
Estimating Watershed Subsurface
Permeability From Stream Discharge
Data Using Deep Neural Networks
Erol Cromwell 1, Pin Shuai1, Peishi Jiang1, Ethan T. Coon2, Scott L. Painter2,
J. David Moulton3, Youzuo Lin3 and Xingyuan Chen1*

1Pacific Northwest National Laboratory (DOE), Department of Energy National Laboratories, Department of Energy’s Office of
Science, Richland, WA, United States, 2Oak Ridge National Laboratory, Oak Ridge, TN, United States, 3Los Alamos National
Laboratory (DOE), Department of Energy National Laboratories, Los Alamos, NM, United States

Subsurface permeability is a key parameter in watershed models that controls the
contribution from the subsurface flow to stream flows. Since the permeability is difficult
and expensive to measure directly at the spatial extent and resolution required by fully
distributed watershed models, estimation through inverse modeling has had a long history
in subsurface hydrology. The wide availability of stream surface flow data, compared to
groundwater monitoring data, provides a new data source to infer soil and geologic
properties using integrated surface and subsurface hydrologic models. As most of the
existing methods have shown difficulty in dealing with highly nonlinear inverse problems,
we explore the use of deep neural networks for inversion owing to their successes in
mapping complex, highly nonlinear relationships. We train various deep neural network
(DNN) models with different architectures to predict subsurface permeability from stream
discharge hydrograph at the watershed outlet. The training data are obtained from
ensemble simulations of hydrographs corresponding to an permeability ensemble
using a fully-distributed, integrated surface-subsurface hydrologic model. The trained
model is then applied to estimate the permeability of the real watershed using its observed
hydrograph at the outlet. Our study demonstrates that the permeabilities of the soil and
geologic facies that make significant contributions to the outlet discharge can be more
accurately estimated from the discharge data. Their estimations are also more robust with
observation errors. Compared to the traditional ensemble smoother method, DNNs show
stronger performance in capturing the nonlinear relationship between permeability and
stream hydrograph to accurately estimate permeability. Our study sheds new light on the
value of the emerging deep learning methods in assisting integrated watershed modeling
by improving parameter estimation, which will eventually reduce the uncertainty in
predictive watershed models.
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1 INTRODUCTION

Subsurface flows formed by infiltration of precipitation and snow
melt play a significant role in controlling the magnitude and
timing of stream flows, especially in forested headwater
watersheds (Scanlon et al., 2000). The permeability of soil and
geologic formations determine both the infiltration rate and
lateral subsurface flow rates, and ultimately the stream
discharges. Integrated watershed models that mechanistically
simulate both surface and subsurface flows with spatially
distributed parameters and inputs are expected to provide
better predictions of stream flow given sufficient data for
parameterization and model calibration (Chen et al., 2020).
Such distributed models also require a significantly larger
number of unknown model parameters to be specified or
estimated. Subsurface permeability is one of the key
parameters that determine the subsurface flow and transport
processes in watershed models. However, this parameter is
difficult and expensive to measure directly at the spatial extent
and resolution required by fully distributed, physics-based
watershed models. The linkages between permeability and
stream flow provide a new opportunity to estimate subsurface
permeability from stream flow monitoring data that are made
available through monitoring networks.

Inverse modeling has been used extensively to infer
permeability from indirect subsurface measurements such as
groundwater table in wells (Carrera et al., 2005) using
optimization based methods. Parameter ESTimation software
PEST (Doherty, 2010) has been a popular inverse modeling
tool for performing uncertainty analyses and inverse modeling,
including applications in integrated surface-subsurface models
(Ala-aho et al., 2017). Ensemble-based approaches, including but
not limited to Ensemble Kalman filter (EnFK) (Evensen, 1994;
Evensen, 2003) and Ensemble Smoother (ES) (van Leeuwen and
Evensen, 1996), have been adopted to estimate both model
parameters and states (Moradkhani et al., 2005; Wen and
Chen, 2006; Clark et al., 2008; Bailey and Baù, 2010; Vogt
et al., 2012; Chen et al., 2013; Chen and Oliver, 2013; Emerick
and Reynolds, 2013; Song et al., 2019). Despite its ease of
implementation and proved efficiency in inverse modeling
through various applications, ES is based on linear estimation
theory and its performance may suffer in highly nonlinear
problems (Evensen, 2018; Zheng et al., 2019). New approaches
are needed to assist inverse modeling associated with highly
nonlinear processes while maintaining computational efficiency.

Recent advances in machine learning, especially deep learning
models including deep neural networks (DNNs), shed new light
on inverse modeling by providing new ways to map the nonlinear
relationships between model inputs and outputs (Shen, 2018; Mo
et al., 2019). Neural networks have been an area of interest in
hydrology over the past several decades. Early applications of
neural networks to hydrology included a wide range of problems,
such as rainfall-runoff modeling, streamflow prediction,
groundwater modeling, water quality, water management,
precipitation forecasting, hydrological time series, and other
hydrologic applications (ASCE Task Committee, 2000). These
neural networks were shallow and were typically composed of

three layers: an input layer, a hidden layer, and an output layer.
Limited by the computational power, the hidden layers were
relatively small (5–20 nodes) and the model occasionally used a
second hidden layer. Neural networks have been found to
outperform other traditional statistical methods in a wide
variety of applications in water resources domains (e.g.,
forecasting daily streamflows) as recently reviewed by Oyebode
and Stretch (2018). However, such shallow neural networks may
not be sufficient when it comes to estimating parameters that are
related to indirect observations in a complex, highly nonlinear
manner, for which multiple layers with larger sets of neurons are
necessary. Neural networks capture nonlinearity by using
nonlinear activation functions in between layers. Increasing
the depths of the network, i.e., the number of hidden layers,
could improve its ability to represent more complex system
behaviors (Raghu et al., 2017; Shen, 2018), especially for
mapping highly nonlinear relationships between the model
inputs and outputs. Mo et al. (2019) successfully employed a
deep autoregressive neural network-based surrogate approach to
estimate the heterogeneous aquifer permeability as well as
groundwater contaminant sources with high accuracy and
computational efficiency. Canchumuni et al. (2019) compared
convolutional variational autoencoder and the ensemble
smoother with multiple data assimilation (ES-MDA) for the
parameterization of facies in a geological reservoir with
complex spatial distributions. They found that the DNN-based
method outperformed the standard ES-MDA in reconstructing
the spatial distribution of geologic facies.

The main objective of this study is to develop DNN-based
inverse modeling method to estimate the subsurface permeability
of a watershed from stream discharge data and test the accuracy
and robustness of the new approach. DNNs are built to map the
relationship between stream discharge time series and subsurface
permeabilities for several soil and geologic facies. An ensemble of
watershed simulations are performed using the Advanced
Terrestrial Simulator (ATS), a spatially distributed, fully
coupled surface and subsurface hydrologic model, to provide
training and validation datasets for the DNNs. The performance
of the DNN-based inversion is compared against the ES method
in terms of their estimation accuracy and computational
efficiency.

2 METHODOLOGY

2.1 Model Architecture
In this subsection, we describe the DNN-based models to
estimate five unknown subsurface permeability parameters
from the discharge time series data. A general description of
neural networks is available in the Supplementary Material. We
experiment with single-task learning (STL) and multi-task
learning (MTL) models. For this work, a task is estimating a
permeability parameter. An STL model estimates a single
permeability parameter from the discharge data using a DNN,
while an MTL model estimates all five parameters using a shared
DNN. MTL models may improve their performance by, as
summarized by Caruana (1997), “leveraging the domain-
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specific information contained in the training signals of related
tasks.” In other words, having one model learn multiple tasks
allows each task to benefit from the information used to train the
other tasks by developing unique features that will emerge from
estimating all the parameters together (Caruana, 1997).
Furthermore, MTL has been shown to reduce the risk of
model over-fitting (Baxter, 1997).

We built three different DNN architectures as shown in
Figure 1: 1) a multi-layer dense network which estimates a
single permeability parameter (DNN A1); 2) a multi-layer
dense network which estimates all five parameters using a
shared DNN with a single output layer with five nodes (DNN
A2), with each node responsible for estimating one permeability
parameter; and 3) a multi-layer dense network which estimates all
five parameters in a shared DNN with a sub-network for each
output node (DNNA3). DNNA1 is an example of STL and DNN
A2 and A3 are examples of MTL. Different from DNN A2, DNN
A3 branches out into five sub-networks after the first hidden
layer, with each sub-network responsible for one of the outputs.
The architectural design of DNN A3 not only allows for any
shared features developed from estimatingmultiple parameters to
be captured by the hidden layers before branching, it also allows
each of the sub-networks to develop features that are more
specific to the individual permeability parameters. Compared
to DNN A2, DNN A3 is a larger model with more model weights
to train. Consequently, it may require more data and more
computational resources to train.

3 STUDY SITE AND TRAINING DATA
GENERATION

To test the performance of the proposed DNNs in estimating
subsurface properties from discharge data, we applied the method
to a small catchment, the Rock Creek watershed, in Colorado
(CO). Ensemble forward simulations were performed to provide
sufficient training data for the DNNs that map the stream

discharge hydrograph to the permeabilities of various soil and
geologic layers. This section describes the study site, the forward
watershed model implemented using the Advanced Terrestrial
Simulator (ATS), and the generation of training data from
ensemble ATS simulations.

3.1 Study Site: Rock Creek
Rock Creek is a small (3 km2) primary catchment in the East
River watershed near Crested Butte, CO. The watershed is a high
alpine, snow dominated catchment, characterized as Dfb, or
warm summer, humid continental climate on the Koppen
classification system. It is characterized by majority aspen,
meadow, and mixed conifer vegetation types, and receives
approximately 70 cm of precipitation per year. This site is part
of theWatershed Function Science Focus Area of the Department
of Energy, and has a significant history of hydrologic studies on
mountainous, primary watersheds (Carroll et al., 2018; Hubbard
et al., 2018).

3.2 ATS Forward Model
ATS is an integrated, distributed hydrologic code that solves the
diffusion wave approximation of the St. Vernant equations for
surface flow coupled to Richards equation for flow in variably
saturated porous media in the subsurface (Coon et al., 2019). This
coupling is achieved through a continuous pressure, continuous
flux approach described by Coon et al. (2020) and Painter et al.
(2016). This code leverages the Mimetic Finite Difference method
to ensure accurate, efficient solution of the equations, in mixed,
conservative form [e.g., Celia et al. (1990)] on meshes that allow
distorted, arbitrary polyhedra, including the triangular prisms
used here. The resulting equations are solved using an implicit,
backward Euler time integration scheme which is solved using the
Nonlinear Krylov Acceleration approach of Carlson and Miller
(1998); Calef et al. (2013) and preconditioned using the Boomer
Algebraic Multigrid package in HYPRE (Falgout and Yang,
2002). This code has been benchmarked against a variety of
hydrologic codes in Kollet et al. (2017), and is shown to be

FIGURE 1 | Illustration of three DNN architectures. (A) The DNN A1 architecture; (B) The DNN A2 architecture; (C) The DNN A3 architecture. The input to each of
the models is the normalized discharge time-series data (see Sections 4.1 and 4.2). The output from DNN A1 is a single normalized permeability parameter. The outputs
from DNN A2 and A3 are five normalized permeability parameters.
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appropriate for solving problems of integrated hydrology (e.g.,
watersheds).

The baseline simulation was developed by using the
Watershed Workflow package (Coon, 2020) to bring together
a variety of data streams, delineate the catchment, and generate a
variable resolution mesh with refined resolution at the stream
network. Resolutions ranged from typical cell areas of 5,000 m2 at
the stream to 10,000 m2 away from the stream network. This
triangular surficial mesh was then elevated using Digital Elevation
Model (DEM) from the National Elevation Dataset (NED) 9 m
resolution dataset. In the work of Pribulick (2015), a base
subsurface structure was defined by three stratigraphic
layers–a soil layer of 1 m at the surface of the mesh, a near-
surface geology layer 9 m thick below the soil layer, and a bedrock
layer 20 m thick below the geologic layer. Based on the National
Resources Conservation Service (NRCS) soils database, two soil
types were identified and mapped within the soil layer. Using a
surface geology dataset from the United States Geological Survey
geological maps, three geologic material types were identified and
mapped within the geologic layer. The spatial distribution of the
soil and geological layers is demonstrated in Figure 2A. The

vertical resolution of the mesh gradually increased from Δz �
5 cm at the surface to 2 m at the 2 m depth, and it remained
constant at 2 m until the bottom of the model domain at a depth
of 30 m.

The model was first run for 20,000 days with constant
precipitation (∼ 556 mm/yr) and the permeabilities for all the
soil and geological layers adopted from the work of Pribulick
(2015) as the spin-up that resulted in steady state model outputs
at the final timestep, which was then used as the initial condition
for an 8-year transient simulation (2010 to 2017) driven by daily-
averaged meteorological data from the DayMet (Thornton et al.,
2016) dataset. The DayMet forcing is a 1 km raster that covers the
entire North America with only three pixels over our modeling
domain. Time series of precipitation, air temperature, incoming
shortwave radiation, and relative humidity were mapped onto the
mesh, and prescribed throughout the simulation. Additional
setup/inputs required for ATS are described in the
Supplementary Text S3.

To develop the training, validation and testing datasets for the
DNNs, we completed an ensemble of 597 ATS transient
simulations for the Rock Creek watershed, each simulation

FIGURE 2 | (A) Soil and geology distribution within the Rock Creek watershed. The zoom-in box shows the triangle meshes. (B) Permeability [log10 (m2)]
realizations for three geologic types. (C) Permeability [log10 (m2)] realizations for two soil types. (D) Ensemble of simulated discharge hydrographs from 597 realizations
compared with the observed discharge hydrograph.
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corresponded to a given set of soil and geology permeability
parameters randomly generated from their probability
distributions. Uniform distributions were assumed for all the
parameters, with the lower and upper bounds chosen to be one
order of magnitude below and above their values used in the
baseline transient simulations. Quasi-Monte Carlo sampling
method (Lemieux, 2009) was used to generate the permeability
realizations shown in Figures 2B,C. The ensemble of simulated
discharges in Figure 2D show reasonable match with the
observed discharges at the outlet with RMSE ranging from 4.3
to 5.2 mm/day), which is a strong evidence for a reasonable
conceptual model and sensitivity of the discharge to variations
in soil and geologic layer permeabilities. We only used the
discharge data from August 31, 2014 to August 31, 2016 to
train the DNNs such that the trained model can be used to
estimate the permeability of the real watershed from the limited
field observation data available in this region during the same
time window.

4 DNN TRAINING

4.1 Data Preprocessing and Preparation
Prior to training the DNNs, the discharge data D was log-
transformed and normalized via zero-mean and unit variance
using the following equation:

N(D) � [ln(D) − ln(Dt)]/σ[ln(Dt)], (1)

where ln(Dt) and σ[ln(Dt)] are the mean and standard deviation
of the log-transformed discharge in the training dataset,
respectively. Five of the permeability parameters were also log-
transformed and normalized via zero-mean and unit variance
using the same equation N, performed independently for each
of them.

4.2 Training of DNNs
The DNNs were designed and implemented with the Keras
python module (Chollet, 2015). In order to train the models,
we divided the ensemble of 597 ATS runs into training,
validation, and testing sets using roughly 70-15-15% divide
(477, 60, 60 runs), respectively. Each run contains 732 daily
measurements from August 31, 2014 to August 31, 2016, which
were used as the input for all the DNNs. The DNN models were
trained on the training set of 477 runs for 1,500 epochs with a
batch size of 10, using mean-squared error (MSE) as the loss
function and an Adam optimizer (Kingma and Ba, 2014). For
each DNN type, we performed a hyperparameter search by
varying the learning rate for training and the size of the layers
(see Supplementary Table S1 for the combinations of learning
rate and layer size). After the training was completed, each DNN
model configuration was run on the validation set to choose the
best model hyperparameters (i.e., model configuration) of a given
DNN architecture. Each DNN configuration was trained using
four different initialization seeds and results were averaged
during validation. For the DNN A1 models, we trained

separate models to estimate each of the five permeability
parameters. Supplementary Table S2 shows the best
hyperparameter combination for each model type based on
the MSE on the validation set. Then, the best model
configuration of each DNN architecture (e.g., DNN A1, A2,
A3) was run on the testing set, and their performance was
compared against each other.

4.3 Ensemble Smoother
We compared the DNNs against the ES approach in estimating
permeabilities to assess the importance of dealing with
nonlinearity between model inputs and outputs in inverse
modeling. We followed a similar training-testing strategy when
applying the ES method as used in the DNNs. We took the 537
realizations used in training and validation sets for DNNs as the
prior ensembles for the permeabilities and modeled responses,
then we perturbed each simulated hydrograph in the testing set
(60 realizations in total) by adding random observation errors
and used them as the synthetic observations, which were
assimilated by the ES to generate posterior ensemble of
permeabilities. The testing process yielded 60 sets of posterior
permeability ensemble given an observation error, which is a
hyperparameter for the ES approach. We considered a range of
relative errors for discharge observations: 0.005, 0.01, 0.015, 0.02,
0.03, 0.05, and 0.1. For each observation error, we computed the
correlation coefficient and root mean square error (RMSE)
between the 60 synthetic true permeability and the
corresponding 60 estimations from each of the 537 posterior
realizations. We found that the ES trained with relative error of
0.05 performed the best in terms of both correlation coefficient
and RMSE. More details about this analysis can be found in the
Supplementary Text S2. Therefore, we chose the ES trained with
a relative error of 0.05 for the comparison against the DNNs and
for estimating the permeability from real observations.

5 RESULTS AND DISCUSSION

5.1 Training Results of DNNs
Overall, we were able to successfully train the three DNN types to
estimate the permeability parameters from the simulated stream
discharge. As can be seen in the overall training loss for the DNN
A3 model (Figure 3A), the DNN model learns to estimate the
permeabilities during the training period. The overall and
individual validation losses plateau before or around epoch
600 as shown in Figure 3. For the permeability of s6
(Figure 3C), its training loss continues to decrease after its
validation loss plateaus, indicating an overfitting problem due
to insufficient training data or lack of useful information in the
discharge data to constrain the permeability. Similarly, the DNN
A3 model also overfits on the g1 permeability (Figure 3D), but to
a lesser extent as the validation loss is much closer to the training
loss. No overfitting problems were found for the permeabilities of
s3, g5, and g7 as their validation losses closely follows the training
losses as seen in Figures 3B,E,F. The training and validation
losses for the DNN A1 and DNN A2 models have similar
performance and the figures are available in the
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Supplementary Figures S3, S4. Therefore, the overall overfitting
of the DNNs can be mainly attributed to the overfitting on the s6
permeability, and to a lesser extent on the g1 permeability.

On the training set, all the three DNN types perform very well
in estimating the permeability parameters. As shown in Figure 4,
the one-to-one plots between the permeabilities estimated by the
DNNA3 model and the real permeabilities are distributed closely
along the 1:1 lines. The DNN A1 and A2 models achieve similar
levels of performance and their plots are available in the
Supplementary Figures S5, S6, respectively. All three models
yield R2 values greater than 0.99 for the s3, g1, g5, and g6

permeabilities (see Supplementary Table S3). All three DNNs
perform relatively worse in estimating the s6 permeability on the
training set, as evidenced by more scatters drifted from the 1:1
line in Figure 4, resulting in R2 values of about 0.96 from the
DNN A2 and A3 models, and an R2 of 0.89 from the DNN
A1 model.

5.2 Testing Results of DNNs
For the testing set, all the three DNN types perform very well in
estimating the s3, g5, and g7 parameters, with R2 values between
the predicted and true permeabilities for all DNN models above

FIGURE 3 | Training loss of the best DNN A3model. The blue line is the loss from the training set and the orange line is the loss from the validations set. The x-axis is
the epoch number. The y-axis is the model loss (MSE). (A) overall training loss of best DNN A3 model. The overall loss is the sum of the loss of the five permeability
parameters (B–F); (B) training loss for the s3 permeability parameter; (C) training loss for the s6 permeability parameter; (D) training loss for the g1 permeability
parameter; (E) training loss for the g5 permeability parameter; (F) training loss for the g5 permeability parameter.

FIGURE 4 |One-to-one plot of the DNN A3model permeability estimation when compared to the real estimation for the training set. Each plot is the DNN A3model
estimation for the given permeability parameter. Each dot represents a realization from the training set of ensembles. The x-axis is the log10 real permeability value, the
y-axis is the log10 estimated permeability value from the model. The red line is the one-to-one line.
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0.98. However, the R2 drops to ∼ 0.93 for the g1 permeability and
below 0.6 for the s6 permeability (see Supplementary Table S4).
The one-to-one scatter plots for DNN A3 in Figure 5 further
demonstrates the disparity in estimation accuracy between the
group of s3, g5, and g7 and the group of s6 and g1, which is similar
to the training results with increased deviation from the exact 1:1
line. The one-to-one plots for the DNN A1 and DNN A2 models
follow the same pattern and the plots are available in the
Supplementary Figures S7, S8, respectively.

The difficulty in estimating the s6 and g1 permeabilities might be
explained by the small areas covered by these two soil/geologic
layers (Figure 2A) and their distances from the outlet where the

discharges are measured. Thus, they may not contribute as much to
the simulated discharge compared to the other parameters. In other
words, the simulated discharges are not as sensitive to the s6 and g1
permeabilities, and consequently the discharges at the outlet are not
sufficiently informative for estimating the s6 and g1 permeabilities.

The performance of all three DNN architectures on the testing
set was compared using the squared errors between the estimated
and true log10-transformed permeabilities. Figure 6 shows the
three quartiles and ranges of the squared errors calculated from
the 60 realizations in the testing set using boxplots, while their
means and standard deviations are provided in Supplementary
Table S4. All the DNN architectures yield very similar results in
terms of the statistics of the squared errors for all the parameters.
Their mean squared errors (MSEs) differ by less than 1.1 × 10− 4
for the g7 permeability, around 4.8 × 10− 4 for the s3 permeability,
and within 1.3 × 10− 3 for the g5 permeability. Overall, the DNN
A1models slightly outperform the DNNA2 and DNNA3models
in terms of the means and medians of squared errors provided in
Figure 6 and Supplementary Table S4. The MTL models show
slight improvement over the STLmodels inMSE and R2 for the s6
permeability, suggesting the potential for the less sensitive
parameters to benefit from the joint features developed in
MTL models at little or no expense to the estimation accuracy
of other parameters. The performance difference between the
DNN A2 and A3 models appears negligible. Thus, in this case
study, it may not be necessary to add additional model complexity
using the sub-networks to develop parameter-specific features.

5.3 Estimation Sensitivity to Observation
Errors
To assess how sensitive the DNN-based parameter estimation is
to observation errors in the data used for inverse modeling, we
randomly selected a realization from the testing set and generated

FIGURE 5 |One-to-one plot for permeability estimated from the DNN A3 model against the true permeability in the testing set. Each plot is for a given permeability
parameter, and each data point represents a realization from the testing set. The x-axis is the log10 real permeability value, the y-axis is the log10 estimated permeability
value from the model. The red line is the one-to-one line.

FIGURE 6 | Box plot of the squared error of the DNNs on the testing set.
The x-axis is the permeability parameter. The y-axis is the squared error of the
estimated log10 of the permeability parameter compared to their true values.
The y-axis is plotted in log-scale for showing differences spanning over
several orders of magnitude. The results for different DNN architectures are
represented by the colors filling the box plots.
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100 realizations of noisy observed discharge time series (dn) by
adding random observation errors to the simulated discharges
(d), i.e.,

dn � d + ϵ p d p r, (2)

where r is a vector of the same size as d composed of random
samples drawn from a standard normal (Gaussian) distribution
with a mean of 0 and a standard deviation of 1, and ϵ is the
standard deviation of the noise, which is usually taken as 1/3 of
the observation error. For this study, we set ϵ � 0.0166 for a 5%
observation error. Then, we obtained 100 realizations of
estimated permeability set from each of the DNN model types
with the best configuration (the same ones used in Section 5.2)
from the 100 realizations of noisy discharges. The variability in
estimated permeabilities are shown in boxplots in Figure 7. It is
observed across all the DNNmodel types that the parameters that
can be accurately estimated (i.e., s3, g5, and g7) from the
discharge data show more robust performance under the
presence of the observation errors, whereas those that are
estimated less successfully (i.e., s6 and g1) are also more
vulnerable to the observation errors.

As discussed in Section 5.2, it is highly likely that there is less
information available in the discharge data for estimating
parameters with smaller spatial coverage, which consequently
limits DNNs in their ability to generalize beyond the training
data. The observation error further contaminates the useful
information (i.e., signal) in the data, thus exacerbating the
estimating inaccuracy.

5.4 Comparison With Ensemble Smoother
We compared the performance of DNN-basedmethods against the
ES method (with relative error of 0.05) in estimating the
permeability from the same discharge data using the squared

errors of the estimated permeability on the testing set, as shown
in Figure 8. To ensure a fair comparison, for each realization in the
testing set, we generated 100 noisy discharge time series assuming a
5% observation error, which led to 100 instances of estimated
permeability set that are compared to their corresponding synthetic
truth with squared errors calculated. Therefore, each boxplot in
Figure 8 associated with the DNN methods was generated from
6,000 samples of squared errors, whereas that for the ES method
was generated from 32,220 samples because each testing realization
has an ensemble of 537 posterior estimations. The comparison
shows that the DNNs significantly outperform the ES with much
smaller squared errors for all the five permeabilities. The MSE
across all five permeabilities for the DNNs (0.0568 for DNN A1,
0.051 for DNN A2, and 0.045 for DNN A3) is an order of
magnitude smaller compared to the MSE for the ES method
(0.634). Therefore, DNNs are promising alternatives for inverse
modeling, especially for using indirect data that are nonlinearly
related to the parameters of interest.

Additionally, we investigated the amount of training data
needed to achieve a similar level of accuracy using the full
amount of training data for the DNNs and the ES approach.
We trained the three DNNs using 50, 100, 200, and 300 realizations
from the training set with the same hyperparameters listed in
Supplementary Table S2. Then, we performed the ES-based
estimations with a relative error of 0.05 with the same four
training sets of various sizes. Finally, permeabilities on the
testing set were estimated using the DNNs trained on different
amount of data and the ES of various ensemble sizes and
compared. Both sets of estimations assumed a relative
observation error of 5%. As shown in Figures 9A–C that the
performance of DNNs keeps improving with the increasing
amount of training data increases. Nevertheless, the gain in
performance diminishes when the training data size is increased
from 300 to 477. Thus, we consider 300 realizations as sufficient for
achieving good training results for theDNNs in this case study. The
ES approach, on the other hand, does not show as much
improvement in estimation accuracy when increasing the
ensemble size (Figure 9D). Interestingly, the DNNs trained
with 50 realizations yield a lower MSE for all the s3, g1, g5, and
g7 permeability parameters than all of the ES variations, while
achieving equivalent performance for the s6 permeability.
Therefore, the DNNs may require less training information to
achieve equivalent or better performance than the ES. Moreover,
the DNNs can more effectively utilize the information in larger
training dataset than the ES approach to capture nonlinear
relationships.

We also compared the computation times needed for both
methods. The computational cost for DNN models is spent on
both the training and prediction phases, whereas the ES approach
does not have an explicit training phase. We were able to perform
the DNN-based and ES-based inversions on laptops without
involving the Graphics Processing Unit (GPU) or parallel
computing. The DNN A1 and DNN A2 models finished
training for 1,500 epochs in under 2 min. The DNN A3
finished training in just over 5 min. For estimating the
permeabilities from a single time series of stream discharge,
the DNNs took less than 0.4 ms on average. When estimating

FIGURE 7 | Sensitivity of model types to noise added to the simulated
discharge for ensemble 537. The boxplots represent the distribution of the
log10 estimated permeability value from the 100 noisy discharge vectors. The
yellow square dot are the synthetic permeability values for the simulation
(ensemble 537).
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all 60 stream discharges in the testing set, DNNs A1, DNN A2,
and DNN A3 took 0.87, 0.89, and 1.17 ms, respectively, on
average. For estimating the permeability for a single discharge
time series, the ES took approximately 40 ms to update the

permeability ensemble by assimilating the corresponding
discharge observations through matrix operations. The
computational costs spend on the inversion using either of the
methods are negligible compared to the computing resources

FIGURE 8 | Box plots of squared errors on permeabilities estimated by DNNs and ES for the testing set using relative observation error 0.05. The x-axis is the
permeability parameter. The y-axis is the squared errors of the log10-transformed permeability parameters. The y-axis is shown in log-scale. The boxplots are filled with
different colors corresponding to different estimation methods.

FIGURE 9 | Box plots of squared errors on permeabilities estimated by DNNs and ES for the testing set using relative observation errors of 0.05 with different
training data sizes. The x-axis is the permeability parameter. The y-axis is the squared errors of the log10-transformed permeability parameters. The y-axis is shown in log-
scale. Each color represents a number of realizations used to train the DNNs or ES (50, 100, 200, 300, 477). (A) the squared errors for the DNN A1 model; (B) the
squared errors for the DNN A2 model; (C) the squared errors for the DNN A3 model; (D) the squared errors for the ES.
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required to generate the training, validation and tesing datasets
from ensemble ATS simulations, which were approximately
324,768 cpu hours using the supercomputing resources at the
National Energy Research Scientific Computing Center (NERSC).

5.5 Permeability Estimation From Observed
Discharge for Real Systems
After achieving the adequate estimation performance on training
and testing the DNNs, we moved forward with estimating the soil
and geologic permeability parameters of the Rock Creek
catchment from the real observed discharge (Figure 2D) using
the DNNs trained and tested in Section 5.2. We generated 100
realizations of noisy discharge time series from the real observed
discharge assuming a relative observation error of 5%. The
ensembles of the estimated permeability parameters by DNNs
were used to generate the boxplots in Figure 10, compared
against the posterior estimates from the ES approach with a
relative observation error of 5%. Note that the prior boxplots were
generated from the prior parameter ensemble for the ES
approach, which was also used as the DNN training dataset. It
can be observed from Figure 10 that the DNN estimations for the
s3 and g7 permeabilities are distributed in the similar ranges as in
their training data, while the DNN estimations for the g5, g1 and
s6 permeabilities are significantly shifted away from their ranges
in the training dataset. The variability in results obtained from
different DNN types is substantially greater for the g5, g1 and s6
parameter group than the s3 and g7 group, which is consistent
with the difference in their sensitivity to the discharge time series
as revealed during the training and testing stages. Thus, the
estimated permeabilities for s3 and g7 are likely more accurate
(i.e., reasonable) than those for g5, g1 and s6.

Figure 10 also demonstrates that the ES approach yielded
vastly different estimations from the DNN models, except for the
g5 permeability, with relatively tighter distributions. The
considerable differences between the prior and posterior

distributions in parameters suggest that the estimations are
extrapolated from the training/prior data for this real
application, which is related to the fact that the ensemble of
the simulated hydrographs failed to encapsulate the observed
hydrograph in major recession periods as shown in Figure 2D.
DNNs appear to provide more realistic estimations for the s3 and
g7 permeability than the ES. The s3 permeability estimated by the
ES is unrealistically low for soils, even lower than the geologic
layers, which may be caused by extrapolation errors based on
linearized relation between model parameters and outputs.
DNNs, on the other hand, are better able to generalize in this
case by capturing the nonlinear relationships. To evaluate how
the estimated permeabilities change the model predictions of the
hydrograph at the outlet, we randomly selected 30 realizations
from the ensembles of permeabilities estimated by the DNN A1
and the ES to generate updated ensembles of predicted
hydrographs, which were then compared to the observations
to assess the improvement in model performance. We
encountered numerical model convergence issues for some

FIGURE 10 | Permeability estimations from the observed discharges from the DNNs and the ES using relative observation error of 0.05. The peach-colored
boxplots are the prior distributions for each permeability parameter. The gold-colored boxplots are the distribution of permeability estimations from the ES. Each of the
remaining colored boxplots is the corresponding distributions of DNN estimations. The orange crosses are the log10-transformed mean permeability value for the
corresponding distribution.

FIGURE 11 | Comparison between the observed discharge and the
predicted discharge from ATS using the estimated permeability values from
the DNN A1 and ES, respectively.

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 61301110

Cromwell et al. Subsurface Permeability Estimation Using DNNs

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


permeability combinations with substantial contrast between the
low-permeability and high-permeabilities layers. Thus, not all
simulations were completed within the assigned wall clock time.
The ensemble simulation results in Figure 11 contain nine and
five sets of completed simulations for the DNN A1 and the ES,
respectively. Although the ensemble sizes of model runs may not
be sufficient for representing the full range of uncertainty in the
updated model predictions, we expect them to adequately
represent the mean model behaviors. Overall, the
permeabilities estimated by DNN A1 lead to much improved
prediction during year 2015 as compared to the prior predictions
in Figure 2D, whereas they cause considerable overpredictions in
peak discharges during year 2016. In contrast, the models with
the permeabilities estimated by the ES consistently overpredict
the discharges owing to the unrealistically low permeability
estimated for s3. It is worth noting that none of the simulated
hydrographs reproduces the same level of inter-annual variability
manifested in the real observations, which implies potential
deficiencies in the numerical model representation of the real
system. Further investigations are needed to identify additional
processes and parameters that may contribute to such inter-
annual variability.

6 CONCLUSION

In this paper, we developed a DNN-based inversion method to
estimate permeabilities of multiple soil and geologic layers within
a watershed from the observed stream discharge time series. We
successfully trained DNNs to map from the stream discharges to
the permeability set using the training/validation/testing data
generated through the ensemble watershed simulations. In
doing so, we found that the accuracy and robustness of DNN-
based estimations are influenced by the relevant information
content contained in the observation data with respect to the
parameters. In the watershed system we studied, permeability for
soil and geologic layers with larger spatial coverage can be
estimated more accurately from the observed discharge data,
and their estimations were more robust to observation errors.

In comparing the parameters estimated by the DNNs and the
traditional ES method from the same observation data, we found
that the DNNs consistently outperformed the ES algorithm. On
the testing set, the DNNs achieved an overall MSE an order of
magnitude lower than the ES method. The DNNs is more
effective in utilizing the information provided by larger
training dataset than the ES approach. By capturing the
nonlinear relationships between the model inputs and outputs
through multiple layers of neurons, DNNs yielded more realistic
permeability estimations for the real watershed system, leading to
improved match between model predicted and observed stream
discharges. However, improving the permeability used in the
model alone does not enable the models to capture the inter-
annual variability in the discharges, future work is needed to
identify additional processes and parameters that may contribute
to the unresolved inter-annual variability in system responses.

Note that the accuracy of DNN-based estimation of
permeability will be impacted by the accuracy of the mapped

distributions of soil and geologic layers, which directly impacts
how well a numerical model can represent a real system. During
training, the DNNs learn to estimate the permeabilities from the
simulated stream discharge for that given distribution map of soil
and geologic formation types. Therefore, a less accurate
distribution map will result in less accurate estimations of the
permeabilities for the watershed, leading to biases that cannot be
resolved by the inversion method. A facies-based approach [e.g.,
Song et al. (2019)] can be adopted to estimate the distribution of
soil types and geologic layers along with their permeabilities.

Our study has demonstrated that the DNNs can potentially be
a powerful tool to estimate parameters from indirect, relevant
observations. The success in linking permeability with stream
discharges using DNNs presents new opportunities to improve
the subsurface characterization of large-scale watersheds, which
has been limited by scarce subsurface characterization and
observation data. Our work also paves the way for developing
more general model calibration strategies that involve multiple
parameters and multiple types of observation data for complex
systems. Our next step is to expand the study to assist the multi-
process modeling for larger watersheds with more complex
subsurface structures. New DNN architectures with deeper
and bigger networks might be required to deal with the
increasing dimensionality in both model inputs and outputs.
Substantial computational resources may also be required to
generate sufficient training data for the DNN models if high-
resolution distributed models are used.
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