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Wildfire is one of the most common natural hazards in the world. Fire risk estimation
for the purposes of risk reduction is an important aspect in disaster studies around the
world. The aim of this research was to develop a machine learning workflow process
for South East China to monitor fire risks over a large region by learning from a grid file
database containing a time series of several of the important environmental parameters
largely extracted from remote sensing data products, and highlight areas as fire risk or
non-fire risk over a couple of weeks in the future. The study employed fire threshold
and the transductive PU learning method to identify reliable non-fire/negative training
samples from the grid file database using fire/positive training samples, labeled using
the MODIS MCD14ML fire location product. Different models were trained for the three
natural vegetation land covers, namely evergreen broadleaf forest, mixed forest, and
woody savannas in the study area. On the test dataset, the three models exhibited high
sensitivity (>80%) by identifying the majority of fires in the test dataset for all land covers.
The use of the reliable negatives identified though the fire threshold and PU learning
process resulted in low precision and accuracy. During the model verification process,
the model for the mixed forest land cover performed the best with 70% of verification
fires falling within the classified fire zone. It was found that the better representation of
mixed forest in the training samples made this model perform more reliably as compared
to others. Improving the individual models constructed for different land covers and
combining them can provide fire classification for a larger region. There is room to
improve the spatial precision of fire cell classification. Introducing finer scale features
that have higher correlation with fire activity and exhibit high spatial variability seems a
viable way forward.

Keywords: natural hazards, fire, remote sensing, machine learning, support vector machine, PU-learning, big
Earth data, digital disaster reduction

INTRODUCTION

Most of the forested ecosystem of the world face fire risk as a critical natural disturbance
(Chowdhury and Hassan, 2015; Lin et al., 2018, 2019; Hansen et al., 2020). Wildfires are a
formidable force that may cover thousands of acres and burn for many days (Coen and Schroeder,
2013). They can cause damages such as destruction and loss of property, damages to agriculture, and
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loss of biodiversity apart from deforestation and land degradation
(Yakubu and Duker, 2015). In the current context of global
warming, forests play an important role as carbon sinks,
dust absorption media, temperature and rainfall regulators, air
purifiers, and in preventing soil degradation (Liu et al., 2016), all
of which are disrupted as a consequence of fire activity reducing
the effectiveness of forest land cover. Wildfires are intense sources
of emissions of harmful gases into the atmosphere including trace
gases (CO2, CO, NOx, etc.) and fine aerosols (PM2,5) (Bondur,
2016; Bondur and Ginzburg, 2016).

The United Nation’s Sendai Framework for achieving
Sustainable Development Goals, adopted in 2015, emphasizes
risk reduction as compared to disaster mitigation. Fire
management and risk reduction requires risk assessments
that enable necessary preparation, planning, and allocation of
resources. Even though fires, individually, are globally frequent
events with random and sudden onset, nevertheless they
have certain seasonal and conditional regularities (Jiang et al.,
2012), with ecological and socio-economic factors effecting
the environmental conditions leading up to, or during, active
fire events (Guettouche et al., 2011). Modeling conditions
appropriate for wildfires will, therefore, provide an essential first
step in fire risk assessment.

There is extensive research literature on wildfires and forest
fires, with a large bulk focusing on the relationship between
fire activity and different climate parameters, such as but
not limited to precipitation, evapotranspiration, and potential
evapotranspiration and many others (Bondur, 2011; Bondur
et al., 2020). This is necessary because understanding the
influence of climate variables on fire risk helps to understand
the spatial and temporal distribution of fire occurrence and also
provides an important component to understand the human-
environment interactions leading to fire activity (Eskandari et al.,
2020a). There are broadly two main categories of fire risk
assessment tools. The first category deals with those that consider
current conditions to predict fire, assuming that the recent
historical conditions have remained relatively the same (Pye et al.,
2010). The second broad category deals with models that are
constructed to predict vegetation or climatic changes and the
consequent fire risk (Pye et al., 2010; Eskandari et al., 2020b).

In the past couple of decades, Earth observation capabilities
have significantly increased in several key aspects, including
data quantity, quality, processing capability, and increasing
accessibility to these data and processing resources (Wang et al.,
2012, Wang et al., 2020; Chen et al., 2017, 2018; Yu et al., 2018).
Satellite methods and technologies play a special role in the
early detection of wildfires primarily over vast areas (Bondur,
2011; Bondur et al., 2017, 2020; Bondur and Gordo, 2018).
These methods and technologies are also extremely effective
for assessing the aftermath of wildfires associated with negative
effects on the atmosphere caused by emissions of harmful gases
and aerosols (Bondur, 2011, 2016; Bondur and Ginzburg, 2016).
This has led to the concept of big Earth data, which highlights the
pooling of multidisciplinary concepts and resources to maximize
the benefits of this growing technological potential for Earth
systems science (Guo, 2017a,b). Big Earth data are simply big
data for Earth systems science and make use of traditional

fields such as mathematics, statistics, computer science, remote
sensing, geographic information systems (GIS), and the emerging
fields of machine learning, data mining, and artificial intelligence,
however, scale variance and complexities of spatial temporal data
add to the challenges of data processing unlike big data (Bondur,
2014; Guo et al., 2020).

Machine learning techniques have also been applied in
multiple wildfire-related studies, however, this is mostly a recent
phenomenon, heavily focused on in the last 15 years. Machine
learning has been applied in various aspects of wildfire studies,
such as burn area mapping (Brewer et al., 2005; Dragozi et al.,
2014), the importance of environmental variables in fire severity
and burn area (Fang et al., 2015; Yu and Chen, 2017), wild fire
distribution (Parisien and Moritz, 2009), ignition distribution
(Massada et al., 2013; Rodrigues and De la Riva, 2014), predicting
wildfires (Cortez and Morais, 2007; Jain and Bhatia, 2013),
modeling and mapping fire danger (Eskandari et al., 2020c), and
others (Chen and Yu, 2019; Yu et al., 2020; Chen et al., 2021).
All of these studies found that machine learning models provided
better accuracy as compared to other parametric approaches.

Machine learning is generally divided into supervised and
unsupervised machine learning based on the availability of labels
for classification of input data (Bondur, 2014). However, there
are a large variety of cases where labels are only available for the
positive class or class of interest (du Plessis et al., 2014). Such
problems require a special case of semi supervised learning called
“learning from positive and unlabeled data” or “PU learning”
for short. PU learning only requires positive examples and it
normally has two steps, (1) to identify reliable negative examples
from the unlabeled dataset, and (2) employ a classifier for
classification purposes (Liu et al., 2003; Chen, 2009; Han et al.,
2016, 2018). Various PU learning techniques have been developed
such as spy EM (S-EM) (Liu et al., 2002), positive example-
based learning (PEBL) (Yu et al., 2002), one class support vector
machine (Manevitz and Yousef, 2002), Roc-SVM (Li and Liu,
2003), weighted logistic regression (Lee and Liu, 2003), biased
SVM (Liu et al., 2003), and bagging SVM (Mordelet and Vert,
2014) to name a few.

The aim of this study was to develop a machine learning
workflow process to monitor fire risks over large regions that
can identify conditions appropriate for wildfires by learning from
a grid file database developed using data sources of several of
the important environmental parameters that can be estimated
using Earth observation platforms. Such a workflow not only
provides fire hazard managers a preliminary synoptic monitoring
capability and but also provides an opportunity for developing
informed data-driven policies and decisions to manage fire risks.

MATERIALS AND METHODS

Study Area
In China, large fires occur in large forests in the northeastern
and southwestern regions of the country (Tian et al., 2013), but
northern regions have received greater attention in literature
due to higher frequency of fire events. On the other hand,
the literature also suggests that southern China has high fire
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frequency of smaller fires compared to the north. Even in the
south, the south east (SE) region has high overall annual fire
activity, with peak fire activity in the winter months of December,
January, and February (Shirazi et al., 2017), and hence we focused
on this area in this study. Spatially, a MODIS tile defined
by horizontal 28 and vertical 06 was selected as the area of
interest for this study. Administratively, the provinces of Anhui,
Zhejiang, Jiangxi, Fujian, Hunan, Guangdong, and Guangxi fall,
completely or in some portion, in our study area (Figure 1).

According to the International Geosphere-Biosphere
Programme (IGBP) classification, the study area has dominantly
three types of forests, north of the study area is dominated
by mixed forests, which are generally a mix of the four forest
community classes identified by the IGBP system, with none
of the forest types exceeding 60% of the landscape.1 The
southern parts of the study area are dominated by evergreen
broadleaf forests. Woody savannas cover patches in the middle
of the study area mostly surrounded by the other two forest
types (Figure 2).

The study area falls in the humid subtropical zone,
with long warm summers with heavy rain and short mild
winters with light rain. Based on the observations made
from MODIS data in a previous study (Shirazi et al., 2017),
annual precipitation is variable, while evapotranspiration and
potential evapotranspiration are generally stable between the
years. The winter season was observed to receive less and
more variable precipitation in the region. Evapotranspiration
and potential evapotranspiration exhibited cyclic behavior
within a single year, with values highest during the summer
season and reaching the lowest point in winter and rising
again during spring. Dry conditions were observed to
be prevalent during autumn and winter in south east of
China. It was also observed that in the ET/pET ratio,
evapotranspiration did not always respond to an increase
in potential evapotranspiration, which suggested that during
the non-fire seasons, the atmospheric demand of water is
more effectively met compared to during the fire season and
was observed to be one of the main causes of fire-prone
conditions in the region.

Data Sources
A previous study (Shirazi et al., 2017) found a good correlation
of fire frequency with moisture balance, precipitation,
surface moisture balance, potential evapotranspiration,
and the ratio between evapotranspiration and potential
evapotranspiration in the SE region of China, during winter
months, suggesting sensitivity of fire activity to the relationship
between precipitation, evapotranspiration, and potential
evapotranspiration. For this reason, these parameters with the
addition of the normalized difference vegetation index (NDVI)
(Yool, 2001; Bondur and Vorobev, 2015) were selected for
this study. The estimation of these parameters using satellite
platforms has successively improved over the years and provides
the opportunity of a synoptic coverage allowing the monitoring
of fire conditions.

1eomf.ou.edu

All of the data used in this study were obtain from
remote sensing sources. This study used moderate resolution
imaging spectroradiometer (MODIS) and tropical rainfall
measuring mission (TRMM) data products. The Terra and
Aqua satellites carry MODIS instruments which observe the
complete Earth surface approximately every 2 days2. MODIS has
been a key instrument for studying different aspects of global
terrestrial and oceanic processes due to its impressive 36-band
spectral resolution. This study used MODIS’s evapotranspiration,
potential evapotranspiration, NDVI (for vegetation conditions),
and land cover products (for forest cover isolation). For
precipitation, TRMM products were utilized. The TRMM
satellite ended its data collection mission on April 15, 2015.
However, it has produced a 17-year long precipitation dataset
using a three-sensor rainfall suite (PR, TMI, and VIRS). The time
period considered in this study was 2001–2014. The list of data
products and the features used for the classification model and
processing applied, if any, have been presented in Table 1.

Methodology
The aim of this exercise was to train support vector machine
(SVM) models with fire and non-fire gird cells based on a time
series of parameters and evaluate their performance on the test
dataset for model evaluation. The time series of environmental
parameters would allow for the mapping of changes within
them before an individual fire event and possibly provide usable
information for a machine learning algorithm to learn from
these changes and classify unlabeled new grid cells as fire or
non-fire grid cells. The methodology builds a database that
can be updated/improved over time and provides the capability
to classify conditions at grid cells, highlighting areas as fire
risk or non-fire risk over the coming weeks using time series
(presently sampled at an interval of eight days) of several
climatic parameters.

Building a Grid File Database
As a first step, an empty grid file was created using the extent of
the study area (Figure 2) for each date of the study period that
had even a single fire event detected (MCD14ML fire location
product) anywhere within the study area. Each grid file therefore
represented the date of a single or a collection of fire events
anywhere in the study area within the study period. The basic
unit of this study was defined as a cell (a grid cell), with a spatial
resolution of 250 m, which was the smallest uniform division of
the study area (as can be visualized in Figure 2). Afterward, all
grid files were populated with data for different environmental
parameters (features) using the relevant remote sensing products
(Table 1) by overlapping the grid file over the selected image and
extracting data from the pixel corresponding to the center of the
each cell in the grid file. For all environmental parameters, data
were extracted from the images on the date of the fire event(s),
for which the grid file was created (Eventd) and from images
prior to the fire event, i.e., 8 days before (8db), 16 days before
(16db), 24 days before (24db), 32 days before (32db), 40 days

2https://ladsweb.modaps.eosdis.nasa.gov/missions-andmeasurements/modis/
(accessed February 24, 2021).
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FIGURE 1 | Study area, location, and administrative coverage of study area.

before (40db), 48 days before (48db), 56 days before (56db), 64
days before (64db), 72 days before (72db), 80 days before (80db),
88 days before (88db), and 96 days before (96db) the event day.
In other words environmental parameters were sampled on every
8th day for 3 months on and prior to the fire event. The 8-
day sampling was due to the minimum temporal resolution of
the total dataset, i.e., the temporal resolution of MODIS data
used. Each cell, within a grid file, therefore was a time series of
different environmental parameters for the space it represented
within the study area, extending from three months prior to the
date of the fire event(s)/grid file. Similarly, each column in a
grid file represented data extracted from a single image in the
time series. Within each grid file, only the grid cells defined by
evergreen broadleaf forest, mixed forests, and woody savannas
land covers were used in the study and the remaining grid cells
were left empty as only these three represented natural vegetative
land cover within the study area. Hence, a database of 312 grid
files, each containing approximately 27,256 grid cells, was created
covering a period of 12 years (2003–2014).

Sampling Database
In each grid file of the database, there were two classes of grid
cells, (1) grid cells with no fire information hence undefined, as
either non-fire or fire, and remained unlabeled, (2) grid cells with

at least one fire, as detected by MODIS’s MCD14ML data product.
These were labeled as 1 which is generally termed as positive
class. The unlabeled grid cells were not treated as non-fire grid
cells (negative class) because the absence of a fire event does not
imply that the conditions in a particular cell were not fire-prone.
It is comprehensible that the difference between a fire and an
unlabeled cell might simply be the absence of an ignition source.
Therefore, the first priority was to identify reliable non-fire grid
cells from the set of unlabeled grid cells of all grid files.

Since all grid files in the database represented the same
geographical space, a unified input was desirable for model
training so that the grid cells, both positive and negative class
examples, at different temporal intervals of the study period could
be used to train the machine learning algorithm. Furthermore a
single condensed dataset allowed for a simpler implementation
of the model. However, it would have been computationally
infeasible to process a large dataset formed by combining all
the grid files together. Therefore a sampling technique was
needed with two objectives, (1) to filter interesting grid cells
for data analysis to minimize the loss of valuable data records
and, (2) create a single dataset for efficient and simplified
implementations of the machine learning algorithm.

Furthermore, it was also necessary to balance the two
classes before training the machine learning model, as a
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FIGURE 2 | Vegetation zones in study area as defined by the MODIS MCD12Q1 product. The region is predominantly covered with mixed forests, followed by
evergreen broadleaf forests, and woody savannas when considering natural vegetation.

TABLE 1 | Features used for fire risk classification model and processing involved.

No. Parameters Abbreviation Data product Spatial
resolution

Processing step

1 Fire location – MCD14ML Center of
1 km pixel

These data were used to identify fire dates, i.e., date of fire event(s)
in any cell of the study area. These data were also used to label
cells as positive class if any fire point fell within a cell.

2 Precipitation PPT 3B43 (V7) 0.25o
×

0.25o
Eight-day mean image was calculated using daily precipitation data
from the date of the fire event to 7 days in the past. Afterward,
8-day mean precipitation data were added to the cell for fire event
day, 8db, 16db, 24db, 32db, 40db, 48db, 56db, 64db, 72db,
80db, 88db, and 96db as separate features.

3 Evapotranspiration ET MOD16-A2 500 m No processing was required. ET data were added to the cell for fire
event day, 8db, 16db, 24db, 32db, 40db, 48db, 56db, 64db, 72db,
80db, 88db, and 96db as separate features.

4 Potential
evapotranspiration

PET MOD16-A2 500 m No processing was required. PET data were added to the cell for
fire event day, 8db, 16db, 24db, 32db, 40db, 48db, 56db, 64db,
72db, 80db, 88db, and 96db as separate features.

5 Normalized difference
vegetation index

NDVI MOD13Q1 MYD13Q1 250 m No processing was required. NDVI data were added to the cell for
fire event day, 8db, 16db, 24db, 32db, 40db, 48db, 56db, 64db,
72db, 80db, 88db, and 96db as separate features.

6 ET/pET ratio ET/pET MOD16-A2 500 m Ratio between ET and PET was calculated. Afterward ET/pET data
were added to the cell for fire event day, 8db, 16db, 24db, 32db,
40db, 48db, 56db, 64db, 72db, 80db, 88db, and 96db as
separate features.

“db” is abbreviation for “days before.”
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model might simply demonstrate higher predictive accuracy by
misclassifying all instances in the input dataset as belonging
to the majority class. At a data level, there are generally two
methods more commonly used in re-sampling datasets, random
under-sampling and random oversampling (Chen, 2009). Under-
sampling reduces the majority class, which in our study are
the unlabeled grid cells, whereas the oversampling technique
increases the minority class which in our case are the fire
grid cells. The random oversampling technique for the current
dataset is infeasible because of the huge imbalance between the
majority and minority samples, furthermore the size of the data
is already an issue; the simple oversampling technique would
make data management more complicated. The random under-
sampling technique on the other hand risks the loss of valuable
data records that may affect the performance of the models.
Another technique is the hybrid approach in which both under-
sampling and oversampling techniques are employed, which has
be observed to have better performance in the ROC (receiver
operator characteristics) space (Chawla et al., 2002).

Initially, before sampling each grid file, outliers were
removed using the isolation forest model. To achieve the
sampling objectives, a hybrid approach was adopted, by initially
applying majority under-sampling using criteria-based selection
of records, as opposed to random sampling. The criteria-based
sampling technique applied in this study allowed identification
of the likely non-fire grid cells by sampling of unlabeled data with
a bias toward finding non-fire samples. Previous literature has
identified that class overlap adds to the difficulty of classifying
imbalanced datasets and have proposed several methods that
use the proximity to positive instances as a means to remove
overlapping negative instances (Vuttipittayamongkol and Elyan,
2020). However, since at this stage the entire dataset was divided
into different grid files, therefore the volume and structure of the
dataset prevented the adoption of a similar methodology.

In a multi-dimension feature data space, defined by features
that have a direct proportional relation with fire, and with
the understanding that lower values of these features make
conditions feasible for a fire event in the case of an ignition
event, it is understandable that all the fire points should lie closer
to the lower values or the origin of the data space. Therefore,
it is logical to assume that the data points that are at farther
away from the origin as compared to the known fire points
are likely non-fire data points. Learning from the cluster-based
majority under-sampling prediction (CBMP) technique (Zhang
et al., 2010), each cell in each grid file was plotted in a Euclidean
space defined by PPT, NDVI, MB, and ET/pET ratio on “the
day of the fire event” (Eventd) because these are the features
that have a proportional correlation with fire. An increase or a
decrease in these parameters would likely result in an increase
or decrease in fire risk, respectively. A fire threshold was then
defined, which was the mean Euclidean distance of fire points
from the minimum cell value within each individual grid file.
Unlabeled grid cells beyond this fire threshold were more likely
to be non-fire grid cells with increasing probability as distance
increased. Unlabeled grid cells, 10 times the number of fire cells
in each individual grid file, were sampled beyond this threshold,
with a bias toward selecting grid cells at a greater distance

from the fire threshold, for each land cover and allowed for
removing overlapping negative examples from within each grid
file. All of the grid cells that were labeled as fire grid cells were
selected without any sampling as they were the minority positive
class in each file.

The collective sampled unlabeled grid cells beyond the fire
threshold and fire-labeled grid cells from all grid files were then
combined into a single data file. The features that were used in
this process were removed from the times series to avoid any bias
in the future model. Two files were created from this process,
all grid cells sampled (fire and unlabeled) from 2003 to 2011
were combined into a single preliminary training file and all the
grid cells sampled (fire and unlabeled) from 2012 to 2014 were
combined into a single test file. Both of these files still had class
imbalance but a reduced number of unlabeled grid cells which
were likely non-fire. The training file had a total of 84,033 records,
with 82,351 unlabeled and 1,682 positive-labeled records for all
land covers combined. The test data had a total of 9,078 records
with 8,900 unlabeled and 178 positive-labeled examples for all
land covers combined.

Identifying Reliable Non-fire Grids
Afterward, a PU learning technique was implemented to identify
reliable non-fire grid cells from the set of the likely non-fire
grid cells in the training file. Afterward, a PU learning technique
was implemented (Figure 3) to identify reliable non-fire grid
cells from the set of the likely non-fire grid cells in the training
file. Mordelet and Vert (2014). For PU learning, a number (K)
of models were trained for each land cover on K subsets of
training data. These subsets were constructed with all the fire
grid cells and an equal number of randomly sampled unlabeled
grid cells (with replacement). The model was then tested on
the remaining dataset and combined using the majority voting
technique (Figure 4). For this study K was set to 1,000. Afterward,
the percentage of each cell was calculated for the number of
times it was classified as non-fire out of a total of K times. If
the percentage was equal to or greater than 95, then the grid
cells were sampled from each land cover along with all the grid
cells labeled as fire and were combined into an updated new
final training dataset, with unlabeled records now considered as
reliable negatives and labeled as ‘0’ or as non-fire class examples.
This training file had 21,369 records labeled as non-fire and 1,682
records labeled as fire for all land covers combined. The same
process was repeated for the test file as well. This test file had
1,766 records labeled as non-fire and 178 records labeled as fire
for all land covers combined.

Training Supervised Machine Learning Algorithm
The training and test files both had a total of 65 features. Before
training, model feature selection was carried out by applying a
two-fold cross validation loop for SVM on the training dataset.
For this purpose, recursive features elimination using a linear
SVM kernel was employed. The features identified are presented
in Table 2. Different models (a total of 3) were trained for
different land covers using the relevant features identified. After
the data preprocessing and preparation steps, the final training
datasets were used to train SVM models for each of the land
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FIGURE 3 | The PU learning process.

covers using Scikit-learn’s implementation of the SVC (support
vector classification) algorithm in the Python programming
environment. Since, the training datasets had class imbalance and
SVM requires a balanced dataset as an input, therefore, a minority
oversampling technique called synthetic minority over-sampling
technique (SMOTE) was incorporated in the final model.

Testing and Implementation of SVM Model
Since the SMOTE model was incorporated in the training phase
of the model, therefore the training and testing process was
carried out iteratively 10 times so that the randomness introduced
as a result of SMOTE analysis could be reduced. Average results
of the model metrics (e1–e6) have been presented in Table 3 for
a total of 10 iterations for each land cover in the test dataset.
After training and testing of the machine learning models, their
performance was verified to assess their predictive ability in real-
world implementation. For this purpose a total of seven grid files
(verification grid files) were selected from the year 2014. These
files were selected from the months of November to February
which usually constitute the fire season in the study area. These
verification grid files were then classified using the same model

parameters selected during the training and testing stages. The
classification results were then verified using a set of verification
fires. Verification fires were fire event locations from MODIS’s
MCD14ML data product on the date of the verification grid files
and seven days in the future from that date (fires locations for a
period of eight days from the date of the verification grids file).
So verification was a two-step process, (1) classify verification
grid files into fire and non-fire grid cells using the model trained
and, (2) overlay relevant verification fires on top of respective
verification grid files and evaluate the performance of the model
on the basis of the number of verification fires falling in the
correct fire class.

Model Evaluation on Test Dataset
Table 3 gives a detailed report of the performance of different
models for different land covers across various evaluation metrics
(e1–e6). None of the models performed well with accuracy and
precision metrics, however, sensitivity showed that all models
could identify the majority of fires in the test dataset. Low
precision and accuracy were expected as negative examples used
in the test dataset were not true negatives and were only identified
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FIGURE 4 | Verification results of models for each of the three land covers. “Combined” refers to the collective percentage of verification fires in all the three land
covers studied. (A) Fires with low confidence level (>80%), and (B) fires with higher confidence level (>95%).

TABLE 2 | Features selected.

Sr. Land cover Features

1 Broadleaf evergreen forest ’ET_72db’, ’PET_8db’, ’ET/pET_8db’, ’ET/pET_24db’, ’ET/pET_48db’, ’NDVI_8db’, ’NDVI_24db’, ’NDVI_56db’,
’NDVI_80db’, ’PPT_96db’

2 Mixed forests ’ET_32db’, ’PET_8db’, ’ET/pET_56db’, ’ET/pET_72db’, ’ET/pET_96db’, ’NDVI_8db’, ’NDVI_16db’, ’NDVI_56db’,
’NDVI_96db’

3 Woody savannas ’ET_32db’, ’PET_32db’, ’PET_48db’, ’PET_64db’, ’PET_80db’, ’ET/pET_8db’, ’ET/pET_88db’, ’NDVI_16db’, ’NDVI_40db’

TABLE 3 | Accuracy metrics for models (test dataset).

Sr. Land cover Ave. accuracy (%) Ave. sensitivity (%) Ave. specificity (%) Ave. precision FP rate (%) FN rate (%)

1 Broadleaf evergreen forest 62.7 81.40 60.81 0.17 39.19 18.60

2 Mixed forests 62.55 82.02 60.58 0.17 39.42 17.98

3 Woody savannas 59.06 88.69 56.07 0.17 43.93 11.31

as reliable negatives using a fire threshold and the PU learning
process. The presence of grid cells labeled as negatives in the test
dataset that were similar to the fire grid cells led to a large number
of false positives and overall reduced accuracy and also lower
precision. The false positive (FP) rate was very high suggesting
that close to half of the non-fire grid cells in test set were
similar to fire grid cells in the training dataset. Whereas the false
negative (FN) rate was very low, suggesting that the majority
of the fire grid cells were correctly classified. These results
suggest that the models can classify fire grid cells with a bias
toward sensitivity.

Model Accuracy =
CorrectPredictions
Total Predictions

(1)

Sensitivity =
TP

(TP+ FN)
(2)

Specificity =
TN

(TN+ FP)
(3)

Precision =
TP

(TP+ FP)
(4)

False Positive Rate =
FP

(TN+ FP)
(5)

False Negative Rate =
FN

(TP+ FN)
(6)
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RESULTS AND DISCUSSION

Figure 4 provide the verification results of models for each of the
three land covers, while Figure Figure 5 focuses on the model
performance for mixed forest land cover. Figures 6–12 provide
the overall results of the classification and the location of the
verification fires.

Figures 5–11 provide the overall results of the classification
and the location of verification fires. These images were classified
into “Non-fire zone” – collection of grid cells classified as fire grid
cells and “Fire zone” – collection of grid cells classified as non-
fire grid cells. The verification fires were the collection of fires
from the MCD14ML data product. The verification fires were
used as corroborating evidence that the fire zone was correctly
classified as future fire events have been recorded in the fire
zones suggesting that the information on fire-prone conditions
captured by the model can be used to classify environmental
conditions as fire-prone. Therefore, the number of verification
fires falling within the fire class was used as a metric to
evaluate the performance of the model in real-world practical
implementations. The verification fires were divided into two
groups. The first group had fires with a confidence level >80%,
as defined by MCD14ML data product which is the same as the
fire grid cells that were used to train the models. The second
group of verification fires was the subset of the first group and
only included verification fires with a confidence level over 95%,
as defined by the MCD14ML data product. Higher confidence
generally results in fewer false detections and therefore increases
the confidence in model performance if these high confidence fire
detections fall within the fire zones.

Figure 12 gives the overall performance of the three models
combined. Collectively for the entire study area, the three
models identified approximately 60% of fires consistently for each
individual grid file. Percentages were slightly better in almost
all verification files when high confidence fires were considered
(Figure 12B). Looking at the individual performances of the three
models developed for evergreen broadleaf forest, mixed forest,
and woody savannas land covers, mixed forest comes out as the
best model with consistent results mostly above 70%. However,
models for evergreen broadleaf forest and woody savannas
performed poorly with highly inconsistent results. Percentages
of verification fires inside fire zones improved considerably
when only considering higher confidence verification fires. With
the exception of verification data from December 19, 2014 –
December 26, 2014, the mixed forest model performed well with
both high and low confidence verification data.

The weakest performance of the mixed forest model was
observed for the fire data from November 17–24, 2014,
November 25–December 1, 2014, and December 19–26, 2014
with 66.67, 40, and 66.67% of fires from verification files falling in
the fire zone. Looking at Figure 5B an interesting observation can
be made, with the exception of verification data from December
19–26, most of the verification fires that fell into the non-
fire classification had a confidence level lower than 95. This
suggests that the quality of verification fires used also affected
the verification results. For example, the lowest performing
verification data from November 25–December 1 did not have

any high confidence fires and therefore was likely the reason for
the low percentage of verification fires falling within the fire class.
The verification fires that were in the non-fire classification zones
from November 17–24 and November 25–December 1 were fires
from lower confidence levels. However, the nominal performance
with low confidence verification fires and drop in number of high
confidence verification fire from December 19–26 in the mixed
forest fire risk zone cannot be explained. There might be some
other underlying factors contributing to this behavior that has not
been considered in this study.

Several factors were identified that led to the differences in
performance between different models. First of all the study area
selected had a much broader spatial coverage of mixed forests
(10,866 grid cells), which was more than the combined number
of grid cells that constitute the area of the other two land cover
classes (4,860 grid cells for broadleaf evergreen forests and 4,588
grid cells for woody savannas). Understandably, the number of
fire training samples in the mixed forest (692) was also larger
than the other two land cover classes (415 for broadleaf evergreen
forests and 575 grid cells for woody savannas). This provided the
mixed forest model with a higher number of fire grid cells during
the training stage. Another important factor was the number
of training grid cells drawn from an individual grid file created
for a particular date, as it improved the ability of the model to
capture more information on conditions prevalent during that
particular date. Even though, the number of grid files from which
training samples were drawn was highest for woody savannas
(156) as compared to mixed forest (134) and broadleaf evergreen
forest (119) but the number of the training fire grid cells drawn
from each individual grid files put the mixed forest land cover
at an advantage as it had a larger percentage of grid files (50%)
from which samples greater than 2 were drawn as compared
to 48% for broadleaf evergreen forest and 41.02% of woody
savannas land covers.

Representation also becomes more important in the context
of PU learning as these fire grid cells were used to identify
reliable negatives. The larger the number of samples representing
fire conditions, the more reliable the negatives would be when
identified through the PU learning process. Another important
reason for the better performance of the mixed forest model
may be the environmental parameters chosen for the study.
Looking at the correlations in a previous study (Shirazi et al.,
2017), it can be observed that most of the stronger correlations
are predominantly in the mixed forest region. This suggests
that these climatic parameters better represent the relationship
between climate and mixed forest land covers as compared to the
other two. So, sample representations combined with the feature
representation for mixed forests resulted in a better model for
mixed forest land cover.

Looking at the verification results beyond the inter-model
performance, overall several important factors were observed to
have contributed to the performance of the model demonstrated
in this study. Initially it is important to highlight that verification
of the model in real-world conditions was challenging as there
was no benchmark dataset to verify if the fire or non-fire
girds cells were correctly classified. In a real-world scenario,
non-fire conditions are very difficult to label as any gird cell
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FIGURE 5 | Verification fire distribution in the mixed forest land cover compared to the verification fire falling in the fire zone. (A) Fires with low confidence level
(>80%), and (B) fires with higher confidence level (>95%).

FIGURE 6 | Classification and verification results for 2014-01-01.
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FIGURE 7 | Classification and verification result for 2014-01-17.

FIGURE 8 | Classification and verification results for 2014-01-25.
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FIGURE 9 | Classification and verification results for 2014-02-02.

FIGURE 10 | Classification and verification results for 2014-11-17.
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FIGURE 11 | Classification and verification results for 2014-11-25.

FIGURE 12 | Classification and verification results for 2014-12-19.
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without ignition/trigger is a non-fire grid. The PU learning
component of the process helped to identify reliable negatives,
however, they were limited by the variance of fire conditions
captured by the fire-labeled grid cells in the database. If a training
dataset captures a broad range of environmental conditions
prone for fire events, it can compute a more accurate decision
boundary between the two classes.

Broadly it can be understood that verification fires will fall
outside the classified fire zone if (1) the conditions change
with time and environmental conditions at the previously
non-fire grids change to fire-prone – in this case (a) if the
environmental conditions change within a time frame shorter
than the resolution of the observed time series (approx. a
week), the verification fires will fall outside the classified fire
zone as the model was trained using environmental data a
week prior to fire event and, (b) classification results will
become obsolete with time depending on the pace of changes
in environmental conditions, (2) if the training data lack
examples similar to the verification fires then it might not
have taken this into consideration when drawing the decision
boundary to separate the two classes – in this case increasing
the training data will help to improve model performance
as was observed in the case of the mixed forest model, (3)
the environmental parameters used lacked sufficient predictive
ability and therefore required the addition of more features
that can help explain certain verification fires not falling within
the classified fire risk zone. Understandably, the verification
results were the result of interplay of all of these factors
highlighted above.

The temporal resolution of the time series seems to
be capturing the variations within different environmental
parameters providing good information for the model to learn
the trends that are leading to fire-prone conditions. However,
there is room to improve the spatial precision of fire risk
classification. Using high spatial resolution images for these
climatic parameters may not be useful, as spatial variability in
climatic parameters is not very high. Nevertheless identifying and
introducing finer scale features that have a good correlation with
fire activity and exhibit higher spatial variability as compared to
the environmental parameter used in this study should provide
the necessary improvement in the learning ability of the model.

One of the limitations of this study was the loss of valuable
positive examples for training and testing data at the database
development stage. This loss was largely due to incomplete
information within individual records. The strategy adopted in
this study was to remove the entire records if it had even a
single missing value in one of the features. It is likely that the
performance of all the models can be improved by calculating
generalized values for these erroneous or missing values. This
is an important consideration for future improvements to the
methodology. In the future, it may also be interesting to see
if the MODIS fire burn area product may be used for labeling
fire grid cells.

Overall, the performance of the model and the designed
methodology can both develop by improving the different
limitations of the model identified above and by improving the
methodology of verification. The role of each factor affecting

the model performance can be evaluated through detailed
studies in the future.

CONCLUSION

Models constructed for different land covers exploiting the
relationship between fire and environmental parameters
including precipitation, evapotranspiration, potential
evapotranspiration, moisture balance, and NDVI show that
these parameters have the potential for use in estimating
fire risk through the use of a classification algorithm. It also
highlights that the information within the three-month time
series of these climatic parameters provides valuable information
about the interlinked and underlying changes leading to fire-
prone conditions. The PU learning technique has the ability
to identify reliable negative results provided ample reliable
positive samples are available. However, there is much room
for improvement for its use in fire risk classification as
implemented in this study.

The model performed best for the mixed forest land
cover as compared to the broadleaf evergreen forest and
woody savannas land covers most likely because of the better
representation of mixed forest in the training samples. It
is likely that models for the other two land cover classes
might improve in performance if training data are improved.
It will also be interesting to see if the volume of training
data by including data from other similar regions can
improve the results. It was also realized that if multiple
models can be constructed for different land covers, they
can be combined to provide fire gird classification for
an entire region.
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