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Recent literature has highlighted how citizen science approaches can engage volunteers,
expand scientific literacy, and accomplish targeted research objectives. However, there is
limited information on how specific recruitment, retention, and engagement strategies
enhance scientific outcomes. To help fill this important information gap, we detail the use of
various approaches to engage citizen scientists in the collection of precipitation phase data
(rain, snow, or mixed). In our study region, the Sierra Nevada and Central Basin and Range
of California and Nevada near Lake Tahoe, a marked amount of annual precipitation falls
near freezing. At these air temperatures, weather forecasts, land surface models, and
satellites all have difficulty correctly predicting and observing precipitation phase, making
visual observations the most accurate approach. From January to May 2020, citizen
scientists submitted timestamped, geotagged observations of precipitation phase through
the Citizen Science Tahoe mobile phone application. Our recruitment strategy included
messaging to winter, weather, and outdoor enthusiasts combined with amplification
through regional groups, which resulted in over 199 citizen scientists making
1,003 ground-based observations of rain, snow, and mixed precipitation. We
enhanced engagement and retention by targeting specific storms in the region through
text message alerts that also allowed for questions, clarifications, and training
opportunities. We saw a high retention rate (88%) and a marked increase in the
number of observations following alerts. For quality control of the data, we combined
various meteorological datasets and compared to the citizen science observations. We
found that 96.5% of submitted data passed our quality control protocol, which enabled us
to evaluate rain-snow partitioning patterns. Snowwas the dominant form of precipitation at
air temperatures below and slightly above freezing, with both ecoregions expressing a
50% rain-snow air temperature threshold of 4.2°C, a warmer value than what would be
incorporated into most land surface models. Thus, the use of a lower air temperature
threshold in these areas would produce inaccuracies in event-based rain-snow
proportions. Overall, our high retention rate, data quality, and rain-snow analysis were
supported by the recruitment strategy, text message communication, and simplicity of the
survey design. We suggest other citizen science projects may follow the approaches
detailed herein to achieve their scientific objectives.
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INTRODUCTION

Successful citizen science projects require user-submitted data,
but there is limited information on how to maximize the
submission of high-quality observations (Robson et al., 2013;
Eveleigh et al., 2014; Crall et al., 2017; De Moor et al., 2019).
Broad recruitment and retention of volunteer citizen scientists is
critical to data collection, but can also be the biggest challenges to
a citizen science project (Andow et al., 2016; Crall et al., 2017;
Frensley, 2017; De Moor et al., 2019). It is typically necessary to
deploy recruitment and communication strategies that engage a
broad base of individuals and effectively use available resources
(Crall et al., 2017; De Moor et al., 2019). While many studies have
shown that a few participants generally contribute the bulk of the
citizen science observations (Crall et al., 2017), recruiting a large
pool is necessary for sustainability of the citizen science project
and continued recruitment (De Moor et al., 2019). Recruitment
approaches include email, social media campaigns, social
networking, and press (Robson et al., 2013; Crall et al., 2017).
Crafting messaging that targets volunteer motivations (Clary and
Snyder, 1999) and addresses community-identified problems
(Davis et al., 2020) has been shown to motivate participants
and enhance recruitment (Uchoa et al., 2013); however, volunteer
motivations have been shown to be variable (Crall et al., 2017).
Robson et al. (2013) showed that targeting local groups with
interest in the topic was effective for increasing data collection
and Crall et al. (2017) showed increased recruitment by
connecting to similar volunteer-based projects. These findings
suggest targeting volunteer motivations and collaborating with
regional groups with similar interests are effective approaches for
recruiting citizen scientists when combined with social media,
emails, and press.

Retaining volunteer citizen scientists is also a challenge, with
reported retention rates ranging between 15 and 92% (Andow
et al., 2016; Reges et al., 2016; Crall et al., 2017). Similar to
recruitment, citizen scientist retention strategies come in a variety
of styles; however, retention practices that keep participants
informed, allow for feedback, and create a sense of community
are typically the most effective (Crall et al., 2017; Davis et al.,
2020). In addition, the structure of the program itself can also aid
with retention, for example, with gamification (e.g., Strobl et al.,
2019). Higher retention rates reduce the need for continued
recruitment and training, and potentially increase data quality
(Andow et al., 2016). Consistent training and feedback also
improve the quality of data submitted by citizen scientists
(Druschke and Seltzer, 2012; Andow et al., 2016; Crall et al.,
2017). The wide range of observed retention rates and potential
impacts to data quality suggest the need for a quantitative
approach to evaluating engagement and retention strategies.

While citizen scientists can markedly increase the amount of
observations compared to a single team of researchers, projects
also need clearly defined scientific objectives (Robinson et al.,
2018). In our case, we were interested how a network of citizen
scientists could be used to monitor the phase of precipitation
(rain, snow, and mixed) in the Sierra Nevada of California and
Nevada. In this region and much of the western US, households,
agriculture, and industry rely on mountain snowmelt for their

water resources (Bales et al., 2006). However, with anthropogenic
climate change, the proportion of precipitation falling as snow
has decreased (Knowles et al., 2006), reducing the ability of
mountain snow to act as reservoirs (Barnett et al., 2005;
Mankin et al., 2015), with resultant effects on downstream
streamflow timing and volume (Stewart et al., 2005; Stewart,
2009). Continued changes in precipitation phase (Klos et al.,
2014; Safeeq et al., 2016) are expected to have impacts to the
human and natural systems that rely on those water resources
(Stewart et al., 2004).

These observed and projected water resource impacts
necessitate the effective monitoring and modeling of
precipitation phase in mountain areas, particularly those near
the rain-snow transition zone. Due to a limited number of in
situ networks reporting precipitation phase in western US
mountains, models are typically used to fill in the gaps
(Lundquist et al., 2019). However, many land surface
models still use spatially uniform air temperature thresholds
or ranges to partition rain and snow despite work showing that
these values vary spatially (Ding et al., 2014; Froidurot et al.,
2014; Harpold et al., 2017; Jennings et al., 2018). Using the
wrong rain-snow air temperature threshold results in biases in
snow water equivalent, snow depth, and snow duration
(Fassnacht and Soulis, 2002; Wen et al., 2013; Harder and
Pomeroy, 2014; Jennings and Molotch, 2019). Similarly, both
ground-based radars and satellites struggle to predict
precipitation phase at air temperatures near freezing as a
result of snow scattering properties, difficulties in parsing
rain and snow signals at various intensities, and snow cover
on the Earth’s surface (Skofronick-Jackson et al., 2015; Ebtehaj
and Kummerow, 2017; Harpold et al., 2017; Lundquist et al.,
2019). These issues are particularly concerning in the Sierra
Nevada, where a significant proportion of winter precipitation
falls near 0°C. Enhanced monitoring for model validation of
rain and snow would greatly enhance the prediction of
precipitation that accumulates in mountain snowpacks and
the precipitation that runs off.

Previous weather- and hydrology-focused citizen science work
has shown how to integrate crowdsourced observations into
research design. For example, the Meteorological Phenomena
Identification Near the Ground (mPING) uses crowdsourced
data to assess weather forecast models (Elmore et al., 2014,
2015). The mPING mobile phone application allows users to
upload observations of weather phenomena and natural hazards
of various types (Elmore et al., 2014, 2015). The Community
Collaborative Rain Hail and Snow Network (CoCoRaHS) is a
network of volunteers who measure daily precipitation and other
meteorological quantities (Cifelli et al., 2005). The data generated
from CoCoRaHS have resulted in numerous publications (e.g.,
Cifelli et al., 2005; Reges et al., 2016), demonstrating the value of
such a spatially distributed network of observations and
temporally consistent submissions. Likewise in hydrology,
CrowdWater engages volunteers in verifying water level class
data (Strobl et al., 2019), and Stream Tracker pairs observations
by volunteers with those of streamflow sensors and remote
sensing data (Puntenney et al., 2017). Community Snow
Observations engages citizen scientists to measure snow depth
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with avalanche probes in under sampled areas in order to
improve estimates of snow depth1. While these and other
programs represent an advancement in citizen science, they
are limited to observations at a specified location at a
specified time, are complicated, or require significant training.

For our project, Tahoe Rain or Snow, we employed a citizen
science approach to collect ground-based observations of
precipitation phase during winter and spring storms in the
Sierra Nevada region. Our objectives were to evaluate
engagement strategies and produce a robust, quality-controlled
dataset of precipitation phase. The former will contribute to the
ongoing study of how to best deploy citizen science projects, while
the latter serves as a critical validation source for land surface
models and satellite remote sensing products. We also detail an
initial assessment of the rain-snow temperature relationship
within our study region. The citizen science approach
presented here is potentially applicable to other weather-based
studies for which data collection over spatial and temporal extents
is required.

STUDY SITE

Our study area included the Lake Tahoe Region of the Sierra
Nevada, and the urban/suburban areas of Reno, Sparks, and
Carson City, Nevada, collectively referred to as the Tahoe
Basin and Truckee Meadows. The Lake Tahoe Region is
characterized by Lake Tahoe (1,878 m elevation) and the
surrounding mountain peaks (reaching elevations of
3,318 m). The Lake Tahoe and Sierra Nevada climate is
characterized by a wet season from November to April and
dry season from May to October (Null et al., 2010). Most of
the wet season precipitation falls as snow. The Truckee
Meadows region (elevation ∼1,300 m) is located on the
eastern side of the Sierra Nevada and the region
experiences a similar seasonal climate pattern, with overall
less annual precipitation. This study area includes two
ecoregions the Sierra Nevada and the Central Basin and
Range Level III ecoregions.

METHODS

Tahoe Rain or Snow, launched in 2019, is a contributory citizen
science project (Shirk et al., 2012) where the research team
designed the study and community members contributed the
precipitation phase data. From the outset of the project, both
scientists and education/engagement specialists collaborated on
project design, as recommended by Druschke and Seltzer (2012).
The research goals and study design informed our survey design,
recruitment, and retention strategies. Following data submission,

we assessed the data for quality and evaluated the results for rain-
snow partitioning patterns. These approaches were utilized to
meet our goals to: 1) recruit and retain citizen scientists, and 2)
collect a sufficient number of quality data points for precipitation
phase analysis.

Tahoe Rain or Snow Survey
To effectively crowdsource precipitation phase data, we designed
the Tahoe Rain or Snow precipitation phase survey to be included
on the existing Citizen Science Tahoe (CST) mobile phone app
platform (Figure 1). Zach Lyon Creative developed the CST
mobile phone app in 2015 in collaboration with three regional
groups: University of California Davis Tahoe Environmental
Research Center, the League to Save Lake Tahoe, and the
Desert Research Institute (DRI). In 2020, the CST app hosted
six different citizen science surveys used by the CST partners with
a total network of 1,970 registered users.

We designed the Tahoe Rain or Snow survey to make data
collection simple and fast (i.e., the survey could be completed in
<30 s), allowing participants to easily submit frequent
observations, even while out of cell service. The survey was
also designed to facilitate participation from those who have
time constraints or who do not have technical knowledge of
meteorology, thus requiring minimal training. This is in line with
previous research recommending that citizen science platforms
be designed to anticipate possible technology and time
constraints with flexibility in both to encourage participation
(Eveleigh et al., 2014; Davis et al., 2020).

The Tahoe Rain or Snow survey includes a series of screens on
which the user submits observations. The first screen reminds the
user of study goals and provides basic training info (Figure 1B),
enabling those that did not sign up through the text message
service (described below) to submit accurate data. The user then
selects the precipitation type (rain, snow, or mixed precipitation)
on the following screen (Figure 1C). Next, the user is asked to
verify their location (Figure 1D) and may manually move the
location pin if it is incorrect. The user is then asked to check the
accuracy of all parameters and submit the observation. The app
collects the following data: observer name, date, time, latitude,
longitude, a unique identifier for each observation, and the
weather observation (rain, snow, or mixed precipitation), all of
which are accessible to the researchers via a web-based portal.
Surveys that are submitted while the user is out of cell service are
cached on the local device and uploaded once the user returns to
service area. If location services were ‘turned off’ and the observer
did not change the location, the default location was set to
39.0968°N, 120.032°W, in the center of Lake Tahoe, allowing
for easy identification of these data points. A small group of
scientists and educators tested the app prior to the launch for data
quality and user experience and we incorporated their feedback in
the design process.

Recruitment
The first strategic step for citizen scientist recruitment was to
create content that connected the opportunity to be involved in
Tahoe Rain or Snow to individuals’ interests and motivations
related to winter recreation, weather, curiosity for science, and/or

1Crumley, R. L., Hill, D. F., Wikstrom Jones, K., Wolken, G. J., Arendt, A. A.,
Aragon, C. M., et al. in review. Assimilation of citizen science data in snowpack
modeling using a new snow dataset: community snow observations. Hydrol. Earth.
Syst. Sci. Discuss. 1–39 [preprint]. doi:10.5194/hess-2020-321
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their connection to mountain regions. In this context, Tahoe Rain
or Snow’s focus on improving the ability to estimate water
resources in mountain regions locates the project within a
broad matrix of environmental and natural resource issues
and interests, i.e., a “complex problem domain” (Hano et al.,
2020). Therefore, our communication strategy included links
between the science, natural resources, and places of local
interest and value.

The second step was to reach a large audience to increase the
likelihood of collecting sufficient, high-quality data. In the

context of this work, this corresponds to approximately 200
observations taken between −8 and 8°C to compute rain-snow
probability curves (e.g., Jennings et al., 2018). We pursued this
strategy so that even low conversion rates (i.e., the percentage of
users who engage with the project following outreach/promotion)
would result in an adequate amount data collected (Crall et al.,
2017). For targeted recruitment of individuals with overlapping
interests, we engaged various local weather forecasters and non-
profits with aligned interests to “amplify” the request to
participate in Tahoe Rain or Snow through social media and

FIGURE 1 | The Tahoe Rain or Snow survey was hosted on the Citizen Science Tahoe app (A). The introductory screen (B) provided background and training. The following
screen the user chooses the precipitation type: Rain, Snow or Mixed (C). Lastly, the user verifies their location (D) and can manually move the location pin if it is incorrect.
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email (Uchoa et al., 2013; Crall et al., 2017). We then reached out
to our amplifiers, requesting they post the content to their social
media platforms or email lists. Amplifier requests included the
National Weather Service Reno, the CoCoRaHS network in
Nevada and California, Protect Our Winters (POW), the
Sierra Avalanche Center, Snowlands Network, and the League
to Save Lake Tahoe. We also gave presentations to local
recreation, outdoors, and education groups and conducted
flyer handouts at ski resorts and ski-related events. In
addition, we sent email invitations to all participants on the
Citizen Science Tahoe platform as well as all participants in
Stories in the Snow (another citizen science project based at DRI)
as individuals that have participated in other citizen science
projects are more likely to persist (Frensley, 2017).

Recruitment efforts also focused on teaching participants how to
submit quality data. Citizen scientists were asked to sign up to a text
messaging service, SimpleTexting, by texting a keyword to a
number (“To join Tahoe Rain or Snow, text WINTER to 855-
909-####”). The text messaging service compiled citizen scientists’
phone numbers into a database. Upon joining the text message
service, the citizen scientists were automatically sent three text
messages at 24-h intervals. The three drip campaign messages
contained 1) instructions to download the CST app through a
web link, 2) background information to understand to the goals of
the study, and 3) a succinct training module on when and how to
submit observations. This text message service enabled the citizen
scientists to opt-in to messaging, allowing continued
communication throughout the season in the form of scheduling
and pushing alerts to all users, text message communications with
individual citizen scientists, and ongoing training and education.

Retention
Retention of volunteers is critical to project success but represents
a major challenge in citizen science. To maintain participation
throughout the winter and spring, push alerts were sent through
the text messaging systemwhen a stormwas approaching to bring
awareness to the participants. This was preferable to social media
or email, which introduce a time lag in communication and
require participants to pull the information. The ability to answer
citizen scientist questions via the same text messaging system
allowed for clarification about when and how to sample,
potentially improving participant understanding of the project.

At the end of the sampling season in late May, we provided a
report-back to the community as these have been shown to enhance
engagement (Druschke and Seltzer, 2012) and to encourage
continued involvement in the project (Tweddle et al., 2012). For
our report, we created a summary of preliminary data with plain
English descriptions of the patterns in the data collected by citizen
scientists (Tahoe Rain or Snow, 2020) and shared the web link via
the text message alert service and DRI’s social media outlets.

Evaluating Patterns in Citizen Science Observations
To assess our recruitment and retention strategies, we examined
the number of sign-ups over time and quantified requests to
subscribe to and unsubscribe from the text message system. We
also evaluated the timing and number of reports following our
text message notifications to analyze their effectiveness in

encouraging participation. To learn more about the reporting
behavior of our citizen scientists, we assessed the timing and
spatial patterning of observations based on the day and time of
report along with the associated location and elevation.

Quality Assurance and Quality Control
Effective use of citizen science data requires robust quality assurance
(QA) and quality control (QC) protocols. Our primary QA
mechanism was designing the app-based survey to allow for little
subjective interpretationwhen reporting observations (i.e., by proving
only three options: rain, snow, mixed). Additionally, the app
performed all timestamping and geolocating automatically,
eliminating the possibility a user could report an incorrect time
and/or location. All observations for users with location services
turned off were reported in the center of Lake Tahoe, allowing for
removal of these erroneous data as the first step of the QC protocol.

After spatially filtering the data, the phase observations were
compared to air temperature measurements. In general, we found
existing gridded air temperature products to be insufficient for the
temporal and spatial scale of our project. For example, hourly
meteorological data can be accessed from phase 2 of the North
American Land Data Assimilation System (NLDAS-2), but the grid
cell resolution of 0.125° is too large for our point-scale observations
(Xia et al., 2012). Conversely, data from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM) is available at
an 800m grid spacing, but only at a daily time step (Daly et al.,
2008). We needed both high temporal resolution (hourly or sub-
hourly) and precise geolocation. We therefore accessed several
networks of meteorological stations (Table 1) that recorded air
temperature data at an hourly time step or finer to ensure as broad a
spatial and climatic coverage as possible. These included the
Snowpack Telemetry (SNOTEL) network, Remote Automatic
Weather Stations (RAWS), multiple state and national networks
distributed through the Hydrometeorological Automated Data
System (HADS), and the Automated Weather Observing System
(AWOS). In total, we identified 66 stations with hourly or finer air
temperature in our study domain. The number of stations reporting
valid data for each citizen science observation ranged between 57
and 66. As an initial quality control check, we relied on routines
from the respective datasets and we also filtered out observations
outside of the range of −30–45°C.

Few of our citizen science observations were recorded directly
next to a meteorological station, necessitating that we distribute
air temperature from a station or multiple stations to the point of
interest. To do this, we tested four methods inside an air
temperature distribution model:

1. Inverse distance weighting plus a constant lapse rate
(IDWconst)

2. Inverse distance weighting plus a variable lapse rate (IDWvar)
3. Air temperature from nearest station plus constant lapse rate

(Nearestconst)
4. Air temperature from nearest station plus variable lapse rate

(Nearestvar)

These methods generally follow the protocol detailed in the
meteorological data preprocessors MeteoIO (Bavay and Egger,
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2014) andMicroMet (Liston and Elder, 2006). As we did not need
gridded values of air temperature, we recoded these methods to
predict air temperature at a given observation point using parallel
processing in the R computing language. The air temperature
distribution model included the following steps:

1. Compute the observer’s elevation by extracting the value from
the 10 m digital elevation model (DEM) from the USGS’s
National Elevation Dataset (Gesch et al., 2002) using the
submitted latitude-longitude coordinates.

2. Identification of all air temperature measurements within ±1 h
of the citizen science observation.

3. Removal of all air temperature measurements except those
closest in time to the observation.

4. If a single meteorological station reported two air temperature
values (i.e., the time gap before and after the citizen science
observation were equal), we took the arithmetic mean of
the two.

5. We computed the distance between the citizen science
observation and each meteorological station.

6. We calculated air temperature at the observation location
using the four previously introduced methods:

a. IDWconst was calculated by correcting all air temperature
values to sea level based on station elevation and a constant
lapse rate of −0.005°C m−1 (Girotto et al., 2014) and
computing normalized weights for each station based on
its distance to the citizen science observation. Sea level air
temperature was calculated at the observation point as a
function of the station weights and the sea level air
temperature for each station and lapse the air
temperature from sea level to the elevation of the citizen
science observation.

b. IDWvar followed the same steps as IDWconst, but used a
lapse rate calculated per time step. The variable lapse rate
was predicted as the slope of an ordinary least squares
regression model fit to station elevation (independent
variable) and air temperature (dependent variable).

c. Nearestconst was calculated by identifying the station
nearest to each citizen science observation and correcting
the air temperature value from the station to the observation
based on the difference in elevation between the two and the
−0.005°C m-1 constant lapse rate.

d. Nearestvar followed the same steps as Nearestconst, but the
lapse rate is calculated per timestep as in IDWvar.

To evaluate which air temperature distribution method
performed best, we randomly removed 5,000 observations

from the 576,435 observations in our aggregated air
temperature dataset. We then ran the steps detailed above to
predict the air temperature value for each randomly removed
measurement to cross-validate the four methods. Overall, there
was high agreement in the ability of the different methods to
predict air temperature, and IDWvar had the lowest bias and
highest r2 value (Table 2). To note, the average variable lapse rate
was −0.0056°C m−1, suggesting the extra processing step does
provide marginal improvement even if the lapse rate difference
is small.

Once we had computed an air temperature value using IDWvar

for each citizen science observation, we followed a two-step
process to flag suspicious reports. First, we checked the air
temperature against previously reported rain-snow air
temperature ranges (Kienzle, 2008; Jennings et al., 2018). Next,
we checked daily precipitation reports from PRISM and active
AWOS stations to flag whether precipitation occurred on the
observation date. We used both datasets because although PRISM
provides spatially continuous coverage, it tended to not identify
small and trace precipitation amounts within the study region.

Precipitation Phase Partitioning Patterns
Although this paper focuses on our outreach efforts and data
collection, we include an initial assessment of the precipitation
phase observations to improve understanding of rain and snow
patterns in our study area. First, we evaluated the proportion of
each precipitation phase by elevation using the DEM-derived
values identified in Step 1 of the air temperature distribution
model above. We next created histograms to show the number of
reports corresponding to each phase type by elevation. Then, we
summarized the data in 500 m elevation bins, computing the
percentage of observations corresponding to each phase and
evaluating how the dominant phase of precipitation changed
by elevation.

We next used the air temperature and phase data to produce
conditional snow probability curves at the scale of Level III
Ecoregions from the US Environmental Protection Agency
(US EPA, 2015). Our study area included the Sierra Nevada
and Central Basin and Range ecoregions in California and

TABLE 1 | Networks of meteorological stations used in this study.

Network Number of stations Elevation range (m) Link

SNOTEL 24 1,864–2,839 https://www.wcc.nrcs.usda.gov/snow/
RAWS 19 1,317–2,308 https://raws.dri.edu/
HADS 18 1,349–2,469 https://mesonet.agron.iastate.edu/request/dcp/fe.phtml
AWOS 5 1,344–1,925 https://www.ncdc.noaa.gov/cdo-web/datatools/lcd

TABLE 2 | Air temperature distribution methods mean bias and r2 value.

Method Mean bias (°C) r2

IDWconst −0.48 0.84
IDWvar −0.43 0.86
Nearestconst −0.56 0.81
Nearestvar −0.52 0.83
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Nevada (Figure 2). The curves for each ecoregion display the
probability that precipitation at a given air temperature value will
be snowfall. To do this, we grouped the precipitation phase
observations into 0.5°C air temperature bins and divided the
number of snowfall reports by the number of total precipitation
reports. Once snow probability curves had been created, we
calculated the 50% rain-snow air temperature threshold for
each ecoregion. This is the optimized, spatially explicit air
temperature that can be used to partition rain and snow in
model-based or observational studies instead of a spatially
uniform threshold (e.g., the common 0°C rain-snow split).
Here, we followed the approach of Dai (2008) by fitting a
hyperbolic tangent to the snowfall probability curve and
calculating the air temperature at which the curve crosses 50%.

Finally, we compared the derived threshold per ecoregion to
two generic rain-snow air temperature thresholds (0 and 2°C) to
evaluate the proportion of snow that would be misidentified as
rain. First, we plotted the distribution of air temperature data and
computed the mean and median values from all of our citizen
scientist reports. Next, we calculated the total number of reports
as well as the number of snow observations given at air
temperatures between the two generic rain-snow thresholds
and the thresholds we computed per ecoregion in the steps
above. We then assumed that each observation reported as

snow in this air temperature range would be incorrectly
identified as rain by a land surface model.

RESULTS

Survey, Recruitment and Retention
The Tahoe Rain or Snow survey was launched on January 7, 2020
and the final data export occurred on May 31, 2020 (spring rain
and snow storms are not unusual in the Sierra Nevada). For
recruitment, we generated content for social media outreach
which was sent to amplifiers who committed to
communicating the request to their subscribers either through
social media or email. Two increases in enrollment in the text
message service, January 13–15, 2020 (n � 93) and January 28 to
February 4, 2020 (n � 61) were observed (Figure 3). These two
pulses represent amplification by regional groups in mid-January
(e.g., NationalWeather Service Reno amplified the project to their
social media on January 13, 2020) and amplification by the
CoCoRaHS network in the study area at the end of January.
The recruitment methods resulted in 199 individuals signing up
for the text message service (Figure 3). Because the text message
service and mobile phone app were different platforms,
individuals could submit observations anonymously or submit

FIGURE 2 | Most of the observations (red circles) were from the communities surrounding Lake Tahoe, the Truckee Meadows (inclusive of the cities of Reno/
Sparks) and Carson City, Nevada. Black triangles represent meteorological stations used in this study. Green background indicates EPA Level III Ecoregion number 5
and the pink background color indicates EPA Level III Ecoregion number 13.
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without subscribing to the text message service, therefore the
true number of individual participants is difficult to
determine. It is estimated that users submitted on average
12 observations, with several “super users” who reported >35
observations.

The retention strategy included the text messaging notification
system. Thirteen text message storm alerts were sent to the
subscriber list from January to April 2020 (Figure 3,
Supplementary Table S1). Following the thirteen text alerts, a
total of 115 response texts were received from citizen scientists in
the form of questions or comments (excluding requests to opt-in
or opt-out from the text message service). From January to April,
there were 24 unsubscribe requests to the text message alert
service, resulting in an 88% retention rate.

Figure 3 shows the dates that text alerts were sent to citizen
scientists compared to precipitation accumulation from two
SNOTEL sites (Mount Rose elevation 2,682 m, Truckee
elevation 1,984 m). There was a precipitation event between
January 14th and January 15th with a total of 84 observations
made. No text message had been sent to participants; however, we
note that most individuals signed up the few days prior to the
storm event, with the “drip campaign”messaging released 24 and
48 h after sign-up. This contrasts with the March 1st snow event
which was similar in precipitation amount to the January 15th
event, however it had no text message notification, and fewer
observations (n � 18). When comparing the March 1st snow
event to an event on February 2nd and March 7th, both had
minimal precipitation accumulation, had text message
notifications, and had many observations (n � 121, 78
respectively) (Figure 3). Figure 4 shows the number of
observations compared to number of days since last text
message notifications. We note a decrease in the number of
observations ∼20 days after the last notification.

The majority of the observations were collected during the
month of March (n � 496) and January (n � 220) with fewer
observations submitted the months of February (n � 138), April
(n � 121), and May (n � 34). The low number of observations in
February are potentially driven by little precipitation
accumulation from February 5th to March 3rd. This was
followed by a series of snow and rain storms through mid-
April, however, few notifications (April n � 1, May n � 0)
may have resulted in the lower number of observations made
(Figure 3). Most of the observations were submitted during
daylight hours (10–16) and the most popular day of the week
to make an observation was Sunday, followed by Thursday and
Saturday (Figure 5). The winter and spring of 2020 was also
unique for non-weather-related reasons. In response to the
COVID-19 pandemic, the State of Nevada closed all non-
essential businesses on March 17th, 2020, and the State of

FIGURE 3 | Temporal variation of observations, registered observers,
engagement, and precipitation accumulation. (A) Snow observations (black
line), compared to Mixed observations (purple line) and Rain observations
(blue line). (B) Accumulation amount (cm) from two SNOTEL sites,
Mount Rose (light green) and Truckee (dark green). (C) Number of observers
who registered through the text messaging service (orange line). The gray
vertical lines represent text message notifications to observers.

FIGURE 4 | Number of observations per day vs. number of days since
last text notification with the symbol scaled by precipitation accumulation
amount from Mount Rose SNOTEL (Figure 2B) for that day.
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California issued a statewide stay at home order on March 20th,
2020. Schools began distance learning, and non-essential workers
began working from home. Many ski resorts in the Sierra Nevada
suspended operations as well. These factors may have affected
citizen scientists’ behavior and availability to participate in
the study.

At the end of the season, we created a report-back for our
citizen scientists. The web link to the report back was sent via text
message to the participants (Supplementary Table S1). In the
week following its release on June 10th, there were 86 unique
views to the Tahoe Rain or Snow report-back webpage. While is
not possible to determine if hits to this page came solely from
Tahoe Rain or Snow participants, we estimate this is an ∼43%
conversion rate as a result of this alert.

QA and QC
During the study period (January 7 to May 31, 2020), citizen
scientists reported 1,039 precipitation phase observations. After
elimination of erroneous locations, there were a total of 1,009
observations, 97.1% of the initial dataset. We then removed six
observations from outside the study area because there was an
insufficient number of observations to perform a quantitative
analysis, leaving a total of 1,003 valid reports. We then compared
citizen science observations to meteorological data. Precipitation
phase reports generally fell within the air temperature bounds of
previous research. Observers reported only two instances of rain
at air temperatures less than 0°C and 27 instances of snow at air
temperatures above 5°C, representing 0.2 and 2.7% of the dataset,
respectively. These data are flagged, but not removed from the
final dataset. We also flagged observations when both PRISM and
the AWOS dataset indicated 0 mm of precipitation on that day of
observation. In total, this represented 12 observations, or 1.2% of
the total dataset. Removing these observations had little effect on
snow probability calculations, so they were included in the
analysis, but are flagged in the final dataset. In total, 96.5% of
all submitted data passed quality control.

Precipitation Phase Partitioning Patterns
After elimination of data submitted with erroneous locations,
there were a total of 1,003 observations, with 705 observations of
snow, 163 observations of rain, and 135 observations of mixed
phase precipitation (Figure 3). Most of the observations were
from the targeted communities surrounding Lake Tahoe, the
Truckee Meadows (inclusive of the cities of Reno/Sparks) and
Carson City, Nevada (Figure 2). The distributions of all phase
types by elevation are bimodal (Figure 6), which may be
indicative of our study region’s topography. Truckee, CA and
most of the towns around Lake Tahoe are located near or above
1,800 m in the Sierra Nevada ecoregion, while Reno, NV and
Carson City, NV are both located below 1,500 m in the Central
Basin and Range ecoregion. Most of our observations come from
population centers and nearby road corridors (Figure 2). As such,
we have relatively few reports from the sparsely populated areas
between the higher and lower elevation bands.

Unsurprisingly, the proportion of snowfall in the citizen
science observations increased with elevation (Figure 6).
Snowfall was the dominant precipitation phase type in each
elevation band, only dropping below 50% at elevations
<1,250 m. Above 2,250 m, 92.7% of reports were snowfall
during our study period. The greatest percentages of rain and
mixed precipitation were reported at elevations <1,250 m at
26.2% and 31.0%, respectively (Figure 7). The latter value was
more than twice the second highest amount of mixed
precipitation reported at any other elevation band.

At air temperatures near freezing, snowfall probability was
near 100% according to citizen science reports in both ecoregions
(Figure 8). Snowfall probability declined with increasing air
temperature, nearing 0% as air temperature approached 10°C.
The similar snowfall probability curves produced identical 50%
rain-snow air temperature thresholds of 4.2°C in the Sierra
Nevada and Central Basin and Range ecoregions. This
threshold is markedly warmer than the 0°C used as a default
value in some land surface models.

FIGURE 5 | Number of observations by hour (left) and day of the week (right).
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During our study period, 57.0% of observations were reported
at air temperatures between 0 and 4.2°C, the latter being the
optimized 50% rain-snow air temperature threshold for our
ecoregions (Figures 8, 9). The distribution of air temperature
data corresponding to our reports was unimodal, with mean and
median values of 1.9 and 2.0°C, respectively. These findings
indicate that the majority of precipitation phase reports given
by our observers were in the air temperature range of greatest
rain-snow uncertainty. Of the 572 reports given between 0 and
4.2°C, 410 were snowfall, meaning a 0°C rain-snow temperature
threshold would have misidentified 71.7% of phase observations

that were actually snow as rain. Even using a warmer threshold of
2°C would lead to a 60.6% rain vs. snow misidentification rate for
the 317 reports given between 2 and 4.2°C.

DISCUSSION

Citizen Science Recruitment, Retention,
and Engagement
Various strategies have been proposed in the literature for
maximizing citizen science recruitment (Robson et al., 2013;

FIGURE 6 | Number of observations by precipitation phase and elevation.

FIGURE 7 | The proportion of each precipitation phase reported per 500 m elevation bin.
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Eveleigh et al., 2014; Andow et al., 2016; Reges et al., 2016; Crall
et al., 2017), however key to those strategies is retaining
volunteers and ensuring high data quality. Here we show a
high rate of retention (88%) and high quality of data (96.5%
passing strict quality controls) which we attribute to the
recruitment, retention, and engagement methodologies which
maximized the submission of high-quality data for the study of
the precipitation phase.

Lessons for other citizen science programs can be taken from
the effectiveness of the strategies we describe above. We
implemented a recruitment strategy of targeted messaging to
recruit citizen scientists with values aligned with the study
followed by communicating the opportunity to participate
through social media and connection to regional groups. We

recommend that science leads of citizen science projects consult
with engagement specialists or social scientists to consider the
values are aligned with those programs and identify partner
“amplifier” groups. Messaging amplified through known
organizations in the community demonstrated to be effective
to introduce Tahoe Rain or Snow as sign-ups increased after
National Weather Service-Reno and CoCoRaHS circulated the
call to participate.

While the project engaged >199 individuals, recruitment of a
dedicated super-user group who submitted large numbers of
observations was also important for the project’s success and
was dependent on recruiting a larger base of volunteers. We
suggest that future projects consider making sign-up or opt-in for
citizen science programs simple and straightforward, and that

FIGURE 8 | Snowfall probability plotted against air temperature for the Central Basin and Range and Sierra Nevada ecoregions. Snowfall probability is equal to the
percent of citizen science observations reported as snow per 0.5°C air temperature bin. The gray dashed line corresponds to 50% snowfall probability.

FIGURE 9 | Kernel density plot showing the distribution of all precipitation phase reports by air temperature. The 50% rain-snow air temperature threshold value is
marked with the black dashed vertical line. The mean and median air temperature values from our citizen scientist reports were 1.9 and 2.0°C, respectively.
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mechanisms for two-way communication with volunteers be
integrated. The text message notification system retained 88%
of individuals who signed up and the continued reporting
throughout the study period (Figure 4) supports this was an
effective approach for retaining individuals. The results shown in
Figure 4 suggest that the number of observations increase with
notifications and such continued engagement additionally may
have aided with the continued observations even with the
outbreak of the COVID-19 pandemic during the winter of
2020. The number of observations may also be influenced by
the amount of precipitation, as events with a greater amount of
precipitation may persist for longer. The continued response texts
received from citizen scientists throughout the winter also
support the effectiveness of the text message system in
engaging volunteers, building community with the observers,
and improving data quality. For example, questions were sent
about appropriate locations to make observations, requests for
clarification on weather types, pictures of the precipitation at their
location, and proud messages of howmany observations they had
submitted through the season. The text message system and the
simplicity of the survey design potentially aided with retaining
‘dabblers’, or those with an intermittent approach to participation
(Eveleigh et al., 2014). Many dabblers are motivated to continue
to participate in citizen science projects and can help broaden the
reach of the project (Eveleigh et al., 2014), therefore making them
an important group to engage. In addition to these factors, the
simplicity of the survey and continued education through the text
messaging system, may also have contributed to the high quality
of data.

Finally, we encourage all citizen science programs to dedicate
energy and time to meaningful report-back of the results to
volunteers. The 43% conversion rate from the report-back text
message alert is high in comparison to conversion rates reported
in other studies, such as 4% from email or 10% from social media
(Crall et al., 2017). A comparison of conversion rates between text
alerts and email newsletters can be made with a similar citizen
science project also led by DRI, called Stories in the Snow, which
uses email notifications for users and is conducted in the same
region as Tahoe Rain or Snow. For Stories in the Snow email
newsletters sent in the 2019–2020 season to ∼1,246 users, the
mean percentage of emails opened was 32%, and the mean
conversion rate was only 4.7% (based on data from the email
campaign management platform). The high conversion rate of
the Tahoe Rain or Snow report-back also supports the
effectiveness of text messages to engage individuals in
comparison to email messaging for a similar user group in the
same region.

Applicability to Precipitation Phase Studies
0°C is still used to partition rain and snow, likely because the
freezing point seems to be a logical temperature at which to split
precipitation phase and is thus a default method in some land
surface models such as the widely used Variable Infiltration
Capacity (VIC) model (Liang et al., 1994). Another common
assumption in many studies is the use of a spatially uniform rain-
snow air temperature threshold, where precipitation phase is
partitioned at the same air temperature across wide spatial extents

(Harpold et al., 2017). This is also incorrect. To date, there has
been a significant body of literature highlighting the inadequacy
of 0°C thresholds, the spatial variability in rain-snow partitioning,
and the negative effects of incorrectly determining precipitation
phase (Marks et al., 2013; Ye et al., 2013; Ding et al., 2014;
Jennings et al., 2018; Jennings andMolotch, 2019). In our project,
we did not calculate a difference in the 50% rain-snow air
temperature threshold between the two adjacent ecoregions,
but at 4.2°C the value is markedly warmer than what would be
incorporated into any land surface model. This value is also
warmer than the spatially variable thresholds of 1.8–2.6°C
predicted in Jennings et al. (2018) for the four grid cells with
the most citizen science observations. Thus, the use of a common
lower air temperature threshold in these areas would produce
inaccuracies in annual and event-based rain-snow proportions.

Despite the utility of our citizen science data, it is also
important to consider potential limitations including a lack of
spatial and temporal variability. Most of the observations were
made during daylight hours (Figure 5) and many of the
observations were near population centers (Reno, Carson City,
and Truckee) and along roads (Figure 2). Similar limitations have
been observed in other direct-observation approaches (Harpold
et al., 2017). Future efforts will encourage observation at all times
of day as well as backcountry and remote observations. However,
even with these limitations, the citizen science dataset resulted in
a sufficient number of quality data points for precipitation phase
validation for both EPA Level III Ecoregions in the study area
(number 5 and 13) (Figure 2). Another source of error is the air
temperature predicted by our simple model. Although the high r2

and low mean bias suggests reasonable accuracy, there are
tradeoffs in combining multiple data sources from varied
locations with different measurement protocols. We also came
against the same problem with mixed precipitation as other
observational studies (e.g., Jennings et al., 2018), in that observers
do not report rain-snow proportions and therefore we cannot
validate precipitation phase partitioning methods that predict a
liquid-solid gradient from one air temperature threshold to
another. In this context, we considered mixed precipitation to be
liquid when computing 50% rain-snow air temperature thresholds,
similar to how it is treated in NASA’s Global Precipitation
Measurement (GPM) mission (Huffman et al., 2019). This
shortcoming suggests the need of additional quantitative studies
in areas that receive significant amounts of mixed precipitation
(Yuter et al., 2006; Avanzi et al., 2014; Wayand et al., 2017).

An alternative method to visual reports and model output is
the use of satellite and ground-based remote sensing data. GPM,
for example, provides estimates of precipitation phase in its
Integrated Multi-satellite Retrievals for GPM (IMERG) and
Dual-frequency Precipitation Radar (DPR) products, both of
which have their own shortcomings. Precipitation phase in
IMERG is, in essence, a reanalysis product where rain and
snow are partitioned using a wet bulb temperature threshold
(Sims and Liu, 2015). DPR, in contrast, provides precipitation
phase estimates from Ka and Ku band radar retrieval algorithms
(Iguchi et al., 2018). Despite technological advances, large errors
in DPR falling snow observations persist partly as a result of a lack
of validation data (Skofronick-Jackson et al., 2018). In this
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context, citizen science precipitation phase data, particularly
observations collected over a larger spatial extent, could
provide much-needed validation data and provide pathways
for improvement in GPM output.

CONCLUSION

Success, for the purpose of this study, is defined as meeting our
goals to: 1) recruit and retain citizen scientists, and 2) collect a
sufficient number of quality data points for precipitation phase
analysis. Here we have shown the successful application of citizen
science for ground-based precipitation phase observations. The
recruitment through messaging targeting winter, weather and
outdoor enthusiasts coupled with amplifiers to target group
members with similar interests, created a pool of citizen scientists of
both super-users and ‘dabblers’. The high retention rate (88%) was
potentially supported by the text message system and two-way
communication. Continued engagement throughout the winter and
spring through the text messages encouraged all participants to
continue to submit observations, provided further training
opportunities, and enabled two way communication with the
observers. In addition, simple, easy to use design of the survey may
have encouraged retention and high-quality data. Combined, these
factors contributed to the high data quality and high retention rate.

Ground-based observations have important applications for
validation of modeling and remote sensing of precipitation phase.
For example, Jennings and Molotch (2019) showed that in the
lower elevations of the Cascades and Sierra Nevada (e.g., warmer
snow areas), incorrectly identifying a rain-snow air temperature
threshold can produce significant errors in modeled snow
accumulation and melt. Here we show that citizen science offers
an approach to collect data of high quality and spatial and temporal
variability, with an engagement, recruitment and retention program
applicable to other studies.We recommend that other citizen science
projects consider implementing a targeted communication and
recruitment strategy, continued communication and feedback for
citizen scientists to encourage engagement, and an easy-to-use data
reporting system for quality assurance.
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