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Precipitation change, which is closely related to drought and flood disasters in China,

affects billions of people every year, and the demand for subseasonal forecasting of

precipitation is even more urgent. Subseasonal forecasting, which is more difficult than

weather forecasting, however, has remained as a blank area in meteorological service

for a long period of time. To improve the accuracy of subseasonal forecasting of

China precipitation, this work introduces the machine learning method proposed by

Hwang et al. in 2019 to predict the precipitation in China 2–6 weeks in advance. The

authors used a non-linear regression model called local linear regression together with

multitask feature election (MultiLLR) model and chosen 21 meteorological elements

as candidate predictors to integrate diverse meteorological observation data. This

method automatically eliminates irrelevant predictors so as to establish the forecast

equations using multitask feature selection process. The experiments demonstrate that

the pressure and Madden–Julian Oscillation (MJO) are the most important physical

factors. The average prediction skill is 0.11 during 2011–2016, and there are seasonal

differences in forecasting skills, evidenced by higher forecast skills of winter and spring

seasons than summer and autumn seasons. The proposed method can provide effective

and indicative guidance for the subseasonal prediction of precipitation in China. By

adding another three factors, Arctic Oscillation (AO) index, Western North Pacific

Monsoon (WNPM) index and Western North Pacific Subtropical High (WNPSH) index

into the MultiLLR model, the authors find that AO can improve the forecast skill of China

precipitation to the maximum extent from 0.11 to 0.13, followed by WNPSH. Moreover,

the ensemble skill of our model and CFSv2 is 0.16. This work shows that our subseasonal

prediction of China precipitation should be benefited from the MultiLLR model.

Keywords: subseasonal forecasting, machine learning, MultiLLR, China precipitation, intraseasonal variability,

seasonal cycle
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INTRODUCTION

Against the backdrop of global warming, relatively frequent
extreme floods and droughts can not only cause heavy economic
damages but also life of threaten people, especially in China
who has the largest population in the world (Cai et al., 2017;
Matthews et al., 2017). Subseasonal prediction of 2-weekly to
2-monthly time scale with good skill of China precipitation is
associated with crop-planting choice, disaster reduction, and
life safety. Furthermore, subseasonal prediction will fill the
gap between weather forecasting and climate prediction (Vitart
et al., 2012). Although the statistical method and dynamic
models, two mainstream methods for subseasonal prediction,
have shown a higher forecast skill (Li and Robertson, 2015;
Zhu and Li, 2017), subseasonal prediction that depends on both
local weather and global atmospheric circulations (Robertson
et al., 2015; Vitart et al., 2017) is called “predictability desert”
(Vitart et al., 2012) and still remains full of challenges. It is
encouraging that previous research has found certain processes
in the land, ocean, and atmosphere that would increase the
possibility of subseasonal prediction. Sea surface temperature
(SST), which affects the atmospheric circulation through air-
sea heat flux and convection, can improve the intraseasonal
variability forecast skill (Woolnough et al., 2007; Liang and
Lin, 2018). Arctic Oscillation (AO) and the Madden–Julian
Oscillation, which modulate the teleconnection patterns in
Northern Hemisphere (NH) and the tropic convective activity,
are two important sources of subseasonal predictability in
the atmosphere process (Baldwin, 2003; Waliser et al., 2003;
Black et al., 2017). Sea ice (Holland et al., 2011), snow cover
(Sobolowski et al., 2010), and soil moisture (Koster et al.,
2010) are the key factors of prediction on intraseasonal time
scales. Besides, the summer precipitation intraseasonal variability
(ISV) in China also serves as an important factor (Liu et al.,
2020).

With the development of machine learning (ML) in

meteorology, ML, as a new statistical technique, has been used
in various forecast systems and helps to improve the forecast skill
on different time scales (McGovern et al., 2014; Liu et al., 2016).
ML improves the decadal climate predictions (Strobach and Bel,
2016). As for the subseasonal to seasonal (S2S) forecast, statistical
techniques are noticed again due to theMLmethod (Cohen et al.,
2019). ML makes precipitation nowcasting no longer be limited
to two existing methods, radar echo extrapolation and numerical
weather prediction (NWP) (Shi et al., 2015; Qiu et al., 2017).
Besides, ML techniques are also able to improve the prediction
and detection of severe weather events (McGovern et al., 2014;
Liu et al., 2016).

Hwang et al. (2019) developed a forecasting system, which
was a combination of two non-linear regression models based
on ML, to improve the subseasonal prediction skills. To improve
the accuracy of subseasonal prediction of China precipitation,
the authors explore the effects of Hwang’s forecasting system
on them. The article is presented as follows. In the “Data and
Methodology” section, the data andmethodology are introduced.
In the “Results” section, we provide the conclusions of the effects

of Hwang’s forecasting system on subseasonal forecasting of
China precipitation. Finally, the last section offers the summary
of the study.

DATA AND METHODOLOGY

Data
This study uses the newly released CN 05.1 daily precipitation
dataset in China from 1961 to 2017, which is provided by the
observing stations of the China National Climate Center (Wu
and Gao, 2013). The daily precipitation is converted to a sum
of ensuing 2 weeks. The authors choose daily reanalysis data
from NCEP/NCAR Reanalysis dataset (Kalnay et al., 1996), and
obtain temperature data at 2m, relative humidity at the sigma
level 0.995, pressure at the surface, and geopotential height at 10
hPa. By projecting the daily geopotential height anomalies into
the leading EOF mode at 1,000 hPa, the daily AO index has been
obtained from the Climate Prediction Center (CPC). Besides,
the Madden–Julian Oscillation (MJO) and the Multivariate
ENSO index (MEI) are obtained from the NOAA/Earth System
Research Laboratory and the Australian Government Bureau
of Meteorology. Phase and amplitude are extracted from the
daily MJO data starting from 1974 on the target forecast date
to characterize tropical convection (Hwang et al., 2019). MEI
values combine six variables associated with ENSO from 1949,
including SST, sea-level pressure, surface air temperature, zonal
and meridional surface wind components, and sky cloudiness.

The sea ice concentration and the sea surface temperature
(SST) are obtained from the optimum interpolation sea surface
temperature (OISST) analysis of NOAA, and the top three
principal components (PCs) over the Pacific (20◦S–65◦N,
150◦E–90◦W) from 1981 to 2017 are also used.

The Western North Pacific Monsoon (WNPM) index is
defined as the difference of zonal wind between a southern region
of 5◦–15◦N, 100◦–130◦E and a northern region of 20◦–30◦N,
110◦–140◦E at the level of 850 hPa, and U850 represents the
zonal wind at 850 hPa (Wang and Fan, 1999; Wang et al., 2001).
WNPM index is defined as follows:

WNPM Index = U850(100◦E− 130◦E, 5◦N− 15◦N)

− U850(110◦E− 140◦E, 20◦N− 30◦N)

Following the results of Lu (2002), this research selected two
indexes to describe the location of Western North Pacific
Subtropical High (WNPSH) by averaging the geopotential
height anomalies at 850 hPa over two regions. WNPSH1 is
meridional index, over the area of 120◦–150◦E, 30◦–40◦N,
and WNPSH2 is zonal index, over the area of 110◦–150◦E,
10◦–30◦N. The authors select the two WNPSH indexes because
of considering the advantages in well describing the precipitation
pattern (Lu, 2002), and WNPSH stands for WNPSH1 and
WNPSH2 below.

According to the forecast date of the local linear regression
together with multitask feature election (MultiLLR) model, we
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FIGURE 1 | The prediction skill of (A) annual average (red bar), winter (blue bar), spring (green bar), summer (orange bar), and autumn (yellow bar) for each year of

2011–2016. (B) 2011–2016 averaged skills for annual mean and four seasons.

got the forecast results for the total precipitation of CFSv2
Operational Forecasts 6-Hourly Products from 2011 to 2016.

The three-dimensional predictors, i.e., temperature data at
2m, relative humidity at the sigma level 0.995, pressure at the
surface, and total precipitation of CFSv2, were interpolated with
a resolution of 1◦ by 1◦ and extracted over the forecast China
region (14.75◦N to 55.75◦N, 69.75◦E to 139.75◦E). The top three
principal components (PCs) of geopotential height at 10 hPa for
all grid points globally, sea ice concentration, and sea surface
temperature over the Pacific (20◦S−65◦N, 150◦E−90◦W) are
also used. Except for MJO, which has the property of weekly
time scales, all predictors used in this study were converted
into the average of ensuing 2 weeks to be consistent with the
sum precipitation of ensuing 2 weeks. The total precipitation of
CFSv2 averaged during the next 14 days for each forecast date is
also used.

MultiLLR Model
The authors take reference from the method of Hwang’s
MultiLLR model (Hwang et al., 2019) and put forward the
physical factors mentioned earlier, which lagged on the basis
of the frequency of the dataset, so as to provide the latest
data and the temporal resolution and to add “ones” as a
candidate regressor to represent intercept term that equals 1
for all data points in the total 21 candidate regression factors
into the model, which is shown in the Y-axis of Figure 3.
As shown in the Y-axis of Figure 3, the suffix anom of some
candidate regression factors means that candidate regression
factors are the anomalies based on daily climatology over
the period of 1980–2010, and the “shift x” has a hysteresis
characteristic from the measurement of the previous x days
based on the data update time and the temporal resolution
of measurement.

TheMultiLLRmodel includes two parts, one part named local
linear regression (LLR), by which we get regression coefficients
for each grid point separately, and the other part called multitask
backward stepwise feature selection, by which the relevant
predictors are obtained from the candidate regressors through

the performance forecast based on the spatial cosine similarity
automatically. More algorithm details of the MultiLLR model
can be referred from Hwang et al. (2019). Twenty-six forecast
target dates for each year from 2011 to 2016 were made by the
MultiLLR model, with a total of 156 times. For a forecast target
date, the range of training data is from the first year when all the
selected predictor data are commonly available to the year of the
target date.

The authors choose spatial cosine similarity as the forecast
skill, which is defined as:

forecast skil (Y , Ŷ) =
< Y , Ŷ >

‖Y‖2 ∗ ‖Ŷ‖2

where Y represents observed anomalies and Ŷ represents
predicted anomalies; the anomalies were obtained by removing
the climatological annual cycle during 1981–2010. We forecast
every 2 weeks, resulting in 26 times forecast for each year. The
forecast skill for annual mean or seasonal mean can be calculated
by averaging the associated period.

RESULTS

Figure 1A shows that the average prediction skill is 0.11 for
all target dates, and the forecast skills vary from 2011 to 2016.
The prediction skill for 2012 is highest with a value near 0.2,
and it is around 0.15 for 2011 and 2016. The forecast skill for
2014, however, is −0.027, the lowest one among 6 years in the
model. The 6 years can be divided into high-skill years, including
2011, 2012, 2013, and 2016, and low-skill years including 2014
and 2015.

There are also seasonal differences in forecasting skills
(Figure 1B). To be specific, the skills of winter and spring are
higher than the annual average, especially that the winter skill
is the highest and exceeds 0.21. On the contrary, the summer
forecast skill is the lowest and near zero, and the skill of the
autumn season is also lower than the annual average. The result
shows that the model is poor in forecasting precipitation in
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FIGURE 2 | The prediction skill of (A) annual average (red bar), winter–spring season (blue bar), and summer–autumn (yellow bar) for each year of 2011–2016 and of

(B) annual average (red bar), winter–spring season (blue bar), and summer–autumn (yellow bar) for high-skill years and low-skill years, respectively.

summer and autumn seasons. As a result, the authors divide the
four seasons into two types according to the annual mean values
of the forecast skills, one type with winter and spring called Win-
Spr, whose prediction skills are above the annual average, and
the other type is to add summer and autumn together called
Sum-Aut. Figure 2B shows that the prediction skills of Win-Spr
are much higher than those of Sum-Aut in high-skill years. But
in low-skill years, the skills of Win-Spr are lower than those of
Sum-Aut. Moreover, not only the skills of Sum-Aut are <0.1
but also the changes are small during 2011–2016 (Figure 2A).
In contrast, the Win-Spr prediction skills are high. Whether it
is in the high-skill years or the low-skill years, the skills of Sum-
Aut are nearly equal (Figure 2B). As for Win-Spr, the skill is very
high in the high-skill years, but the skill in the low-skill years
is lower than that of Sum-Aut. In summary, the annual average
skill depends on that in Win-Spr, and the forecast model has
good effect on winter and spring, compared with that on summer
and autumn.

The authors put 21 candidate factors into MultiLLR model in
the precipitation prediction task for weeks 3–4. The MultiLLR
model chooses relevant features automatically from the 21
candidate factors for different target dates to improve the
pertinence. According to the inclusion frequency of 21 candidate
factors shown in Figure 3, different factors are selected with
different frequencies, and the average is about 30 times. “Ones”
that represent intercept term is the most frequently selected
factor of them and has been used 66 times, followed by
pressure (pres) and phase of MJO as the second and third,
respectively. The selection frequency of temperature anomaly
(tmp2m), which is the lowest, is only 7 times. Pressure and
MJO are the most important physical factors in all 21 indexes
for weeks 3–4 precipitation forecasting in China, inconsistent
with many previous findings (He et al., 2011; Neena et al.,
2014; Yao et al., 2015). Since MJO is a major source of
intraseasonal predictability (Neena et al., 2014), Yao et al.
(2015) found that the MJO makes effects on part of the
variability of precipitation during November–March in South
China, and as for the rest part which has nothing with

MJO, and “cold surge” indicated by pressure at surface plays
an important role. MJO is also found to be related to the
subseasonal variability of precipitation over East Asian (He et al.,
2011).

Figure 4 shows the distribution of ISV activity, represented
by the variance of forecast and observed precipitation for four
patterns. The strong ISV activity is located over the Yangtze River
and Southeastern China in the Win-Spr season and expands to
Central China, Northern China, and Northeast China in the
Sum-Aut season (Liu et al., 2020). The model for the forecast
of ISV activity performs better in winter and spring of high-skill
years, which is reflected in the forecast of value and range for the
ISV activity over China, including strong ISV activity over the
Yangtze River and Southeastern China. In the Win-Spr season
of low-skill years, the prediction of strong ISV activity value
is much weaker than the observed. The forecast ability of ISV
activity in the Sum-Aut season of high-skill years is similar to that
of low-skill years. Specifically, forecast patterns show weak ISV
activity over Northern China and Northeast China in the Sum-
Aut season, inconsistent with the observations. The predicted
ISV activity ofWin-Spr is better than that of Sum-Aut, consistent
with the higher prediction skill of Win-Spr than Sum-Aut.

According to the earlier classification, the seasonal mean
forecasted pattern is near to negative anomalies, which show
that the MultiLLR model mainly predicts a drought pattern
for China precipitation no matter which season and year,
except Win-Spr of high-skill years (Figure 5). Figure 5 means
the seasonal mean of the predicted precipitation, not ISV,
which indicates the average statement of the forecast. The
observed seasonal mean precipitation of years with higher
forecast skills is less than that of lower skills. For summer
and autumn seasons, the positive anomalies of the observed
truths are hard to be predicted whether in the high-skill
years or low-skill years, which is consistent with the low
prediction skills of summer and autumn mentioned above.
Comparing the forecast results of summer with those of
autumn, the forecasted pattern of Win-Spr can resolve the
distribution of drought and flood in certain parts of China.
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FIGURE 3 | Candidate factors inclusion frequencies selected by local linear regression with multitask feature selection (MultiLLR) models for all target dates during

2011–2016.
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FIGURE 4 | Standard deviation of MultiLLR model predicted and observed precipitation (mm/day) of Win-Spr (A,B,E,F) and Sum-Aut season (C,D,G,H) in the

high-skill years (up panels) and low-skill years (low panels), the first and third columns represent the forecast, and the second and fourth columns represent the

observation values.

FIGURE 5 | Seasonal-mean MultiLLR model prediction and observations (mm/day) of Win-Spr (A,B,E,F) and Sum-Aut (C,D,G,H) seasons in the high-skill years (up

panels) and low-skill years (low panels). The first and third columns represent the forecast, and the second and fourth columns represent the observation.

Furthermore, in high-skill years, the model forecast results
were consistent with precipitation truth values, except for
Southeastern China. But in the low-skill years, the forecast
results of Win-Spr were worse than those in high-skill years.
As for the seasonal mean precipitation pattern in Southeastern
China, the model can hardly predict the distribution with 21
candidate factors.

Arctic Oscillation and the East Asian monsoon affect rainfall
in China through changing the southern branch trough (SBT)
and Middle East jet stream (MEJS) over the Bay of Bengal,
and northward moisture transport and convergence, respectively
(Ding et al., 2008; Mao et al., 2011). Many studies show

that WNPSH is related to the subseasonal forecast of rainfall
over China. The WNPSH has an important impact on the
precipitation over Eastern China (Xiao-Xia et al., 2010), and
the enhancement and location of the WNPSH were associated
with two dominant subseasonal variation modes of the summer
rainfall over the Yangtze River (Yang et al., 2010). Moreover,
El Niño and La Niña cause the asymmetry of southern China
rainfall anomalies in the winter half year, mainly through the
intraseasonal oscillation of the WNPSH in lower troposphere
(Zhang et al., 2015). Based on MultiLLR model with the 21
candidate factors mentioned earlier, the authors added WNPM
index, two WNPSH indexes and AO index, which were notably
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FIGURE 6 | The prediction skill of annual average, winter season, spring

season, summer, and autumn season of 2011–2016 for 21 index model (light

blue bar), 21 index+AO model (red bar), 21 index+WNPM model (blue bar),

and 21 index+WNPSH model (yellow bar).

related to rainfall in China, into the MultiLLR model to
improve the subseasonal China precipitation forecast skills,
namely, 21 index+AO model, 21 index+WNPM model, and
21 index+WNPSH model. It is encouraging that the model
including the new factor improves the rainfall forecast skill,
especially the forecast skills of 21 index+AOmodel is 0.13, 16.1%
more than that of the 21 index model, and AO is used 36 times.
Also, the predication skill is improved, due to WNPSH index
being added to the 21 index model. WNPSH1 and WNPSH2,
which describe WNPSH in two ways, were selected 31 times
and 35 times, respectively. After adding WNPM, the forecasting
skill is reduced to 0.1 during 2011–2016. This means that AO
and WNPSH physical factors contribute to the forecast skills
of China precipitation, but WNPM is a negative contribution
factor. Figure 6 shows that the performance of forecasting skills
improvement varies in each season. As for 21 index+AO model,
all seasons forecast skills have improved except for the summer
season, and the autumn forecast skill improves by the maximum
extent among the four seasons by 49.1%, from 0.081 to 0.121.
The 21 index+WNPSH model results of rainfall forecast skill
in four seasons are consistent with those of the 21 index+AO
model, but only improved in a slight way. In the winter, the
21 index+WNPSH model improves by the maximum extent.
On the contrary, the 21 index+WNPM model only improves
the autumn forecast skill. In summary, the comparison of the
three newly added factors shows that AO is most conducive in
improving the forecasting skills for MultiLLR model with the
21 candidate factors, followed by WNPSH. Moreover, WNPM
is a negative factor in the MultiLLR model for subseasonal
forecasting of China precipitation due to the annual average
forecast skill of 0.1, less than that of the 21 index model, despite
that it increases the autumn forecast skill. In a summary, the
inclusion of AO mainly improves the prediction skill of spring
and autumn, while the WNPSH mainly works to improve that

of winter. The skill of summer, however, is weakened by the
inclusion of these teleconnection factors.

This study not only evaluates the performances of MultiLLR
models with different candidate predictors mentioned above, but
also makes a comparison with the dynamical Climate Forecasting
System (CFSv2) model. The forecast skill of CFSv2 is 0.11,
compared to which the empirical model with 21 index+AO has
a little better skill of 0.13. The ensemble model combining the 21
index+AO model and the CFSv2 by the same weight presents a
much better skill of 0.16, and the skill improvement from 0.11
to 0.16 is above 80% confidence level, more than one standard
deviation which has some reference significance. This shows that
the MultiLLR model, a new statistical model, is useful to improve
the subseasonal precipitation predication of China.

Also, authors try to improve the MultiLLR model by
implementing the AutoKNN method proposed by Hwang et al.
(2019), a local linear regression with the precipitation of 20
historical dates when the precipitation is the highest similarity to
that of the target date. The negative skill of the AutoKNN model
shows that subseasonal forecasting of China precipitation is hard
from historical precipitation.

SUMMARY

Due to unique local weather conditions and climate circulations,
subseasonal forecast of precipitation 2 weeks to 2 months in
advance remains full of challenges. This study takes advantage
of the local linear regression with multitask feature selection
model with 21 candidate factors in the precipitation prediction
task for weeks 3–4 to predict the precipitation of China in the
ensuing 2 weeks. The result shows that the average prediction
skill is 0.11, and the skills for four seasons vary from each
other. To be specific, the forecast skill of winter is the highest,
more than 0.21, and the summer forecast skill is near zero.
In general, the skills of winter and spring are much higher
than those of summer and autumn (Figure 1). This means that
the model is poor in forecasting precipitation in summer and
autumn. Consistent with the results of the forecast skills are
that the predicted ISV activity of Win-Spr is better than that
of Sum-Aut. And the model can hardly predict the seasonal
mean precipitation pattern in Southeastern China with 21
candidate factors.

Besides, on the basis of MultiLLR model with 21 candidate
factors, the additional physical factors AO and WNPSH are
helpful to improve the forecasting skills, especially in winter,
spring, and autumn. In contrast, WNPM is a useless factor
for China precipitation generally in the MultiLLR model.
Therefore, it is necessary that AO and WNPSH are to be
added into MultiLLR model as candidate factors to improve
the prediction ability of subseasonal forecasting of China
precipitation. Moreover, when authors combine the MultiLLR
model and CFSv2 model by the same weight, the forecast
skills improved from 0.11 to 0.16. This result shows that the
MultiLLR model, a new statistical model, improves the accuracy
of the dynamical CFSv2 model for the subseasonal forecasting of
China precipitation.
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In this study, we make a first try on the subseasonal prediction
of China precipitation using a simple machine learning method.
In the MultiLLR, only the local regression has been used, limiting
the forecast skill. More suitable methods should be tested in
the future.
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