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The salt layer is critical for the structural deformation in the salt-bearing fold-and-thrust
system, which not only acts as the efficient décollement layer but also flows to form salt
tectonics. Kuqa Depression has a well-preserved thin-skinned fold-and-thrust systemwith
the salt layer as the décollement. To investigate the effects of salt thickness on the
structural deformation in the Kuqa Depression, three discrete element models with
different salt thicknesses were constructed. The experiment without salt was controlled
by several basal décollement dominant faults, forming several imbricate sheets. The
experiments with salt developed the decoupled deformation with the salt layer as the
upper décollement (subsalt, intrasalt, and suprasalt), significantly similar to the Kuqa
Depression along the northern margin of Tarim Basin. Basal décollement dominant
imbricated thrusts formed at the subsalt units, while the monoclinal structure formed at
the suprasalt units. The decoupled deformation was also observed in the tectonic
deformation graphics, distortional strain fields, and max shear stress fields. However,
the salt layer was thickened in the thick salt model, and the salt thickness of the thin salt
model varied slightly because the thin salt weakened the flowability of the salt. The lower
max shear stress zone was easily formed in the distribution region of salt under the action
of compression stress, which is conducive to the flow convergence of salt and the
crumpled deformation of interlayer in salt. The results are well consistent with the natural
characteristics of structural deformation in the Kuqa Depression. Our modeling result
concerns the structural characteristics and evolution of salt-related structures and the
effects of salt thickness on the structural deformation in the compressional stress field,
which might be helpful for the investigations of salt-related structures in other salt-bearing
fold-and-thrust belts.
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INTRODUCTION

The Kuqa Depression is a peripheral foreland basin placed at the
southern piedmont of Tianshan Orogen, Northwest China
(Figure 1). It develops from the Late Permian to Quaternary
with strong compressional deformation since the late Cenozoic
(Nishidai and Berry (1990); (Lu et al., 1994; Yin et al., 1998; Lu
et al., 1999; Liu et al., 2000)). Bounded by the Kuqa River, the
depression can be divided into the eastern Kuqa Depression and
the western Kuqa Depression (Xin et al., 2002). From the north to
south, five main structural belts are divided according to the
different structural features in the western Kuqa Depression: the
North structural belt (NSB), Kelasu structural belt (KLSSB),
Baicheng sag (BCS), Qiulitage structural belt (QLTGSB), and
the South basement slope belt (SBSB) (Figure 1) (Yin et al., 1998;
Xin et al., 2002). As one of the most important hydrocarbon-
bearing evaporite basins in China (Yu et al., 2014; Feng et al.,
2018; Song et al., 2019), numerous salt-related structures were
widely developed in the Kuqa Depression, especially in the Kelasu
structural belt with obvious topographic relief features and
obvious structural deformation features (Tang et al., 2004; Wu
et al., 2014; Yu et al., 2014; Wu et al., 2015a; Zhao and Wang,
2016; Wang et al., 2017; Neng et al., 2018).

In recent years, based on structural analysis of seismic profiles
with the application of several structural analysis techniques, such
as the interpretation or balanced analysis of seismic profiles (Li and
Qi, 2012; Neng et al., 2012; Neng et al., 2013; Yu et al., 2015; Hou
et al., 2019), the area–depth–strain method (Xie et al., 2015; Wang
et al., 2017), and the Coulomb wedge theory (Suppe, 2007; Lin
et al., 2017), and structural simulated techniques, such as the
sandbox physical simulation (Wang et al., 2010; Yin et al., 2011;
Li and Qi, 2012; Xu et al., 2012; Wu et al., 2014) and numerical
simulation (Wang et al., 2010; Xu et al., 2012; Li W. et al., 2017;
Duan et al., 2017; Li, 2019; Li et al., 2020), further understanding
has been obtained on the research of structures in the Kelasu

structural belt. In many compressional salt-bearing basins around
the world, the rock salt, as the important décollement layer, has
been demonstrated to have important impact on regional
structural evolution (Cotton and Koyi, 2000; Wu et al., 2014;
Wu et al., 2015b). Meanwhile, much attention has been paid on
the differential thickness distribution of Kumugeliemu salt and
Jidike salt in the western and eastern Kuqa Depression (Chen et al.,
2004; Tang et al., 2004; Li et al., 2012; Yu et al., 2014; Tang et al.,
2015; Zhao and Wang, 2016; Wang et al., 2017). How did
differential thickness distribution of these two salt layers
influence the structural deformation in the western and eastern
depression? It is worthy of further research to explore the influence
of the differential thickness of rock salt on the structural evolution,
especially from the perspective of experimental simulation.

In this study, two seismic profiles were presented to reveal the
differential structural deformation caused by the difference in the
thickness of the salt layers. Besides, three two-dimensional
discrete element models with different salt thicknesses were
constructed to investigate the characteristics of the differential
structural deformation in the western Kuqa Depression. The
experimental setup, the model construction technique, the
material, and the wall properties were prescribed. Based on
three simulation experiments, we focused on the internal
relationship between the experimental results and structural
deformation characteristics in the northern margin of the
Kuqa area, e.g., the formation of the "accommodative space" in
the salt strata and the crumpled deformation of the dolomite
interbed in the Kelasu structural belt.

GEOLOGICAL SETTING

The Kelasu structural belt is a strong structural deformation belt
placed at the northern part of the western Kuqa Depression
(Figure 1). The stratigraphy of the Kuqa Depression has been

FIGURE 1 | Structural units of the Kuqa Depression, Tarim Basin.
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FIGURE 2 | Stratigraphy of the Kuqa Foreland Basin.

FIGURE 3 | Two interpreted models of seismic profiles in the northern margin of western Kuqa Depression. (A) The thick salt model. Interpreted seismic section
Line 1 (see Figure 1 for location) of the western Kelasu structure in the western Kuqa Depression; data revised from Wang et al. (2017). (B) The thin salt model.
Interpreted seismic section Line 2 (see Figure 1 for location) of the eastern Kelasu structure in the western Kuqa Depression; data revised from Wu et al. (2014). The
prekinematic strata (syn, isopachous layer) interval whose initial stratigraphic thickness is constant above a salt structure. It records sedimentation before salt
movement. The synkinematic layer accumulated during salt flow and may include internal onlap or truncation. The subsalt strata were sedimentary units immediately
underlying salt.
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summarized regionally (Yin et al., 1998; Chen et al., 2004;Wang et al.,
2011). Isolated by the evaporative rock salt, the stratigraphic column
could be subdivided into three parts (Figure 2): (1) Palaeozoic and
Mesozoic subsalt basement; (2) the Palaeocene–Eocene
Kumugeliemu (E1-2km) evaporative rock salt; and (3)
Eocene–Quaternary overburden which is composed of old strata
to young strata by Suweiyi formation (E2-3s), Jidike formation (N1j),
Kangcun formation (N1k), Kuqa formation (N2k), and Xiyu
formation (Q1x). The strata E2–3s to N1k were interpreted as
prekinematic strata (Figure 3A) which were deposited before salt
flow began. The prekinematic strata (syn, isopachous layer) interval’s
initial stratigraphic thickness is constant above a salt structure
(Jackson and Talbot, 1991). These record sedimentation before
salt movement. The strata N2k to the Quaternary (Q) were
interpreted as synkinematic strata (Figure 3A) which accumulated
during salt flow and may include internal onlap or truncation
(Jackson and Talbot, 1991; Wu et al., 2014). The thickness of the
synkinematic sedimentation is about 6–8 km in the western Kuqa
Depression (Wang et al., 2011). According to the interpreted seismic
profiles (Figure 3), the differential thickness and the vertical
distribution of the salt layer were presented, i.e., the thick salt
model with ca. 1,000m salt in the western Kelasu structural belt
(Wu et al., 2014) and the thin salt model with ca. 200m salt in the
eastern Kelasu structural belt (Wang et al., 2017). Several typical
structural characteristics were summarized as follows based on the
comprehensive comparison and analysis of typical seismic profiles.

The Western Kelasu Structural Belt
The salt layer was thickened in the thick salt model (Figure 3A)
because the flowability of the salt could be enhanced. The fault F1
(Figure 3A) pinched out on the salt layer. Two major décollement
levels exist in Kuqa Depression, i.e., an upper décollement with
salt–gypsum lithologies (the Paleogene–Miocene Kumgeliem and
Jidike strata) and the lower décollement mostly within Jurassic coal
and mudstone strata (Wang et al., 2011). Imbricate thrust faults and
duplex structures linking the two décollements developed with salt
thatflowed into the cores of the duplex structure (F1, Figure 3A). The
differences in the geometries of salt structures in different regions
show that the thickness of the salt sequences has an important
influence on the development of salt-cored décollement folds and
related thrust faults in the Tarim Basin (Wu et al., 2014).

The Eastern Kelasu Structural Belt
The fault F2 (Figure 3B) in the piedmont thrust fold belt of the
Kuqa Depression directly cuts through all the layers and nappes
to the shallow strata from the deep of orogenic belts. The thin salt
between the salt substratum and the slat superstratum shows no
obvious rheological properties, so the salt thickness shows little
variation (Figure 3B).

EXPERIMENTAL METHOD AND MODEL
SETUP

The discrete elementmethod (DEM) has been applied to the study of
geological and geophysical problems in recent decades (Hardy et al.,
2009; Yin et al., 2009; Liu et al., 2015; Morgan, 2015; Botter et al.,

2016; Buiter et al., 2016; Morgan and Bangs, 2017; Li, 2019; Li et al.,
2020; Xu et al., 2021). A full, detailed description of the theory behind
this modeling approach and its application to geological problems is
given byMorgan (2015) and Li C. et al. (2017, 2018, 2021), Li (2019).
A geological body is simplified into an assemblage of ball elements
which obey Newton’s equations of motion and can move under the
action of the forces which are generated by interaction with pairs by
elastic springs. Our implementation of DEM in the discrete element
software ZDEM was summarized by Li (2019).

Three experiments presented here were all initialized by
randomly generating particles within a 40 km wide × 14 km–tall
domain. Particles were allowed to settle under gravity, bound by
two vertical walls and a basal row of fixed particles. The resulting
particle assembly was 40 km wide and 5 km thick, and values were
chosen to allow typical sedimentary covers to be modeled, large
absolute values of convergence to be achieved, and model
boundaries to be far from the locus of deformation (Figure 4).
The particle packing consisted of 12,234 particles, with uniform
distribution radii of 60.0 and 80.0 m. To examine the influence of
salt thickness on the structural deformation, three experiments
were carried out on initially identical homogeneous packings and
boundary and initial conditions and dimensions but using different
sets of the salt thickness (Figure 4). As a reference experiment,
there is no salt layer in Exp. 1. The salt thickness of Exp. 2 was set to
ca. 300 m tall, and the salt thickness of Exp. 3 was set to ca.
1,000 m tall.

FIGURE 4 | Initial models. (A) Reference experiment without salt. (B)
Experiment with thin salt (ca. 300 m tall). (C) Experiment with thick salt (ca.
1,000 m tall). White and gray denote the subsalt stratum. Red denotes the salt
layer. Blue and gray denote the prekinematic layer.
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The particle properties of experiments are presented in
Table 1. Upon settling, bonds of assigned strengths (Table 2)
were introduced at all interparticle contacts, except salt layers.
Interparticle friction was set to 0.3 throughout the bonded
domain (i.e., rock layer). There are two major décollement
levels existing in the Kuqa Depression, i.e., an upper
décollement in the salt layer and the lower décollement
mostly within Jurassic coal and mudstone strata (Wang et al.,
2011). As the low décollement, the interparticle friction of the
foot wall was set to 0.15. As the upper décollement, the
interparticle friction of the salt layers was set to 0.0 to ensure
its lower strength.

The bulk mechanical properties of the numerical materials
used in these experiments were prescribed by particle properties
and bond parameters in Tables 1 and 2. These parameters in
Tables 1 and 2 were consistent with previous studies (Morgan,
2015; Li, 2019). They were calibrated through a series of repose
angles and two-dimensional biaxial tests based on the method
presented by Li, (2019; 2021) and Morgan (2015). In numerical
simulations, a local damping coefficient, which was the one most
commonly used (Potyondy and Cundall, 2004; Itasca Consulting
Group 2008; Kozicki and Donzé, 2008; O’Sullivan, 2011; Scholtès
and Donzé, 2013;Weatherley et al., 2014; Zhao, 2015; Li, 2019; Xu
et al., 2021), was added to damp the reflected waves from the
boundary of the particle and to avoid buildup of kinetic energy in
the closed system (Itasca Consulting Group 2008; Li, 2019). The
meaning of the other parameters in Tables 1 and 2 was given by
Morgan (2015) and Li (2019). The value of cohesion of rock layer
and salt layer is, respectively, ca. 10.5 MPa and ca. 1.8 MPa (Li,
2019). The values of friction angles of rock layer and salt layer are
ca. 18.6° and ca. 4.3°, respectively (Li, 2019). The value of cohesion
is consistent with the strength of shallow crustal sediments
(Camac et al., 2009; Jaeger et al., 2009; Schumann et al., 2014).
Note that the values of friction angle are significantly lower than
the typical value of friction angle, 30° (Jaeger et al., 2009;Wu et al.,

2014), which is a common characteristic of these numerical
materials (Morgan, 1999; Aharonov and Sparks, 2004;
Morgan, 2004; Vidal and Bonneville, 2004; Dean et al., 2013;
Gray et al., 2014; Morgan, 2015; Li, 2019), and consistent with
shear experiments on smooth glass rods (Frye and Marone, 2002;
Sun et al., 2016; Li, 2019).

The horizontal contraction was initiated by capturing particles
along the right sidewall and applying a constant velocity of 2.0 m/
s to the left. The time step per cycle was 0.05 s, producing 0.1 m of
wall displacement per cycle. The synkinematic sedimentation
played an important role in structural deformation in Kuqa
Depression (Yin et al., 2011; Wu et al., 2014). After the first
thrust was formed (ca. 2 km of shortening), ca. 0.5 km-thick
synkinematic layer was deposited for every 1 km of shortening.
The final thickness of the synkinematic layer was ca. 5 km.

EXPERIMENT RESULTS

Distribution Deformation
Comparative plots of the final particle configurations (12 km wall
displacement) of the three experiments with different salt

TABLE 1 | Particle properties and basic parameters for DEM simulation.

Quantity Value

Density (kg m−3) 2,500.0 (rock), 2,200.0 (salt)
Radii (m) 60.0, 80.0
Shear modulus (Pa) 2.9e9
Poisson’s ratio 0.2
Friction coefficient 0.3 (rock), 0.15 (foot wall), 0.0 (salt)
Local damping coefficient 0.4
Time step (s) 0.05
Gravitational acceleration (m s−2) 10.0
Wall velocity (m s−1) 2.0

TABLE 2 | Interparticle bond properties of rock layers for DEM simulation.

Quantity Value

Young’s modulus (Pa) 2.0e8
Shear modulus (Pa) 2.0e8
Tensile strength (Pa) 1.0e7
Cohesion (Pa) 2.0e7

FIGURE 5 | Final deformations of three shortening experiments with
different salt thicknesses after 12 km of shortening. (A) Reference experiment.
(B) Experiment with thin salt (ca. 300 m). (C) Experiment with thick salt (ca.
1,000 m). White and gray denote the subsalt layer. Red denotes the salt
layer. Blue and gray denote the prekinematic layer. Violet and yellow denote
the synkinematic layer. Bonds of assigned strengths (Table 2) were
introduced at all interparticle contacts, except the synkinematic layer (violet
and yellow) and salt layer (red). Dashed lines denote faults. The figures of each
step are included in the Supplementary Material.
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thicknesses are shown in Figure 5. Three experiments have the
same initial model but use different sets of salt thickness. As the
reference experiment, Exp. 1 is without salt (Figure 5A). The salt
thickness is ca. 300 m in Exp. 2 with thin salt (Figure 5B), while
salt thickness is ca. 1,000 m in Exp. 3 with thick salt (Figure 5C).

Two faults form in Exp. 1 without salt layer, and the growth
strata show the features of fault-propagation fold in accordance
with the fault activity (Figure 5A). But, the deformation was
apparently divided into two parts in Exp. 2 (ca. 300 m salt,
Figure 5B) and Exp. 3 (ca. 1,000 m salt, Figure 5C)
containing the salt layer. Deformation above and below the
salt layer was decoupled, with the imbricate structure formed
in the subsalt units and back-thrust fault formed in
suprasalt units.

In Figure 3B, continuous progradation from the southern
Tianshan piedmont until the end of the late Miocene–early
Pliocene made Kumugeliemu salt flow basinward and F2
developed (Li et al., 2012). Accelerated crustal shortening since
the end of the late Pliocene–early Pleistocene amplified the
Misikantake anticline and formed the Quele salt nappe, and
several new forward subsalt structures developed and they do
not extend to the surface (Li et al., 2012). Previous studies have

shown that frictional resistance increases with salt pinch-out
(Dooley et al., 2007) and buttressing effects of a distal salt
pinch-out can control the location and style of distal salt
structures (Costa and Vendeville, 2002; Couzens-Schultz et al.,
2003; Dooley et al., 2007). Faults can easily cut through rock
layers without salt layers (Figure 5A), but they rarely cut the thick
salt layers; instead, they detach along with the salt layers
(Figure 3A, 5C).

Distortional Strain
The distortional strain was used to quantify the results for DEM
and was calculated according to the study by Morgan (2015).
Distortional strain, i.e., strain-induced distortion, can be
quantified as the second invariant of the deviatoric finite strain
tensor (Morgan, 2015). Throughout the experiments, particle
positions and interparticle forces were output every 10,000 cycles
(1 km wall displacement), an interval referred to as an
“increment.” Subsequent calculations of particle displacements
are made at whole increments, and this unit is used for plotting
purposes.

FIGURE 6 | Distortional strain illustrated after 12 km of shortening. (A)
Reference experiment. (B) Experiment with thin salt (ca. 300 m). (C)
Experiment with thick salt (ca. 1,000 m). Shear strain magnitude is shown by
color intensity. Red denotes the top-to-the-right sense of shear; blue
denotes the top-to-the-left sense of shear. Dashed lines denote faults. The
areas that are trapped by the black solid line denote the salt. The figures of
distortional strain for each step are included in the Supplementary Material.

FIGURE 7 | Max shear stress illustrated after 12 km of shortening. (A)
Reference experiment. (B) Experiment with thin salt (ca. 300 m). (C)
Experiment with thick salt (ca. 1,000 m). The final structure of each series is
superimposed by plotting regions of high distortional strain (i.e., the
absolute value is greater than 4.8 in Figure 6) in black. Dashed lines denote
faults. The areas that are trapped by the white solid line denote the salt. The
figures of max shear stress for each step are included in the Supplementary
Material.
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The results of the three experiments are shown in Figure 6
with plots of cumulative distortional strain after 12 km (the
shortening rate 20%) of shortening. The experiments were
accommodated by largely distributed shear deformation with
occasional local zones of more intense top-to-the-left shearing
(Figure 6, blue zones). Dip angles of the forward thrust (Figure 6,
blue zones) were ca. 45° in all three experiments. They were in the
same range as the dip angles (ca. 30°–50°, Figures 3A,B) of the
forward thrust in the subsalt units.

As shown in Figure 6B,C, F3–F6 did not cut through the salt
layer; instead, they detached along with the salt layer because of
the flow of salt that contributes significantly to structural relief in
this part of the Kuqa fold-and-thrust belt. On the contrary, F1 and
F2 (Figure 6A) could easily cut through the rock layer. The salt
layer was obviously thickened near the right wall when the initial
thickness of salt was ca. 1,000 m (Figure 6C). The thickness of salt
had a little change when the initial thickness of salt was ca. 300 m
(Figure 6B) because the flowability of thin salt is weaker. The salt
could be one of the main factors leading to differential tectonics.
The contour map of distortional strain (Figures 6A–C) shows
local strain concentration around the fault, indicating that
faulting played an important role in the fracture development
in the damage zone surrounding the fault. This mechanism
explained the higher density of shear fractures that developed
in the near-fault area and the salt layers.

Max Shear Stress
Stress invariants for all of the systems are calculated and
plotted for 1 × 1 km elements (summing over ca. 25
particles), with colors scaled by stress magnitude. The final
structure of each series (Figure 7) is superimposed by plotting
regions of high distortional strain (i.e., the absolute value is
greater than 4.8 in Figure 6) in black. Similar to the simulation
results of Morgan (2015), there is a distinct variability within
the wedges about the maximum shear stress, τmax (Figures

FIGURE 8 | Structural deformation characteristics caused by the differential thickness of the salt layer in (A) the Kelasu structural belt and (B) the Wushi structural
belt; seismic profiles cited from Yang (2017).

FIGURE 9 | Deformation model of the dolomite interbeds in the Kelasu
structural belt; the crumpled data from Yang (2017).
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7A–C). τmax increased with depth due to the combined
increase in both vertical and horizontal stresses with burial
(Morgan, 2015). Moreover, τmax was relatively high near the
moving wall and in the foot walls of major shear zones. The
highest values of τmax usually appeared directly in front of the
frontal thrusts, outlining regions of unfaulted material that still
supported high shear stresses (Morgan, 2015). The frontal
regions of high τmax expanded with decreasing salt thickness
(Figure 7), demonstrating the flowability of salt layers to
dissipate shear stresses. The stress also had obvious
stratification characteristics in the experiments with the
salt layer.

DISCUSSION

Both the regional geological structure analysis and the
structural simulation experiments show that if there is a
regional distribution of salt rock as an important
décollement layer in the fold orogenic belt and its foreland
basin, the strata will undergo obvious structural stratification
deformation in the vertical direction (Figures 5, 6) (Wang
et al., 2010; Yin et al., 2011; Xu et al., 2012; Wu et al., 2014;
Yang, 2017; Neng et al., 2018; Li, 2019; Li et al., 2020; Sun et al.,
2021; Xu et al., 2021). The results of these experiments well
reflect the regional structural characteristics of the northern
margin of the western Kuqa Depression (Figure 8). In the
northern margin of the western section of Kuqa Depression,
the basement involved thrust faults into the salt with a large
displacement. When the salt is thick, the thrust fault will make
the overlying salt significantly thicken and create favorable
"accommodative space," which is conducive to the formation
of the salt anticline and salt diapir (Figure 3A, 8A). When the
salt is thin, it is easy to cut through by faults, which is not
conducive to the formation of favorable "accommodative
space" (Figure 3B, 8B).

The results of the three simulations also show that a lower
max shear stress zone is easily formed in the distribution
region of salt under the action of compression stress, which
is conducive to the flow convergence of salt and the crumpled
deformation of interlayer in salt (Figures 7, 9). When the
thickness of salt decreases, the fluidity of salt decreases
obviously which is not conducive to salt convergence to
form salt-related structures (Figure 8B). While the salt is
thick enough, its fluidity is obviously enhanced which is
conducive to the flow and convergence of salt from the
high-stress area to the low-stress area and forms larger salt
structures, such as salt anticline or salt diapir structures
(Figure 8A)

There are a fewer imbricate faults of the subsalt units in
three discrete element simulations (Figure 5C) than in the
interpreted seismic sections of the Kelasu structure in the Kuqa
Depression (Figure 3A, 8A). The displacement of shortening,
the slope, and the thickness of substrate décollement may
control the distribution range and the number of imbricate
faults in the subsalt units. We would make further analysis in
the later study.

CONCLUSION

Effects of salt thickness on the structural deformation were
discussed using different seismic profiles in the foreland fold-
and-thrust belt of the Kuqa Depression, which indicated that the
thickness of the salt had an important influence on the structural
styles.

The experiment without salt was controlled by several basal
décollement dominant faults, forming several imbricate sheets.
The experiments with salt developed the decoupled deformation
with the salt layer as the upper décollement (subsalt, intrasalt, and
suprasalt), significantly similar to the Kuqa Depression in the
northern margin of Tarim Basin. Basal décollement dominant
imbricated thrusts formed at the subsalt units, while the
monoclinal structure formed at the suprasalt units. The
decoupled deformation was also observed in the tectonic
deformation graphics, distortional strain fields, and max shear
stress fields. However, the salt layer was thickened in the thick salt
model and the salt thickness of the thin salt model varied slightly
because the thin salt weakened the flowability of the salt evidently.
The lower max shear stress zone was easily formed in the
distribution region of salt under the action of compression
stress, which is conducive to the flow convergence of salt and
the crumpled deformation of interlayer in salt. These phenomena
are well consistent with the natural characteristic of structural
deformation in the Kuqa Depression, Tarim Basin.

The modeling results in this study concern the structural
characteristics and evolution of salt-related structures and the
effects of salt thickness on the structural deformation in the
compressional stress field, which might be helpful for the
investigations of salt-related structures in other salt-bearing
fold-and-thrust belts.
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