (ahp) based
landslide susceptibility mapping of lish river basin of eastern darjeeling
himalaya, India. Adv. Space Res. 62, 3114–3132. doi:10.1016/j.asr.2018.
08.008

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., et al.
(2020). Machine learning methods for landslide susceptibility studies: a
comparative overview of algorithm performance. Earth-Science Rev. 207,
103225. doi:10.1016/j.earscirev.2020.103225

Monsieurs, E., Jacobs, L., Michellier, C., Basimike Tchangaboba, J., Ganza, G. B.,
Kervyn, F., et al. (2018). Landslide inventory for hazard assessment in a data-
poor context: a regional-scale approach in a tropical african environment.
Landslides 15, 2195–2209. doi:10.1007/s10346-018-1008-y

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 60989618

Chen et al. OCC Based LSM

https://doi.org/10.1016/j.earscirev.2018.05.002
https://doi.org/10.1016/j.earscirev.2018.05.002
https://doi.org/10.1016/j.catena.2018.12.013
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1038/s41598-019-48773-2
https://doi.org/10.1109/jstars.2020.2985088
https://doi.org/10.1007/s10064-018-1256-z
https://doi.org/10.1007/s10064-018-1256-z
https://doi.org/10.1016/j.geomorph.2016.03.006
https://doi.org/10.1007/s10346-019-01286-5
https://doi.org/10.1016/j.scitotenv.2020.137320
https://doi.org/10.3390/rs11060638
https://doi.org/10.1016/j.enggeo.2013.05.015
https://doi.org/10.1016/j.enggeo.2020.105572
https://doi.org/10.1016/j.enggeo.2020.105572
https://doi.org/10.1007/s12665-011-1297-0
https://doi.org/10.1007/s10346-018-0960-x
https://doi.org/10.1007/s10346-018-0960-x
https://doi.org/10.1109/igarss.1989.577758
https://doi.org/10.1016/j.geomorph.2010.12.030
https://doi.org/10.1016/j.geomorph.2010.12.030
https://doi.org/10.1016/j.geomorph.2006.04.007
https://doi.org/10.1016/j.enggeo.2010.06.013
https://doi.org/10.1016/j.catena.2018.12.035
https://doi.org/10.1016/j.catena.2018.12.035
https://doi.org/10.1080/19475705.2016.1250112
https://doi.org/10.1016/j.enggeo.2017.04.013
https://doi.org/10.1016/j.enggeo.2014.07.008
https://doi.org/10.1016/j.enggeo.2014.07.008
https://doi.org/10.1007/s10064-009-0207-0
https://doi.org/10.1016/j.catena.2018.03.003
https://doi.org/10.1016/j.catena.2018.03.003
https://doi.org/10.1007/s11069-006-9027-8
https://doi.org/10.1016/s0013-7952(00)00039-9
https://doi.org/10.1016/s0013-7952(00)00039-9
https://doi.org/10.1016/j.geomorph.2008.03.003
https://doi.org/10.1126/science.aac8353
https://doi.org/10.1126/science.aac8353
https://doi.org/10.1023/a:1021274710840
https://doi.org/10.1007/s11629-013-2471-5
https://doi.org/10.1007/s11629-013-2471-5
https://doi.org/10.1007/s11803-008-0892-x
https://doi.org/10.1109/jstars.2018.2803784
https://doi.org/10.1007/s11069-018-3548-9
https://doi.org/10.1007/s11069-018-3548-9
https://doi.org/10.1016/0013-7952(93)90043-c
https://doi.org/10.1016/j.asr.2018.08.008
https://doi.org/10.1016/j.asr.2018.08.008
https://doi.org/10.1016/j.earscirev.2020.103225
https://doi.org/10.1007/s10346-018-1008-y
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Pham, B. T., Nguyen-Thoi, T., Qi, C., Phong, T. V., Dou, J., Ho, L. S., et al. (2020).
Coupling rbf neural network with ensemble learning techniques for landslide
susceptibility mapping. Catena 195, 104805. doi:10.1016/j.catena.2020.104805

Pourghasemi, H. R., Yansari, Z. T., Panagos, P., and Pradhan, B. (2018). Analysis
and evaluation of landslide susceptibility: a review on articles published during
2005–2016 (periods of 2005–2012 and 2013–2016). Arabian J. Geosciences 11,
193. doi:10.1007/s12517-018-3531-5

Pradhan, B., and Lee, S. (2010). Landslide susceptibility assessment and factor
effect analysis: backpropagation artificial neural networks and their comparison
with frequency ratio and bivariate logistic regression modelling. Environ.
Model. Softw. 25, 747–759. doi:10.1016/j.envsoft.2009.10.016

Ramos-Bernal, R., Vázquez-Jiménez, R., Romero-Calcerrada, R., Arrogante-Funes,
P., and Novillo, C. (2018). Evaluation of unsupervised change detection
methods applied to landslide inventory mapping using aster imagery.
Remote Sensing 10, 1987. doi:10.3390/rs10121987

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). A
review of statistically-based landslide susceptibility models. Earth-Science Rev.
180, 60–91. doi:10.1016/j.earscirev.2018.03.001

Ruff, M., and Czurda, K. (2008). Landslide susceptibility analysis with a heuristic
approach in the eastern alps (vorarlberg, Austria). Geomorphology 94, 314–324.
doi:10.1016/j.geomorph.2006.10.032

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., and Platt, J. C.
(2000). “Support vector method for novelty detection,” in Advances in neural
information processing systems, 582–588.

Su, Q., Zhang, J., Zhao, S., Wang, L., Liu, J., and Guo, J. (2017). Comparative
assessment of three nonlinear approaches for landslide susceptibility mapping
in a coal mine area. Ijgi 6, 228. doi:10.3390/ijgi6070228

Sun, X., Chen, J., Han, X., Bao, Y., Zhan, J., and Peng, W. (2020). Application of a
gis-based slope unit method for landslide susceptibility mapping along the
rapidly uplifting section of the upper jinsha river, south-western China. Bull.
Eng. Geol. Environ. 79, 533–549. doi:10.1007/s10064-019-01572-5

Suykens, J. A. K., and Vandewalle, J. (1999). Least squares support vector machine
classifiers. Neural Process. Lett. 9, 293–300. doi:10.1023/a:1018628609742

Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science 240,
1285–1293. doi:10.1126/science.3287615

Tang, C., Zhu, J., and Qi, X. (2011). Landslide hazard assessment of the 2008
wenchuan earthquake: a case study in beichuan area. Can. Geotech. J. 48,
128–145. doi:10.1139/T10-059
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