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Tropical ecosystems experience particularly fast transformations largely as a consequence
of land use and climate change. Consequences for ecosystem functioning and services
are hard to predict and require analyzing multiple data sets simultaneously. Today, we are
equipped with a wide range of spatio-temporal observation-based data streams that
monitor the rapid transformations of tropical ecosystems in terms of state variables (e.g.,
biomass, leaf area, soil moisture) but also in terms of ecosystem processes (e.g., gross
primary production, evapotranspiration, runoff). However, the underexplored joint potential
of such data streams, combined with deficient access to data and processing, constrain
our understanding of ecosystem functioning, despite the importance of tropical
ecosystems in the regional-to-global carbon and water cycling. Our objectives are: 1.
To facilitate access to regional “Analysis Ready Data Cubes” and enable efficient
processing 2. To contribute to the understanding of ecosystem functioning and
atmosphere-biosphere interactions. 3. To get a dynamic perspective of environmental
conditions for biodiversity. To achieve our objectives, we developed a regional variant of an
“Earth System Data Lab” (RegESDL) tailored to address the challenges of northern South
America. The study region extensively covers natural ecosystems such as rainforest and
savannas, and includes strong topographic gradients (0–6,500 masl). Currently,
environmental threats such as deforestation and ecosystem degradation continue to
increase. In this contribution, we show the value of the approach for characterizing
ecosystem functioning through the efficient implementation of time series and
dimensionality reduction analysis at pixel level. Specifically, we present an analysis of
seasonality as it is manifested in multiple indicators of ecosystem primary production. We
demonstrate that the RegESDL has the ability to underscore contrasting patterns of
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ecosystem seasonality and therefore has the potential to contribute to the characterization
of ecosystem function. These results illustrate the potential of the RegESDL to explore
complex land-surface processes and the need for further exploration. The paper
concludes with some suggestions for developing future big-data infrastructures and its
applications in the tropics.

Keywords: data cubes, data access, time series, dimensionality reduction, tropical ecosystems, ecosystem
functioning, seasonality, biodiversity

1 INTRODUCTION

Novel data streams in the Earth system sciences are becoming
available at unprecedented rates (Boulton, 2018). Given that
many data streams are regularly improved and frequently its
spatio-temporal resolution is increased, we overall face a quasi-
exponential growth of data volumes (Guo, 2017; Reichstein et al.,
2019). The “data rich world” has become a challenge widely
acknowledged across disciplines, but also opened a novel window
of opportunity. For example, in the Earth system sciences, we
expect a deeper understanding of a wide range of processes that
remain to be insufficiently understood today (Scholze et al., 2017;
Gentine et al., 2018; Reichstein et al., 2019). In particular, these
data have large potential to reduce uncertainties in the
quantification of global hydrological fluxes (Miralles et al.,
2011; Beck et al., 2016; Ciabatta et al., 2018; Shen et al., 2018),
atmosphere-biosphere exchange of carbon, water and energy
(Dorigo et al., 2011, 2017; Green et al., 2017; Konings and
Gentine, 2017; Papagiannopoulou et al., 2017; Ryu et al., 2019;
Jung et al., 2020), the estimation of biodiversity patterns (Asner
et al., 2015; Ma et al., 2020), and the interactions of all these
processes as mediated by key ecosystem functional properties
(Reichstein et al., 2014; Musavi et al., 2015; He et al., 2019).

The reason for this optimism comes especially from emerging
opportunities in interpreting a wide array of data streams that
jointly monitor the same system from different viewpoints.
Examples are the monitoring of land ecosystems with multiple
sensors at different wavelengths via satellite remote sensing, e.g.,
from the optical to the radar domain (Joshi et al., 2016; Anaya
et al., 2020; Heckel et al., 2020), the joint analysis of field
measurements and remotely sensed data (Mahecha et al., 2017;
Meyer et al., 2019), and productions of ensembles of multiple data
sets that integrate process-based understanding (Musavi et al.,
2017). In general, it is the multitude of climate data sets that allow
researchers to understand the multivariate and multifaceted
nature of land-dynamics in relation to climate variability
(Kraemer et al., 2020; Mahecha et al., 2020). Big-data
perspectives of this kind in the Earth system context are
therefore highly relevant to improve our understanding of
ecological processes, e.g., effects of land use and climate
change, and other fundamental transformations on the
functioning of land ecosystems.

Given that many of the relevant data streams are retrieved
from space, they create a unique opportunity to understand
dynamics, trends and tipping points in those regions of the
Earth that often lack dense in-situ observation networks. This
is an advantage for low and mid-income countries, which

nevertheless experience the fastest and most severe ecological
and social transformations (Hansen et al., 2013; Leblois et al.,
2017; McNicol et al., 2018; Song et al., 2018).We specifically point
out to tropical ecosystems for two reasons. On the one hand, these
regions experience fast ecological transitions e.g., due to rapid
socioeconomic development (Dávalos et al., 2011; Bathiany et al.,
2018; Armenteras et al., 2019a). For instance, the tropical Andes
are the most critical hotspot for biodiversity in the world due to
human encroachment, deforestation and land use change (Orme
et al., 2005; Etter et al., 2008; Poveda et al., 2011). On the other
hand, tropical ecosystems constitute relevant controls on the
global carbon and water cycles. The Amazon forest, for
instance, plays a significant role in the global carbon balance
(Chambers et al., 2001; Pan et al., 2011; Phillips and Lewis, 2014;
Hubau et al., 2020), and strongly regulates water and moisture
recycling at the continental scale (Poveda et al., 2006; Zemp et al.,
2014, 2017). In turn, the Andes and the low-lying Amazon
constitute a coupled system whereby the low-lying Amazon
exports atmospheric water to the Andes by the winds, while
the Andes export surface water, sediments and nutrients to the
Amazon, which highlights their mutual interdependence and the
deleterious impacts of deforestation on both sides for the integrity
of the system’s functioning (Builes-Jaramillo et al., 2018).
Additionally, other ecosystems play a crucial role in
biogeochemichal cycles. In general, savannas have been
considered main drivers of interannual variability in the
carbon cycle (Ahlström et al., 2015), and wetlands, including
flooded savannas and swamp forest, are significant contributors
of methane emissions (Bloom et al., 2017).

However, the countries hosting these highly relevant
ecosystems often happen to be those where knowledge on
Earth system dynamics happens to be at a comparatively early
stage. Limited resources for science and technology often hinder
dealing with these highly interdisciplinary challenges. One
practical reason might be that research e.g., into large-scale
biosphere-atmosphere interactions may require big-data
infrastructures, data hosting facilities, and numerical
preparation that is hardly achievable by local institutions in
the long-term. This is why great hopes are today on global
data facilities that may become fundamental game changers in
this context. Specifically, we refer to such facilities that are not
only providing data access but also provide users’ independence
for developing and executing analysis. Prominent examples such
as Google Earth Engine (GEE) (Gorelick et al., 2017; Tamiminia
et al., 2020), or the Climate Data Store give access to a wide set of
data streams accompanied by analytics facilities. However, these
platforms usually provide the data as is, which means they are a
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collection of satellite images that are stored image by image for
example as a stack of GeoTIFFS or as NetCDF files chunked as
latitude-longitude maps. If the task is understanding the complex
dynamics of time series or spatio-temporal patterns, having
efficient computational access to the time dimension is key for
boosting temporal studies at individual pixels or selected regions.
Therefore, a certain amount of data pre-processing is necessary to
give analytical tools the possibility for efficient access to data
along all axes of the n-dimensional cube (e.g., latitude, longitude,
time, variables, ensemble members, etc.). In addition, none of
these platforms are particularly developed for the analysis of
tropical ecosystems in terms of specific data availability and
analytic capacity to trigger the understanding of regional Earth
system processes.

In an ongoing joint European-Colombian collaboration since
2016, we identified the lack of open platforms that not only share
free and open data, but enable analyzing them for specific
problems such as regional conservation issues that should
accompany a suite of regional monitoring and synthesis efforts
(Sierra et al., 2017), let alone with the accompanying meta-data
information. Starting from there, we have worked on the
conceptual outline of a data infrastructure to study land
ecosystem dynamics in space and time in tropical South
America. We developed a regional Earth System Data Lab
(RegESDL) for northern South America to facilitate big-data
analytics efficiently based on cloud infrastructures. Our
approach is twofold: first, it provides analysis ready data cubes
(ARDCs) that can be augmented by almost any other
conventional spatial data set. Second, and this is key, it
provides the opportunity to apply any arbitrary set of user-
defined functions and algorithms on the generated data cubes.
The idea is that time, space, and variables, are all dimensions that
can be equally relevant to the problem under investigation and
therefore need to be treated alike (Mahecha et al., 2020).

Many regional data cube efforts have recently emerged around
the Open Data Cube (ODC) concept that was originally
developed for Australia (Lewis et al., 2017). Mostly, ODCs
facilitate access to pre-processed satellite imagery. This idea is
now applied to e.g., Armenia (Asmaryan et al., 2019), Colombia
(Ariza-Porras et al., 2017; Bravo et al., 2017), Kenya (Killough,
2019), Switzerland (Giuliani et al., 2017), among other countries.
Previous work has focused on the implementation and
perspectives of these and related initiatives that vary from the
software development to its establishment as national projects for
supporting decision making (Giuliani et al., 2017; Killough,
2019). However, these initiatives are based on a latitude-
longitude grid for data storage. This dramatically limits
efficient access to time series which comes with an expensive
computational cost when operating on the raw data directly
because the spatial dimensions is the main unit of access and
processing. Compared to all these initiatives, our approach is
committed to support efficient access to any suite of geographical
dataset. This allows users to explore time, variables, space, and
other dimensions in its equal right (Mahecha et al., 2020).We also
regard it as essential to take user-defined functions seriously and
prioritize them. Users should be able to use the full power of a
programming language to write algorithms, including calling into

third-party libraries and map them over the entire data cube in a
way that is equally efficient. In this study, we support moderate
spatial resolution for understanding Earth System interactions
addressing regional challenges; varying from technical aspects of
data quality, acquisition and management, to high complexity
due to landscape heterogeneity.

The purpose of this paper is to introduce the RegESDL for
northern South America and illustrate its potential to characterize
land-surface processes in relation to climatic and land use drivers.
Using the example of ecosystems complex seasonality, we
illustrate the approach by combining dimensionality reduction
and time series analytics tools. The paper is structured as follows:
First, we briefly introduce the RegESDL architecture, the
implemented facilities and computational approach. Second,
we describe the available datasets and the regional context.
Third, we showcase how to operate on the RegESDL by
characterizing seasonal dynamics in tropical ecosystems. For
this, we use a multivariate set of remote sensing derived
indicators related to ecosystem productivity. Seasonality in the
tropics is well characterized from a climatological point of view,
but hardly described from the point of view of ecosystem
functioning. Finally, we discuss the findings of our study and
provide some guidance on how the RegESDL should help to
advance research in the tropics across disciplines such as
biodiversity from both a conceptual and technical standpoint.

2 METHODS

2.1 The Regional Earth System Data Lab
Architecture
The RegESDL is a twofold approach for big-data analytics of
spatio-temporal variables. It is conceptually and technically an
extension of the the Earth System Data Lab (ESDL) (Mahecha
et al., 2020), and its guiding principle is to treat all data
dimensions such as latitude, longitude, time, variables, and
new dimensions (i.e., outcomes from processing), all alike.
Thus, all data sets are treated as elements of the same
“hypercube”. A formal mathematical definition of data cubes
and how to operate on them is provided in Mahecha et al. (2020).
The first fold is based on ARDCs which are a set of data cubes
gridded at the same spatio-temporal resolution (see section 2.2).
The second fold is the analytics software that tackles the issue of
working with large datasets that are too big to fit into a computer’s
RAM. With our approach this is not any longer a critical
limitation given that many user functions do not operate on
the whole dataset at once, but can operate independently on slices
of the data cube along a given dimension.

Traditionally, there are many tools for analyzing data sliced
along the space dimensions and well established libraries like the
Geospatial Data Abstraction Library (GDAL/OGR Contributors,
2020) used as main dependency in geospatial libraries of different
geographical information system software such as QGIS and
programming languages such as R and Python. However, in
our cubing approach, slicing is not only efficient along the
space dimension but also along all dimensions i.e., time,
variables, and any other thinkable dimension a cube might
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have (e.g., frequency domain after time series decomposition).
The idea is that users only have to define and implement their
basic functions at the minimum dimensions that the computation
would operate individually in the data cube. The system then
handles each operation efficiently, i.e., the implemented logic for
slicing can be applied to solve spatial, temporal, or multivariate
problems all in the same highly efficient way.

The ESDL software uses split-apply-combine methods
(Wickham, 2011) to facilitate the repeated application of user-
defined functions to sub-cubes. Thus, in the Julia interface, in
order to implement a customized function to be applied to the
entire cube or its lower-dimensional sub-cubes, the user first
simply implements it for the lowest possible dimensionality. As
an example, an operation on a single time series only needs to be
implemented as a function that takes a vector (i.e., one-
dimensional array) as its input. Likewise, a function intended
to operate on two-dimensional latitude-longitude slices of the
data only needs to be designed in a way that it expects a matrix
argument, not a three or four-dimensional cube. The user simply
ignores the fact that later the function is applied to a higher-
dimensional object, for example along variables or any remaining
cube dimension. Then this function is passed to a higher-level
processing pipeline, along with the definition of input and output
dimensions and a highly optimized computation kernel is
generated by the processing package.

The users can, too, allow any ARDCs axis to interact with data
stored in other formats such as one or multi-dimensional arrays. For
example, indices of climate variability such as El Niño Southern
Oscillation (ENSO) could either be defined simply as a vector or
transformed into a one-dimensional cube. In both cases, the index
interacts with the corresponding ARDCs axis in a similar way than
an apply function in the time domain. These split-apply-combine
methods are common tools in data-science oriented languages like R,
Python and Julia for in-memory datasets. However, for larger-than
memory datasets it is not so easy to find a suitable solution at hand.
While frameworks like Apache Hadoop and Spark (Vavilapalli et al.,
2013; Zaharia et al., 2016) provide solutions for unstructured, table-
like data, they would not fit for the challenges provided by structured
n-dimensional arrays. A very promising approach is the
combination of xarray and dask for efficient and scalable split-
apply-combine computations in combination with Zarr as a storage
backend.

The implementation of this data cube approach takes advantage
of the latest cloud-ready formats for big chunked spatio-temporal
data sets. Here we use the Zarr format (https://zarr.readthedocs.io/
en/stable/spec.html) that focuses in cloud technologie storage and
can be efficiently handled in Python (https://zarr.readthedocs.io/en/
stable/) and Julia (https://github.com/meggart/Zarr.jl). In addition to
the Python xarray interface we offer another interface implemented
in Julia, a novel high-level programming language for scientific
computing, in the ESDL.jl package by Fabian Gans (co-author), and
the most up-to-date documentation is always available in the
respective GitHub repository https://github.com/esa-esdl/ESDL.jl
(last visit Apr 17, 2020). All the Julia ESDL.jl packages and
facilities have been transferred to the RegESDL offering a very
flexible and efficient way for processing. The ESDL software is
open source and available under the MIT license.

2.2 Analysis Ready Data Cubes
In our study, we defined ARDCs as spatio-temporal datasets,
usually provided by different sources, stored in a uniform grid
and located at common chunks. Figure 1 shows a schematics of
the ARDCs main features and the stepwise generation. ARDCs
support immediate interaction between different data sources.
Rechunking is unnecessary for analysis along the spatial or
temporal dimension speeding up the processing. ARDCs in
the RegESDL extend from latitude 14° N to 14° S and
longitude –83° W to –60° W. The spatial resolution is 0.0083°

× 0.0083° (approximately 0.9 km × 0.9 km at the equator). We
consider this spatial resolution a good compromise for regional
studies, preserving sufficient spatial details for general climate
patterns, ecosystem gradients and main relief features.
Nevertheless, it is limited in very steep areas and
heterogeneous landscapes in the Andes. The temporal
resolution is 8-daily and the covered period is from 2001 to
2014.When necessary, data has been resampled or interpolated to
match the spatio-temporal grid. Temporal and spatial
aggregation was done using the package gridtools (https://
github.com/esa-esdl/gridtools), further details are included in
Table S1. The total size of the ARDCs is 3.03 TB. We present
the RegESDL ARDCs in three categories; time series, descriptive
variables and national layers. A comprehensive list of the data
with details of the original resolution, interpolation method,
spanning time, source and license is in the Supplementary
Tables S1–S5.

Time series are mainly data sets from models or satellite
products related to vegetation and climate (Supplementary
Table S1). We compiled data of gross primary productivity
(GPP), evapotranspiration, shortwave radiation,
photosynthetically active radiation (PAR) and diffuse PAR
from the Breathing Earth System Simulator (Ryu et al., 2011;
Jiang and Ryu, 2016; Ryu et al., 2018) describing ecosystem
functioning. The selected products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) are 8-daily
composites of leaf area index, fraction of absorbed
photosynthetically active radiation (FPAR), and 16-daily
composites of the enhanced vegetation index (EVI) and
normalized difference vegetation index (NDVI) which are
values of standing vegetation and greenness. Day and night
land surface temperature was also obtained from MODIS.
Albedo data was acquired from the Quality Assurance for
Essential Climate Variables project (http://www.qa4ecv.eu/).
Precipitation data was provided from two sources; the
Tropical Rainfall Measuring Mission (TRMM, https://trmm.
gsfc.nasa.gov/) and The Climate Hazards Group Infrared
Precipitation with Stations (Funk et al., 2015). Time series
with different temporal resolutions were also included such as
the annual land cover maps from the European Space Agency
(ESA) (ESA, 2017), annual vegetation cover fraction from
MODIS, monthly annual averages of cloud coverage (Wilson
and Jetz, 2016) and monthly fire data from MODIS. We also
incorporated quality flags fromMODIS products. The quality flag
criteria was implemented on the original files (i.e., sinusoidal
projection) and it is documented in Supplementary Table S2.
After defining the pixels with acceptable quality, data was

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 6133954

Estupinan-Suarez et al. A Regional Earth System Data Lab

https://zarr.readthedocs.io/en/stable/spec.html
https://zarr.readthedocs.io/en/stable/spec.html
https://zarr.readthedocs.io/en/stable/
https://zarr.readthedocs.io/en/stable/
https://github.com/meggart/Zarr.jl
https://github.com/esa-esdl/ESDL.jl
https://github.com/esa-esdl/gridtools
https://github.com/esa-esdl/gridtools
http://www.qa4ecv.eu/
https://trmm.gsfc.nasa.gov/
https://trmm.gsfc.nasa.gov/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


reprojected to WGS84. For detailed information of all data
products refer to the original documentation, references are
included in the supplementary and bibliography.

Another important element relates to descriptive ecosystem
variables. This category collects global datasets without a time
dimension and describes some ecosystem features
(Supplementary Table S3). There are 45 layers in total;
canopy height (Simard et al., 2011), 11 variables of the
Harmonized World Soil Database (FAO and ISRIC, 2012) and
23 of Soil Grids (Hengl et al., 2014) associated with soil
composition and chemical properties at different strata. These
ecosystem variables reflect a specific ecosystem state which is of
importance for characterization, but they lack on offering a
dynamic perspective. Alternative products bring the possibility
for investigating soil water dynamics (e.g., soil moisture),
however the coarse spatial resolution constrains its current use
in our study.

Because the RegESDL also aimed to support the Colombian
Biodiversity Observation Network (BON) geographical layers of
Colombia were included (Supplementary Table S4). These data
layers have been ingested from governmental web portals or from
scientific publications. Layers in vector format were transformed
to the target grid. Borders of administrative units (IGAC, 2010)
and national natural parks (PNN, 2015) were included. Maps of
wetlands (Flórez et al., 2016), agriculture frontier (MADR-UPRA,
2017) and biotic units (Londoño et al., 2017) were also added for
further ecological analyses, as well as comparative interpolations
of mean annual precipitation (Álvarez-Villa et al., 2011).

The RegESDL can be operated through different ways. First,
the RegESDL can be accessed locally using Julia. In this case, the
loaded datasets are exclusively the ones required for the analysis.
Second, the RegESDL can be completely downloaded to any local
machine using Python. Explanatory scripts of how to access the

RegESDL are included in the supplementary and at http://doi.
org/10.5281/zenodo.5068004.

It is important to highlight that datasets described previously
are the first core of the RegESDL. Nevertheless, the RegESDL is
prepared for interacting with new data sources and can be easily
expanded by users ingesting their own data as NetCDF or CSV
files using the ESDL.jl package. The imported data layers must
share the same grid extent to warranty Interoperability among
multiple datasets. Vector files i.e., shapefiles are also supported,
they can be loaded and converted to a grid for further processing
in the ESDL environment.

2.3 The Regional Earth System Data Lab
Coverage
The RegESDL focuses on tropical ecosystems of northern South
America. It covers Colombia, Ecuador, Venezuela, and partially
Brasil, Bolivia, Panama and Peru. Fromnow onwe refer as regional
scale to the area covered by the RegESDL, and local scale to the
country level and finer geographical units. We selected this region
because it is facing a rapid ecosystem transformation due to land
use change and urgently needs tools that help to understand
ecosystem dynamics, contributing to fill a knowledge gap in the
countries that encompass this region. Having a ready RegESDL to
facilitate big-data analytics for ecosystem function is key on
understanding one of the most diverse regions of the world.

This region is dominated by extensive natural tropical
ecosystems, and multiplicity of climates related to
topographic gradients, trade winds, and the meridional
migration of the Intertropical Convergence Zone that drives
annual variability. The highest altitude is in the peruvian
Andes in Cordillera Blanca with more than 6,500 masl.
Dominant land cover types are broadleaved evergreen forest

FIGURE 1 | Workflow of the Analysis Ready Data Cubes (ARDCs) generation and dimensions of the Regional Earth System Data Cube (RegESDL). Lat: latitude.
Lon: longitude t: time, Var: variables.
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open or close > 15% (4,740,043 km2), grassland (474,959 km2)
and shrubland (266,967 km2) according to the ESA land cover
classification (ESA, 2017) (Figure 2). Regional climate
interaction with the Andes creates a variety of
microclimates that cause two major hydrological regimes;
unimodal and bimodal seasonal dynamics in many hydro-
meteorological processes. In general, all feedbacks in the water
cycle are governed by complex lateral interactions across the
Amazon and the Andes, but also locally caused by
precipitation recycling due to orographic gradients (Poveda
et al., 2006; Bedoya-Soto et al., 2019; Espinoza et al., 2020). The
mean annual precipitation records in the RegESDL area range
from less than 100 mm in the Peruvian coast, upper limit with
Atacama desert, to more than 11,000 mm in the Choco region
of Colombia, which is perhaps the rainiest region on Earth
(Poveda and Mesa, 2000; Yepes et al., 2019). The diurnal cycle
of temperatures is the most salient feature of tropical
climatology. Variations in temperature are often larger
within a day than throughout the year (Hastenrath, 1991),
with strong effects on the diurnal cycle of precipitation in the
tropical Andes (Poveda et al., 2005). The region currently faces
increasing rates of deforestation and land cover change.

In the following, we emphasize the territory of Colombia
which is considered the third most biodiverse country and a
hotspot for biological conservation (Myers et al., 2000;
Andrade, 2011). Currently, Colombia is facing a massive
transformation of natural ecosystems due to various
socioeconomic transitions (Baptiste et al., 2017; Sierra et al.,
2017; Salazar et al., 2018). Deforestation is now reaching
national protected areas (Armenteras et al., 2019b; Clerici
et al., 2020), and the agricultural frontier is also expanding
to other natural ecosystems (Miles et al., 2006; Etter et al.,
2008; Bianchi and Haig, 2013; Patino and Estupinan-Suarez,
2016; Correa Ayram et al., 2020). The RegESDL incorporated
national layers to facilitate analysis at this scale with a special

focus on biodiversity and ecosystems research (see section 2.2).
Moreover, some variables were selected to provide seasonal
and longer-term information to Biomodelos (http://
biomodelos.humboldt.org.co/es) aiming to get a more
dynamic perspective of species distribution models. For this
particular reason they both share the same grid extent. The
RegESDL also aimed to contribute to the development of
Essential Biodiversity Variables (EBVs) in mega-diverse
tropical countries. In this case we thought on a top-down
approach for biodiversity monitoring. The Colombia BON,
one of our partners, has done an extensive development and
implementation on the topic.

2.4 Case Study Question
In the following, we showcase the potential of using the RegESDL
for assessing seasonality in northern South America. Here, we
investigated the joint variability of multiple time series, and
contextualized the identified patterns in different spaces
(i.e., climate space, geographical space, along biodiversity
gradients). This analysis had two purposes. One was to carry
out a seasonality analysis pixel wise for the region. The other one
emphasized on the Colombian territory and its biotic units. A
schematic of the RegESDL and a workflow overview is in
Figure 3.

2.4.1 Seasonality in Northern South America
We focused on seasonal phenology, one of the fundamental
dynamics of most ecosystems of the world (Schwartz, 1998).
In tropical ecosystems, however, seasonal dynamics are hardly
understood and not well characterized (Wu et al., 2016). On the
one hand, this is due to data quality issues, but on the other hand
it reflects the fact that the tropics embrace extremely
heterogeneous landscapes. For northern South America, a
large level of annual variability in phenological variables has
been reported, particularly for savannas, dry forest and wetlands

FIGURE 2 | Regional Earth System Data Lab extent with land cover classes. White lines correspond to national borders (Data from ESA land cover 2014).
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(Estupinan-Suarez et al., 2015; Hamunyela et al., 2016; Fagua
et al., 2019). Subannual data acquired from tree ring cores
(Giraldo et al., 2020), and from space via solar induced
fluorescence (SIF) (van Schaik et al., 2018) recently also
suggested annual seasonality in tropical rainforest. From the
functional perspective, Nemani et al. (2003) reported radiation
as a limiting factor of plant growth and net primary productivity
in the tropics that likewise hints at some seasonality.

What remains unclear from the literature is: i) how strongly
are seasonal patterns reflected by terrestrial ecosystem dynamics,
ii) whether we can delineate unimodal or bimodal regions, and iii)
how do patterns of annual and semi-annual seasonality distribute
spatially. If we understand where unimodal and bimodal

seasonailities predominate in land-atmosphere interactions, we
could achieve a better predictive understanding of the imprints of
extreme climate events such as ENSO, and climate change signals
on ecosystems.

Terrestrial seasonal dynamics should be contained in all remote
sensing indicators related to green biomass and primary production.
Available data sets in the RegESDL are partly direct remote sensing
vegetation indices of greenness, i.e., NDVI (Tucker and Sellers, 1986)
and EVI (Huete et al., 1997, 2002). But also, we can analyze GPP and
FPAR that are closely related to vegetation activity. Conceptually,
these variables represent different processes which are related and
physiologically connected, but they are not exchangeable. Of course,
the closer to the actual process under interest (e.g., GPP), the more

FIGURE 3 | Workflow of the multivariate vegetation dynamics analysis pixel wise and by biotic units.
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model assumptions are contained in the data (Jiang and Ryu, 2016).
The advantage of the original remote sensing signals is that they are
closer to the purely observational signal, but not necessarily directly
related to the process of interest. Yet, we can assume that all these
time series somehow reflect the seasonal cycle of vegetation
productivity, yet coupled via more or less direct mechanisms that
all reflect seasonal dynamics of green vegetation.

2.4.2 Characterization of the Mean Seasonal Cycle
Pixel Wise
In order to capture the seasonal variability of vegetation while
accounting for the redundancy of the different vegetation related
signals, we conducted a principal components analysis (PCA).
PCA is a dimensionality reduction method that seeks new
dimensions (components) in the feature space to explain the
largest variance, and does it recursively based on orthogonal basis
functions. In this sense, it provides common modes of variability
at the pixel level that serve to assess seasonality. For our analysis,
we selected GPP, NDVI, EVI and FPAR variables spanning from
2001 to 2014 (data set size � 111.24 GB). Variables were gap filled
using the Mean Seasonal Cycle (MSC) method. Gaps were
clustered in rivers and waterbodies and its amount varied
among variables; while GPP excluded all data pixels related to
water, MODIS products preserve or exclude them irregularly. The
next step was to standardize the time series to mean zero and
variance of one ( μ � 0 and δ � 1), and then applied PCA at pixel
level. Explained variances by the leading components described
how representative the leading mode is for the different
vegetation variables.

Based on the Fast Fourier power spectrum, we estimated the
contribution of annual and semiannual oscillations of the MSC
pixel wise using the discrete Fast Fourier transform library
(FFTW) included in the Julia programming language. Here,
the idea is that the ratio between the spectral power of the
annual and semiannual oscillations can be quantified if the
annual or semiannual oscillations dominate the seasonality of
the signal. Theoretically, values of <1 indicate a dominance of the
semiannual oscillations, values close to 1 are related to an equal
contribution of seasonal and semi-annual modes, while values of
>1 reflect a dominance of the annual oscillation. We classified the
FFTW outcomes as follows: The first component is the sinusoidal
function offset, the second component corresponds to the annual
oscillation, whereas the third and fourth components together (6
and 4 months respectively) correspond to the semiannual
oscillation. Subsequently, we computed the contribution of
both annual and semiannual oscillation to the entire signal.
Only pixels with at least one direct retrieval at each MSC time
step were included in the analysis. The quantification of direct
retrievals was based on the quality flags from MODIS variables
(Supplementary Table S2). The computation is documented in
Jupyter notebooks included as supplementary material and at the
GitHub repository https://github.com/linamaes/Regional_ESDL.

2.4.3 Seasonality Characterization of Biotic Units in
Colombia
For our second study, we used the biotic units map of Colombia
produced by Londoño et al. (2017) as a level of aggregation,

aiming to bring a functional understanding of units with
biological diversity connotation. The delineation of these biotic
units was based on a Beta diversity criteria defined as the
taxonomic composition variation (Supplementary Figure S1).
Each unit was defined by having a unique set of species that was
significantly different to the species set of all other units. Beta
diversity was computed from species distribution models of
amphibians, birds, mammals, reptiles and plants available in
Biomodelos, a collaborative platform that integrates models
and expert knowledge (Olaya-Rodríguez et al., 2018;
Velásquez-Tibatá et al., 2019). Our approach looks at
biodiversity based on the hierarchical concept developed by
Noss (1990), and seeks a functional perspective including
different taxa similar to Radeloff et al. (2019). It is not related
to spectral diversity for ecosystem function assessment.

We calculated the MSC of biotic units using the first principal
components (PC) obtained from the pixel wise analysis. First, we
computed the average and standard deviation of all pixels within
each unit. Then, we calculated the ratio and fraction values of the
averaged MSC based on the Fast Fourier power spectrum as we
explained in section 2.4.2. We also analyzed the biotic units
outcomes in light of climatic variability. For this, we selected
variables that describe annual bioclimatic conditions such as
precipitation of the driest month, maximum temperature of
the warmest month, mean temperature of the driest quarter
from WorldClim (Fick and Hijmans, 2017), and median
annual cloud frequency (Wilson and Jetz, 2016). These
variables were used in the climate space and were related to
the MSC ratio by biotic units.

All analysis ran in Julia 1.3 using the ESDL package v0.8.4.
Processing was done in an Intel®Xeon®Processor E5-2687W v4
CPU (30M Cache, 3.00 GHz), and used six cores.

3 RESULTS

3.1 Summarizing Multivariate Vegetation
Dynamics
The first PCs from the PCA captured the largest vegetation
variability pixelwise (Figure 4). When exploring pixels from
different land cover types, we found overall that PC1 captured
the main MSC features of each variable (Supplementary Figure
S2). In general, for broadleaf evergreen trees and grassland the
variables’ trajectories and peaks overlapped most of the time,
although the signal amplitude differed. The shrubs-herbaceous
flooded cover was the one presenting the most contrasting
trajectories between variables. The main contributors to PC1 are
different along the regions (Supplementary Figure S3), NDVI
contributed the most in arid and semiarid regions such as the
Caribbean and Orinoquia savannas and at the Pacific coast of
Ecuador and Peru, whereas EVI is the larger contributor in the
Amazon and Biographic Choco i.e., the wettest regions. Some pixels
were excluded from the analysis due to data quality. They are mainly
located along the Pacific coast, in the higher Andenean mountains,
and in the transition between the mountains and lowlands.

We observed different regional patterns of variance explained
by the three principal components. PC1 (Figure 4A) explains
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the largest variance in ecosystems mainly dominated by savannas
in the Orinoco and Caribbean basins of Colombia and Venezuela,
and lowlands of the Magdalena-Cauca river basin. Similar
pattern occurs in the Pacific coast of Ecuador and Peru. These
regions are characterized by very low precipitation during the
dry season and are dominated by grassland. PC2 (Figure 4B)
shows a homogeneous spatial pattern, being slightly lower in
arid and semiarid ecosystems. Otherwise, PC3 (Figure 4C)
dominates the broadleaf evergreen forest. The explained

variance by the PCs range from; 0.28 to 0.86 for PC1,
0.07–0.31 for PC2, and 0.03–0.24 for PC3. These shows
that variance PC2 and PC3 can carry similar amount of
variance in some regions. Overall, Figure 5 shows that PC1
explains more than 40% of variance in grassland, shrublands and
herbaceous cover with shrubs and trees. But it is certainly limited
in broadleaf evergreen forest where captures between 20% and
40%, which is also a region known by large data gaps due to
clouds.

FIGURE 4 | Variance explained by principal components. Variance explained by the first, second and third component in (A,B,C) respectively. (D) RGBmap of the
variance explained by the components 1, 2 and 3 in red, green and blue channels respectively. Note that the red channel represents variability in the range (0.28–0.86),
the green (0.07–0.31), and blue (0.03–0.24).
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3.2 Quantification of Temporal Dynamics
The map of seasonality ratios (Figure 6) depicts a spatially
heterogeneous dominance of annual variability in the region
that can be associated to the major landscapes. Annual cycles
dominate the land-surface dynamics along the Ecuadorian and
Peruvian coast and northern Venezuela. Large-scale patches of
semi-annual oscillations are found in the flooded savannas of
Orinoquia, and inter-Andean valleys in Colombia. Similar
contributions of annual and semi-annual oscillations are
observed partly in the Caribbean coast and foothills. The
northwestern Amazon basin does not have a uniform pattern,
although it shows a slight trend with dominance of bimodality
close to the Equator (the wettest region), and unimodality toward
South. Yet, it is hard to determine due to the optical sensors
limitations in the rainforest. However, care must be taken in
interpreting this figure, taking into the account the variability
represented from the total signals (Figure 4) and the amplitude of
the oscillations. In this regard, we estimated the fraction between
both assessed oscillations (i.e., annual and semiannual) and the
entire signal based on the power spectrum of Fast Fourier. These
values are found in Figures 6, 7.

3.3 Seasonal Dynamics of Colombian Biotic
Units
In order to understand the spatial variability of vegetation
seasonality and its links to biodiversity we used the biotic

units of Colombia. We observe that the units with higher
amplitude are also the ones where annual and semiannual
variability have a fraction value of >0.7 (Figure 7). Overall, we
observe that seasonality in the biotic units is extremely different;
peaks of vegetation activity are reached at different times across
Colombia, unimodal and bimodal seasonality are equally
important at the national level, and regions with lower
variability explained by these regimes have to be further
explored. These could be associated with the dominance of
fast oscillations as reported by Linscheid et al. (2020) for some
tropical regions.

We used bioclimatic variables as a first proxy to understand
seasonal variability.We selected precipitation of the driest month,
maximum temperature of the warmest month, mean temperature
of the driest quarter (Fick and Hijmans, 2017), and median
annual cloud frequency Wilson and Jetz (2016). As an
overview, six biotic units with contrasting patterns are
presented. We observe that the lowest values of monthly
annual precipitation differ significantly within biotic units. In
Arauca and Baja Guajira-Cesar values are less than 30 mm
(Figures 8A,D) whereas in Micay values are above 300 mm on
average (Figure 8F). Interestingly, in the region Magdalena-
Medio & Depresion Momposina, there are two clear hotspots
(Figure 8E). Pixels with precipitation in the driest month of
>50 mm show a bimodal dynamics in vegetation dynamics, while
pixels with drier conditions show a higher importance of annual
oscillations. This could be associated with the distribution of

FIGURE 5 | Histogram of variance explained by the first three principal components for different ESA land cover classes in 2014. Tree cover BrEv-co: Tree cover,
broadleaved, evergreen, closed to open (>15%). Herbaceous cover with trees/shrubs: Mosaic herbaceous cover (>50%)/tree and shrub (<50%).

Frontiers in Earth Science | www.frontiersin.org July 2021 | Volume 9 | Article 61339510

Estupinan-Suarez et al. A Regional Earth System Data Lab

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


different land cover types, i.e., broadleaf evergreen trees and
rainfed croplands, based on the rainfall patterns. When
assessing the maximum values of annual temperature, biotic
units in the lowlands are very confined in the space gradients.
Andean biotic units are the ones showing higher levels of
variability such as in the Patia region (Supplementary Figure
S4). It is important to highlight that in Colombia, the largest
temperature variability is mostly found on a diurnal basis than
along the year (Hastenrath, 1991).

Due to the orographic conditions of our study area, clouds
are a major limitation for passive sensors, however recording
these conditions is also informative in an ecological context.
Biotic units with a strong dry season are the ones with lower
values of annual cloud frequency. Nevertheless, they either
show a centralized pattern as Baja Guajira or a large spectrum
as Magdalena Medio, similar to the one observed in Patia
(Supplementary Figure S5). Micay exposes high cloud cover
as it is expected due to its location in the biogeographic Choco
region, one of the wettest places on Earth (Poveda and Mesa,
2000; Yepes et al., 2019).

As we have shown in this case study, the seasonal land-surface
dynamics in northern South America is surprisingly complex and
not trivially explainable by climatic factors alone. Our results are a
step forward to reveal interactions between biotic and abiotic
components in tropical ecosystems. From a technical perspective,
we show that multi-dimensional analysis in any dimension

i.e., along physical variables, time, and space, can be
performed very efficiently with a few lines of code. The code
(available at http://doi.org/10.5281/zenodo.5068004) can be
applied to any other data cube, e.g., the ones that are now
emerging from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) archive and used to understand if patterns
as reported here, are similarly identifiable in such global
simulations. If they were not, this would suggest that one of
the most basic processes of land-surface dynamics in state-of-the-
art models is not well represented yet.

3.4 Computational Performance of the
Regional Earth System Data Lab
During the multivariate vegetation analysis, we used a set of
four variables (i.e., GPP, NDVI, EVI, FPAR) available as
ARDCs at the RegESDL with a total size of 111.24 GB. The
estimated time processing for the main steps was: 27 min for
the time series standardization, 2.5 min for PCA and 2.8 min
for computing the Fast Fourier spectrum. All these
computations were carried out at the pixel level using the
RegESDL for time series analysis. Overall, these estimates are
broad because timing for data loading and processing are
hardly discernible, furthermore speed is also affected by other
features as parallel processing in other cores. Nevertheless,
these timing values bring a general picture of the

FIGURE 6 | Seasonality ratio of annual and semiannual oscillations pixel wise from the first PCA component of vegetation variables. (A)Mean Seasonal Cycle (MSC)
of three pixels represented as black dots in the map. (B) Ratio map of the MSC. Values of 1 show an equal contribution of annual and semiannual oscillation, values of >1
means higher contribution of annual in comparison to semiannual oscillation, and values of <1 conversely. Note that the color scheme is cut in 2 (54% of pixels values <2).
Ratio: Ratio of annual and semiannual oscillation. Fraction: Fraction of annual and semiannual oscillation in comparison to the entire signal.
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FIGURE 7 | (A–D)Mean Seasonal Cycle of the first PCA component (yellow solid line) aggregated by biotic units of Colombia. Green solid line is the smoothed time
series and the ribbon is the standard deviation. Dominant land cover type percentages from ESA 2014 are on each subplot, and follow the next abbreviations. Crops-
rainfed: Cropland, rainfed. Grass: Grassland. Shrubs: Shrubland. Shrubs/Herb.-flood.fr/sa/br: Shrub or herbaceous cover, flooded, fresh/saline/brakish water.
TreeBrEv-co: Tree cover, broadleaved, evergreen, closed to open (>15%).Trees-flood. sa: Tree cover, flooded, saline water. Ratio: Ratio between annual and
semiannual oscillations. Fraction: Fraction between annual and semiannual oscillations to the entire signal. (G) Geographical location of BU shown from (A–D).
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computational performance. A comparison between the
spatial and temporal RegESDL computational
performance, for time series analysis, is in the
supplementary (Supplementary Table S6) and the code is
available at http://doi.org/10.5281/zenodo.5068004.

4 DISCUSSION

Open data and open source software can be seen as the major
triggers for recent advances in environmental and Earth system
sciences. A remarkable example are the achievements after the
Landsat archive was opened for ecosystemmonitoring, assessment
of climate impacts, among others (Wulder et al., 2016). Moreover,
data streams are continuously improved; spatio-temporal and
radiometric resolutions increased with the development of new
satellites and sensors (e.g., the Sentinel constellation). This
increasing data availability also raises enormous challenges for
data management and ways to interact with them. Data cubes have

been a common solution for tackling this problem bridging the
code to the data, and therefore simplifying data storage and
processing (Lewis et al., 2017; Giuliani et al., 2019; Gomes et al.,
2020; Tamiminia et al., 2020; Yao et al., 2020). Nevertheless, most
initiatives prioritize spatial grids for data storing (Gorelick et al.,
2017; ODC, 2021), and work with specific data sets such as climate
or satellite products exclusively. In comparison, our approach
considers that all data dimensions are equally important
whether they are space, time, variables, or frequency. This has
two main advantages: i) Facilitate access to other axes different
from latitude and longitude. ii) Implement the cube structure to
outputs as is for inputs. With the ESDL package new-axes can be
easily added to cubes during processing. Users have full functionality
for defining new-axes of a “hypercube”, assign their name and type
class. In addition, the RegESDL links data across disciplines offering a
multidimensional perspective for environmental sciences. Thus, we
are capable of analyzingmultiple data sources efficiently at spatial and
temporal dimensions which is key for tropical regions facing rapid
transformation.

FIGURE 8 | Seasonality ratio of annual and semiannual oscillation (x-axis) and precipitation of the driest month (y-axis) in six biotic units (A–F). Dominant land cover
type percentage from ESA 2014 are on each subplot, and follow the next abbreviations. Crops-rainfed: Cropland, rainfed. Grass: Grassland. Shrubs: Shrubland.
Shrubs/Herb.-flood.fr/sa/br: Shrub or herbaceous cover, flooded, fresh/saline/brakish water. TreeBrEv-co: Tree cover, broadleaved, evergreen, closed to open (>15%).
Trees-flood. sa: Tree cover, flooded, saline water. Note that the y-axis range varies from 0 to 30 to 800 mm, and the color scheme range differs between plots. “n” is
the total number of pixels in each biotic unit.
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4.1 Perspectives of the Regional Earth
System Data Lab
The RegESDL started as an initiative for supporting analysis that
integrate Earth science and biodiversity within a tropical
geographical range. The main objectives were to get a dynamic
perspective of environmental conditions for biodiversity, to
contribute to the understanding of ecosystems functioning and
to explore atmosphere-biosphere interactions. Until now, studies
have focused mostly on evaluating land cover and ecosystems
structure for the region. This has been pivotal for the assessment
of deforestation and in some extent forest degradation
(Armenteras et al., 2016; Pacheco-Pascagaza et al., 2018;
Ramírez-Delgado et al., 2018; Meyer et al., 2019; Anaya et al.,
2020). As well, different passive and active sensors have been used
for ecosystems delineation (Estupinan-Suarez et al., 2015; Flórez
et al., 2016), estimation of vegetation biomass and extraction of
canopy features from individual trees and forest using Lidar
(Asner et al., 2012; Li et al., 2012; Ferraz et al., 2016; Jeronimo
et al., 2018; Ferraz et al., 2020). However, fewer studies are carried
out for investigating ecosystem function even though global
products such as GPP are available from several sources
i.e., GPP estimates derived from satellite retrievals (Running
et al., 2004), coupled to process-based models (Ryu et al.,
2011; Jiang and Ryu, 2016), and data driven methods (Jung
et al., 2011, 2020). This can be partially related to the large
uncertainties regarding tropical ecosystems due to atmospheric
conditions and limited ground data for models calibration and
validation. But also to the early state of Earth science development
in the region.

The growing availability of new retrievals from upcoming
satellite missions and advanced mathematical methods offer
new information and alleviate some gaps regarding data
accuracy and quality. Promising variables such as SIF open a
possibility to improve estimates of GPP and phenological
changes (Porcar-Castell et al., 2014; Walther et al., 2016; Sun
et al., 2017; Merrick et al., 2019). Recently launched and
upcoming satellites missions will deliver hyperspectral and lidar
data globally that will facilitate structure and functional
biodiversity assessment. Satellite missions such as the DLR
Earth Sensing Imaging Spectrometer, the Global Ecosystem
Dynamics Investigation (GEDI) or the Surface Biology program
will provide key information for evaluating vegetation stress,
vegetation traits, and improving carbon and water fluxes
estimation. Thus, tools and long-term projects are needed to
warrant timely and efficient access to these new data streams.
In this sense, the ESDL software offers a suitable framework to
address the technical developments required by the unprecedented
volume of coming datasets, and most importantly for integrating
different suites across research disciplines. Recently, Cremer et al.
(2020) implemented the ESDL for higher resolution analysis,
specifically for assessing Sentinel-1.

In fact, the RegESDL is an example of a regional effort for
offering a common ground to assess Earth system science,
ecosystem function, and explore links to biodiversity that
could be realized in practice. Specifically during our showcase
we presented different modes of seasonality in the region. Studies

of bimodal precipitation regimes have been carried out globally
(Knoben et al., 2019) and regionally in East and Central Africa,
and northern South America (Poveda et al., 2006; Hawinkel et al.,
2015). Nevertheless, such patterns are poorly explored at the
ecosystem level. In East and Central Africa double peaks of
vegetation greenness were observed by Hawinkel et al. (2015)
at annual scales. Recently, Turner et al. (2020) reported
bimodality in vegetation activity for savannas in California
based on SIF measurements that were previously jeopardized
when using vegetation indices. Our outcomes revealed that these
double peaks on vegetation activity are also occurring in regions
of northern South America. But further analysis are needed to
understand the mechanistic process of bimodality in the region.
For example, it is expected to observe different timing for leaf
flushing in savannas. Hypothetically, this might be driven by
water pulses and different vegetation strata. Otherwise, studies
using passive sensors are limited in some regions despite of
having more than 10 years data. In this context, data
integration from upcoming missions with higher spatial and
multispectral resolution and active sensors is key. Moreover,
the biotic units analysis showed that the dominance and
intensity of seasonality in the tropics is very heterogeneous,
and it requires deeper analysis on the drivers that are not
covered in this paper.

Future studies in the RegESLD aim to exploit time series
analysis to evaluate tropical ecosystems dynamics at different
time scales. Also, a next step to increase our understanding of how
biodiversity is related to ecosystem function is to integrate species
distribution data, from platforms such as the Global Biodiversity
Facility (GBIF), with data from the RegESDL. This will allow the
scientific community to understand how the spatial distribution
of specific taxa (not necessarily plants) could respond not only to
abiotic variables but also to dynamics of the land surface.
Moreover, this can be a benchmark to predict patterns of
species migrations by global warming.

4.2 Comparison with Alternative Regional
Projects
Colombia has done a major effort to develop strategies for big
data generation and management. The National Institute of
Environmental Studies and Meteorology has released the latest
Climate Forecast System Reanalysis models for the region from
hourly to daily temporal resolution, as well as national climate
change scenarios and analyses of extreme events thresholds (Ruiz
M.et al., 2020) (http://bart.ideam.gov.co/wrfideam/). Another
example is the development of the Colombian ODC (Ariza-
Porras et al., 2017; Bravo et al., 2017) to reduce redundancy in
satellite imagery acquisition, pre-processing and storage.
Simultaneously, the scientific community is taking advantage
of GEE to assess rapid socio ecological challenges such as
deforestation using satellite imagery or products derived from
passive (Clerici et al., 2020) and active sensors (Anaya et al.,
2020). From the biodiversity perspective, Colombia is
contributing significantly in an international context; it is the
only country with a National BON in the tropics, its biodiversity
information system (SIB Colombia, https://sibcolombia.net/)
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contributes to the GBIF, and since 2017 different projects are
supporting the assessment and implementation of EBVs;
specifically for improving species distribution model platforms
(Velásquez-Tibatá et al., 2019), supporting biodiversity decision
making (http://biotablero.humboldt.org.co/, http://www.
bosproject.org/en/), and participates in the calibration of new
satellites missions such as GEDI in tropical dry, moist and rain
forest (Fagua et al., 2019), TRMM and the Global Precipitation
Measurement (Vallejo-Bernal et al., 2020). All of these efforts
point to an urgent necessity for developing a common framework
that improves data access and management and facilitates
ecosystem assessments with a more dynamic and functional
perspective, but also for evaluating the rapid natural and
anthropogenic changes that are occurring. The RegESDL
aimed to bring the initial foundations for these developments,
integrating data from biospheric, and atmospheric variables with
biodiversity.

4.3 Technical Challenges for the Future
One of the major challenges of all data cube facilities is that data
is constantly being updated. Not adopting a “living data
paradigm” is one of the major obstacles that reduces the
user-update of project-based infrastructures. Also in our case,
no matter how convincing the concept and implementation
might be, it will not persist as a stand-alone implementation
next to a machinery that can update the underlying data
archives in near-real time. This is why we hope that the
analytic framework as it was developed here can soon be
coupled to data cube facilities that solve the underlying data
availability issue. In fact, in Europe, for instance, the Data and
Information Access Services initiatives are about to realize such
an approach such that initiatives like the RegESDL can be placed
on top of them. The difficulty today remains that the cube type
of data access along all dimensions remains often not well
addressed and that the idea is rarely to give the full spectrum
of functionalities to the users as ESDL does. This is to enable
users to map arbitrary functions. Otherwise, initiatives centered
on specific satellites products have opted for automated
ingestion based on rapid data acquisition from platforms as
GEE (Giuliani et al., 2017). However, this alternative is hard to
extrapolate when working with multiple data sources.

We believe that in the future, the ESDL software should not
merely be a facility that hosts predefined ARDCs but become a
service to generate them tailored to individual user needs. These
user-defined cubes should be able to ingest arbitrary gridded and
non-gridded data. Particularly, higher resolution datasets are
requested when moving from regional to local studies or for
in-situ data up scaling. Here, accessing high-resolution and latest
global data products e.g., SIF from various sources on demand
and in tandem with other existing data suites is key. In this sense,
ARDCs may be static and pre-processed, transient, automatically
updated, or lazy, whatever suits best its intended usage. This
means that the ESDL needs to serve data streams from multiple
sources, and therefore handle multi-resolution data within the
same framework.

Only if we can convince the major infrastructure providers of
our concept, we soon will address the most pressing data analytic

bottlenecks that remain open: That is, the need to further
generalize spatio-temporal data analytics. The current methods
implemented in the ESDL are highly efficient in exploiting high-
dimensional time series and maps, but lack one fundamental
requirement: Spatio-temporal interactions and spatio-temporal
contextualized data analytics are essentially not possible and limit
our capacity to study e.g., telecouplings at large scales or lateral
transport processes. This is of particular relevance, when aiming
to simulate e.g., water transport in space and time via e.g., surface
hydrology or atmospheric interactions. Another challenge for the
future is certainly brining in latest advances in machine learning
i.e., Deep Learning (DL), as one of the most relevant and rapidly
developing fields. In principle this is possible already today, but
whenever a DL model requires dealing with e.g., structured data
(either spatial, temporal or spatio-temporal as in the Earth
sciences), the cube-slicing approach is suboptimal and needs
to be redesigned to efficiently map DL methods on the cube.
This is particularly promising for understanding e.g., biotic
dynamics in the tropics that are often not well constrained by
our ecohydrological understanding.

Another major challenge is Interoperability. The exponential
data generation and advancements in computer and software
technology reinforced the urgency of data exchange between
research infrastructure systems. This has to be accompanied
by common metadata conventions, open algorithms and
software documentation (Kissling et al., 2015; Wilkinson et al.,
2016; Hardisty et al., 2019). For Earth observation data cubes,
Giuliani et al. (2019) defined two tiers to approach this issue: an
upstream tier which is the ODC infrastructure, and a downstream
tier which is centered on the user’s interaction. Here, we focused
on data ingestion from several data sources which was crucial for
multivariate analysis. With this approach we achieved to integrate
different environmental layers from the biosphere and
atmosphere. The usage of Zarr format for data storage, that is
in the process of becoming the standard for the Open Geospatial
Consortium (OGC, 2020), facilitates exchange with other geo
initiatives such as the CMIP6 model. As well, the implementation
of downstream software as xarray opens the possibility to develop
backends with existing data cubes. We followed the Climate and
Forecast metadata conventions (http://cfconventions.org/) that
supports properties of the data. What is still remaining is the
possibility of working with multi-resolution data, which is one of
the following steps. These characteristics are favorable to
Interoperability, but this is indeed a topic on constant
development by the community.

4.4 Engaging the User Community
A long-term sustainability of the RegESDL requires an active
users community. On one hand, the ESDL software is open,
documented and its main features, i.e., the cube generation and
analytical tools, can operate independently which brings
versatility for forward software development and applications.
On the other hand, consolidating such a community requires
active dissemination and training to operate the RegESDL
efficiently, besides constant technical support. Having a
consolidated community is a key step for warranting the
establishment and development of our tool. We see as
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potential users research groups and universities that are
interested in the spatio-temporal understanding of the
biosphere-atmosphere interactions, implications of climate
variability, land cover change, and biodiversity loss in tropical
ecosystems.

Moreover, embracing big data initiatives, such ours, is also
beneficial for supporting environmental studies that support
environmental policy. For example, the Colombian
government has appointed a roadmap for a strong
bioeconomy development to the International Mission of
Experts in Science, Technology and Innovation (https://
minciencias.gov.co/mision-sabios/documentos), but there are
many unknowns about ecosystems dynamics and functioning
nation wise that need to be solved for creating such a plan. Studies
bringing new insights for informing the sustainable goals, or the
Intergovernmental Panel on Climate Change as well as research
for understanding ecosystems functioning and ecosystem
resilience under climate change scenarios could be efficiently
carried out in the RegESDL. In this sense, our initiative could
contribute to existing platforms that provide scientific input for
decision making at local level.

5 CONCLUSION

To our knowledge the ESDL is the first data cube implementation
with an emphasis on representing interactions across the water
cycle, carbon cycle, and climate system (Mahecha et al., 2020). It
has been successfully used to understand biosphere-atmosphere
interactions at multiple time-scales (Linscheid et al., 2020),
analyzing specific variables of ecosystems to climate extremes
(Flach et al., 2020), and has enabled studying the multivariate
nature of land-surface dynamics globally (Kraemer et al., 2020).
The RegESDL has been developed to more specifically explore
biodiversity as yet another thematic domain. Our goal was
bridging the gap between Earth science and biological diversity
that includes ecosystems composition, structure and function
(Noss, 1990; Randin et al., 2020).

In this regard, the satellite era has brought us the possibility of
gaining ecosystems dynamics understanding from systematic
measurements over time and at larger spatial scales. Advances
in the EBVs (Pereira et al., 2013), functional traits and functional
ecosystem properties (Reichstein et al., 2014; Musavi et al., 2015)
are supporting this development. And it is increasingly
recognized that one has to consider the functional dimension
of biodiversity in its own right, which requires working with high
temporal resolutions. In particular, remote sensing observations
are of uttermost importance for the analysis of the EBVs
(Skidmore et al., 2015; Pettorelli et al., 2016; Giuliani et al.,
2020; Randin et al., 2020). Recently, the EBVs for Species
Population started to develop a framework for working with
space-time-species cubes and proposed it as a suitable model for
the oncoming challenges of big data (Jetz et al., 2019) (European
BON http://biodiversity.eubon.eu/essential-biodiversity-
variables). As well, Randin et al. (2020) provided a detailed
review of possible synergies between remote sensing products and
biophysical process variables that are key for species distribution

models. Furthermore, Hardisty et al. (2019) developed a
framework for Interoperability between research
infrastructures related to EBVs. Hence, the successful
implementation of the RegESDL for studying ecosystem
dynamics in northern South America can be seen as a step
forward on the development of EBVs related to function and
structure in tropical ecosystems.

Specifically on our case study, we show the variety of seasonal
trajectories in northern South America. We computed simple
metrics to compare semiannual and annual regimes, derived from
vegetation variables of productivity, greenness and standing
vegetation available at the RegESDL. Nevertheless, our seasonality
analysis approach relies on passive sensors which are limited in rainy
regions despite of having long time series. This reinforced the
necessity of synergies between multiple sensors and data sources.
Using the biotic units map of Colombia, we observed heterogeneity
on the seasonality modes and the timing of maximum activity
among units that are characterized by Beta diversity values. Our
findings contribute to elucidate the large seasonal variability in
hotspots of biodiversity which is key for differentiated
management of tropical ecosystems. Complementary analysis in
light of local climate variability needs to be further investigated to
identify the main drivers.
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