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The subsurface fault geometry is the base for understanding a process of crust
deformation and mountain building. Based on kinematic models for fault-related folds,
a geomorphic method is recently applied to estimate the subsurface fault geometry,
while the validation on its reliability is lacking. In this study, we surveyed a suit of river
terrace surfaces across an active fold at the north front of the Qilian Shan. According to
the deformation geometry of the terraces, the fold deformation is interpreted by a listric
fault fold model, and based on this kinematic model, the fault geometry underlying the
fold is estimated. In comparison between the estimated fault geometry and a seismic
reflection profile, we found that the decollement depth and the back thrust are highly
consistent with each other. Although some small fault bends or internal shearing cannot
be estimated solely by the terrace deformation, the overall fault geometry is successfully
revealed by the terrace deformation. Using this fault geometry and the terrace dating
results, the region deformation kinematics are re-evaluated, which suggest that the dip
slip (in a rate of 1.8 ± 0.4 mm/a) along the decollement is mainly accommodated by
two structures, one is the blind-back-thrust fault within the piggy basin in a dip-slip rate
of 0.9 ± 0.3 mm/a and another is the thrust and fold at the west portion of the Yumu
Shan range.

Keywords: terrace deformation, fault-related fold, geometric model, Qilian Shan, fault geometry

INTRODUCTION

The subsurface geometry of an active fault is the base for estimating the deformation kinematics
(e.g., Whipple et al., 2016), to calculate the crust shortening rate (e.g., Lavé and Avouac, 2000), and
thus to understand a process for mountain building (e.g., Hu et al., 2019b). For the extension of a
fault from the surface to the deep crust, except definite evidence of the fault tip at the surface (if the
fault breaks the surface) and a certain position at which a large earthquake happened (e.g., Burchfiel
et al., 2008), most part of the fault geometry is hard to be definitely revealed. Up to now, the most
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popular method to acquire the subsurface fault geometry is a
seismic reflection survey (e.g., Gao et al., 2013; Wang et al., 2013).
Although it can supply relatively reliable data on sedimentary
basins with layered strata (e.g., Wu et al., 2019), the results
usually have great uncertainties in regions involving basement
rocks (e.g., Gao et al., 2013). An extremely high cost in operating
the seismic reflection is also a matter, which impedes its
utilization in a wide area.

In the profit from the development of kinematic models
for fault-related folds (Suppe, 1983; Suppe and Medwedeff,
1990; Erslev, 1991; Hardy and Poblet, 1994; Wickham, 1995;
Allmendinger, 1998; Mitra, 2003; Cardozo, 2008; Hardy and
Allmendinger, 2011; Poblet and Lisle, 2011; Brandes and Tanner,
2014), scholars try to estimate the active fold geometry using
deformation patterns of geomorphic markers (Thompson et al.,
2002; Gold et al., 2006; Scharer et al., 2006; Wilson et al., 2009;
Burgess et al., 2012). Based on kinematic models for fault-related
folds geometry and geomorphic deformation, the geometry of the
related fault can also be estimated (Hu et al., 2015, 2017, 2019b;
Liu et al., 2019; Wang et al., 2020; Zhong et al., 2020), which
provides a more convenient way to investigate the subsurface
fault geometry. Due to the uncertainty derived from the selection
of the fold model and from the assumption of the fault dip
close to the surface (e.g., Hu et al., 2015), the reliability of the
estimated fault geometry is still questionable. Thus, it is highly
necessary to verify the geomorphic method for the estimation of
the subsurface fault geometry.

In this study, we conduct geomorphic investigations on a
relatively new active fold, at the north front of the Qilian
Shan, northwest China. This fold is named as the Dahe
Anticline whose deformation is onset in recent 1 Ma (Hu et al.,
2017). The deformed terrace surfaces along the Bailang River,
which transect the active fold, are surveyed to obtain their
deformation patterns and to estimate the fold and its related
fault geometry. Then, the estimated fault geometry is compared
to the available seismic reflection profile (Zuza et al., 2016) to
verify the result. Furthermore, combining the ages of terrace
surfaces, the deformation kinematic across the North Qilian
Shan Fault (NQF), the piggy-back basin, and the Yumu Shan
range is renewed.

REGIONAL TECTONIC SETTING

The North Qilian Shan Fault
The North Qilian Shan Fault (NQF) is a geomorphic boundary
between the Qilian Shan and the Hexi Corridor, which acts as a
foreland basin (Yang, 2007) receiving sediments from the Qilian
Shan range (Figure 1). This South West-dipping thrust fault
(NQF) consists of a series of segments that lies ∼600 km long
from the Altyn-Tagh Fault (in the west) to the city of Wuwei
(in the east). Along the NQF, the surface deformation includes
surface offsets by break-through thrusts (Palumbo et al., 2009;
Liu et al., 2017; Xiong et al., 2017; Yang et al., 2018; Hetzel et al.,
2019) and fault-related folds by blind thrusts (Yang et al., 2018;
Cao et al., 2019) or by fault bending in the depth (Hu et al., 2015,
2017, 2019b; Liu et al., 2019; Wang et al., 2020). Through multiple

dating methods, the optically stimulated luminescence (OSL), the
in situ terrestrial cosmogenic nuclides (TCN), and 14C dating, the
deformed Quaternary geomorphic surfaces at different segments
are dated to yield vertical slip rates of 0.5–1.5 mm/a, inferring
an average crust shortening rate of 1–2 mm/a (e.g., Xiong et al.,
2017; Yang et al., 2018; Hu et al., 2019b; Wang et al., 2020).
According to the continuous thrusting of the NQF from ∼10
Ma (Zheng et al., 2010), the Qilian Shan is uplifted to a peak
elevation of ∼5,500 m and the pre-Cenozoic rock exposed in the
range is placed on the Quaternary sedimentary rock in the Hexi
Corridor. At the north front of the NQF, in the foreland basin,
late Cenozoic sediments are deformed by several active thrust
faults and/or folds, indicating that these structures are relatively
new (to be onset in Pliocene and Quaternary; Palumbo et al.,
2009; Zheng et al., 2013; Hu et al., 2017, 2019b; Zhao et al.,
2017). These structures are interpreted as the result of north-
ward propagation of the NQF system through new growing thrust
faults, which root at the decollement connected to the NQF in
the deep crust (Tapponnier et al., 1990; Hetzel, 2013; Cheng et al.,
2019; Hu et al., 2019b).

The North Yumu Shan Fault and the
Dahe Anticline
The uplift of the Yumu Shan is controlled by thrusting and
its related folding on the North Yumu Shan Fault (Tapponnier
et al., 1990; Palumbo et al., 2009; Hu et al., 2019b). In the core
of the range, the Paleozoic sedimentary rocks are exposed with
a summit of ∼3,200 m and on the west rim of the range, as
the elevation decreases, Paleogene, Neogene, and Quaternary
sediments are systematically exposed in the form of an anticline
(Figure 2A). Through landform deformation and TCN dating,
Palumbo et al. (2009) determined an uplift rate of∼0.8 mm/a for
the central part and∼0.5 mm/a for the eastern tip and deduced an
onset age of 3.7 ± 0.9 Ma for the activation of the NYF. Another
geomorphic research on the eastern part of the Yumu Shan
builds a fault-related model from the deformed river terraces and
derived a relatively higher uplift rate of 1.2± 0.1 mm/a (Hu et al.,
2019b), which inferred a relatively newer onset age of 2.5 ± 0.5
Ma for the uplift of the Yumu Shan. The thermo-modeling of
the apatite fission track data indicates that the fast cooling of the
Yumu Shan range began at ∼4.0 Ma (Wang et al., 2018). The
sedimentary evidence in the foreland basin also records the Late
Pliocene (∼3 Ma) uplift for the Yumu Shan (Hu et al., 2019a).

At the region between the Yumu Shan and the Qilian Shan,
widespread Pleistocene alluvial-fluvial sediments, mainly gravels
with a depth of >150 m (Hu et al., 2017), cover on the surface
of this region, which has an average elevation of 2,000–3,000 m.
Based on the geology and geomorphic characters in this region,
Hu et al. (2017) proposed a deformation model of the piggy-back
basin, which began to be uplifted and deformed since 1.0–0.3
Ma associated with the west-ward extension of the NYF (Seong
et al., 2011). The Dahe Anticline (Figure 2B) is formed by the
thrusting on a north-dipping back-thrust fault, which is a blind
fault rooting to the decollement that extends to the NYF in the
north and to the NQF to the south (Tapponnier et al., 1990; Hu
et al., 2017). Recently published seismic reflection profile to the
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FIGURE 1 | Topographic map of the Qilian Shan [derived from the Shuttle Radar Topography Mission (SRTM) digital elevation model with 90 m resolution] and the
distributions of active faults. Fault data are from Meyer et al. (1998), Hetzel et al. (2002), Yuan et al. (2013), Zheng et al. (2013), and Hu et al. (2017).

west of this region (U–U′ profile in Zuza et al., 2016) shows
a clear trace of a blind-back-thrust fault at the position of the
Dahe Anticline, and the reflection profile also presents a trace
for a possible decollement surface, which has an upward-convex
shape that gradually increases its dip angle and extends to the
deep crust under the Qilian Shan. Previous estimated shortening
rate within this region is relatively low (0.14+ 0.14/-0.03 mm/a),
which is calculated with an assumption of ∼7 km depth for the
decollement (Hu et al., 2017).

MATERIALS AND METHODS

Fluvial Terraces Along the Bailang River
Along the Bailang River, at least five levels of fluvial terraces are
developed (Figures 3A–C), and we named the lowest (youngest)
as T1 and the highest (oldest) as T5. Near the Dahe Anticline,
T5 and T4 are continuously developed and have relatively wide
surfaces that extend downstream until they are merged into T3.
T3 is developed almost continuously along the studied reach, and
its surface is relatively narrow upstream of the Dahe Anticline.
Downstream the anticline, T3 surface is extending widely in a
fan shape in a plan view. T2 and T1 are distributed relatively
narrower and just adjacent to the active river channel.

From the transect (Figure 3C) across the river valley close
to the crest of the anticline, the composition of the terrace
staircases can be identified. T5 and T4 express as strath terraces
that terrace gravels are beveled by Middle and Early Pleistocene

conglomerates, which are interpreted as alluvial fan deposits
before the region began to uplift from Middle Pleistocene (Hu
et al., 2017). From the field investigation, we can find that the
beveled conglomerates are relatively smaller and have a brownish
color contrasting to the terrace gravels of gray color (Figure 3B).
T3 is about 100 m above the river bed and has a thick terrace
gravel deposition of 40–60 m, which is also beveled by the old
conglomerates. The thick fluvial deposition of the T3 suggests
that this terrace is a fill terrace with a fast following incision. Both
terraces T2 and T1 are strath terraces and their surfaces are ∼30
and ∼10 m above the river bed, respectively. All these terrace
surfaces are made to overlie by a thin layer of aeolian loess with a
thickness of 1–3 m.

Deformation of Terrace Surfaces
In order to obtain accurate surface deformation characteristics,
we used a differential Global Positioning System (GPS) with a
vertical error of less than 5 cm to measure the elevations of
terrace surfaces. Due to the relatively thin loess cover on the
terrace surface, continuous terrace surface was surveyed on the
loess top, and most of the discontinuous points were surveyed
at the top of a gravel layer. After minus the loess thickness,
longitudinal profiles for each terrace surface and modern river
bed were plotted to find the deformation geometry (Figure 4B).
In order to constrain the deformation amount, the distance for
longitudinal profiles was projected in the direction of NE30◦
(Figure 2B), perpendicular to the fold strike. Furthermore, in
order to eliminate the effect of the initial inclination of the terrace
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FIGURE 2 | (A) Geologic map of the study region showing the lithology and active structures (lithology data are from 1:200,000 Chinese geologic maps, Ministry of
Geology and Mineral Resources). (B) The Google Earth image of the study region showing the topography distribution from the Qilian Shan to the Yumu Shan. The
line U–U′ shows the location of a seismic reflection profile in Zuza et al. (2016). FH is the Fodongmiao-Hongyazi Fault and NYF is the North Yumu Shan Fault, and
both of these two faults are parts of the North Qilian Shan Fault (NQF).

surface, elevations of the terrace surfaces are transformed to
relative heights above the modern river bed (Figure 4C). The
fold deformation at the Dahe Anticline is clearly recorded by
the terraces T5 and T4 (Figure 4A), and a north-ward tilting
of terrace surfaces to the south of the Dahe Anticline (upstream
of 16-km point) is also illustrated from the terrace deformation
geometry. From the geometry of T5 and T4, we can find that
the width of the Dahe Anticline is about 6.6 km, from ∼16 to
∼23 km at the longitudinal profile (Figure 4B), and the crest of
the anticline is at the 17-km point. The forelimb (south limb) is
relatively short (Figure 4C), with a width of ∼1.3 km, and the
backlimb (north limb) is relatively wide, with a width of∼5.3 km.
The dip angle for T5 at the backlimb is greatly larger than that of
the modern river bed.

We noticed that the T3 is a fill terrace, contrasting to the strath
terraces for other terrace levels, and the thickness of the fill is up
to ∼60 m, indicating significant aggradation in building the T3
surface and fast incision after the abandonment of the surface.
This terrace also has a wide distribution downstream, composing
the main fan along the Bailang River. These characteristics are
similar with the terrace formed during 25–15 ka along the rivers
to the west of the Bailang River, such as the Maying River

(Yang et al., 2018), the Hongshuiba River (Yang et al., 2020), the
Beida River (Wang et al., 2020), the Baiyang River (Liu et al.,
2019), and the Shiyou River (Hetzel et al., 2006). The incision
rate by this late Pleistocene terrace is estimated to be 6–10 mm/a,
which is greatly higher than the regional rock uplift rate of
0.5–1.5 mm/a, and the fast incision is attributed to the climate
transition after the last glacial maximum (Hetzel et al., 2006;
Wang et al., 2020; Yang et al., 2020). In the upstream of the
Bailang River, the luminescence study of T3 yielded an age of
16 ± 1 ka (Zhou et al., 2002), in good agreement with the ages
obtained from other rivers for this climatic terrace, and thus we
give the age of 16± 1 ka for T3. In order to eliminate the influence
of climate (Wang et al., 2020), we can construct the deformation
before T3 by subtracting the surface elevation of T3 from T4 and
T5 (Figure 5A).

Chronology of the Terraces
Abandonment times for T5 and T4 surfaces were determined by
cosmogenic 10Be exposure dating, and the OSL samples were
also collected at the base of the aeolian loess for the correction
of 10Be exposure ages. Close to the terrace riser of T5 and T4
(Figure 3C), we excavated out the overlying loess to the top of
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FIGURE 3 | (A) Distributions of terraces along the Bailang River. (B) The photo showing the terrace staircases and the composition of terrace T4. (C) The sketched
transect near the anticline (location shown in the Figure 3A) showing the stratigraphy and positions of the optically stimulated luminescence (OSL) and 10Be
samples. (D) The photo showing the T4 surface of the gravel top at which the 10Be sample was taken and above which the OSL sample was taken close to the
base of aeolian loess. (E) The photo showing the T5 surface of the gravel top, at where the 10Be sample was taken and above which the OSL sample was taken
close to the base of aeolian loess.

the fluvial gravels (Figures 3D,E), and then we picked out at least
50 quartz grains with a size of 10–20 mm at the topmost surface
of the fluvial gravels. In the meantime, close to the loess base (at

the position 30 cm above the gravel layer), we collected one OSL
sample from the loess deposit by a steel tube. The excavated gravel
top is a flat surface, indicating limited post erosion on the gravel
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FIGURE 4 | (A) The photo of the folded terrace surface of T5 at the anticline. (B) The longitudinal profiles of terrace surfaces and the modern river bed. The distance
is along the straight line of A–A′ in Figure 2, and each surveyed point is projected to this line. (C) The heights of terrace surfaces along the Bailang River. The height
data for the terrace surfaces are calculated by subtracting the elevation of modern river bed from the elevation of terrace surface.

surface. Detailed information on chronology samples is presented
in Tables 1, 2.

In calculating the exposure age, we follow the method
proposed by Hetzel et al. (2004) to eliminate the influence from
loess shielding, and the calculated equation can be expressed as:

t1=−
1
λ

ln
[

1−
λ

P

(
Ctoteλt2+

P
λ−

ρα
3

(
1−e(λ−ρα/3)t2

))]
where t1 is the time span between the generation of the surface
and the onset of loess accumulation and t2 is the time span
from the onset of loess accumulation to the present. λ is

the decay constant (for 10Be: 4.998 × 10−7 yr−1, Korschinek
et al., 2010). P is the production rate of the nuclide (with
unit of atoms·g−1

·yr−1), and it is calculated with the scaling
model of Stone (2000), using the 10Be production rate of
5.1 atoms·g−1

·a−1 at sea level and high latitude. Ctot is the
concentration of the total cosmogenic 10Be nuclides in quartz
from the original surface (atoms·g−1). ρ is the loess density with
the value of 1.4 g·cm−3 (Hetzel et al., 2004; Cao et al., 2019). α is
the accumulation rate of loess derived from the age and the depth.
3 is the decay length of cosmic ray (160 g/cm2; Balco et al., 2008).
The sum of t1 and t2 is the total exposure time t.
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FIGURE 5 | (A) Terrace heights relative to the T3 surface showing the deformation geometry of across the Dahe Anticline. The lower part showing the fault geometry
deduced from the deformed terraces with the calculating method in (B). (B) The geometric method to calculate the subsurface fault geometry and to calculate the
fault slip rate. R = radius of the curve, α = the tilt angle of the terrace surface, W = the width of the backlimb, θ = dip angle of the back thrust at the upper-most part,
d = the depth to the decollement, y = the height from the surface to the center of rotation, S = the slip amount along the back thrust, h = terrace height at the
anticline crest. (C) The illustration to show the area-mass-balance method to calculate the fault slip. X is the shortening area on a horizonal fault, and it equals to the
uplifted area from the backlimb of the terrace surface.

TABLE 1 | OSL samples from the overlying loess and dating results.

Sample number Terrace
level

Latitude
(◦N)

Longitude
(◦E)

Altitude
(m)

Burial
depth (m)

Aliquots
(n)

Grain size
(µm)

IR50De (Gy) OD (%) pIRIR290 De
(Gy)

OD (%)

OSLBLH081201 T4 39.1334 99.4230 2169 1.1 6/6 63–90 24.94 ± 0.38 3 ± 2 39.71 ± 0.84 5 ± 2

OSLBLH081301 T5 39.1231 99.4368 2278 1.4 6/6 63–90 25.06 ± 0.69 6 ± 3 39.24 ± 0.5 2 ± 1

U (ppm) Th (ppm) K (%) Rb (ppm) Water
contenta

(%)

Cosmic
dose

(Gy/ka)

Dose Rate
(Gy/ka)

IR 5 0Age
(year)

pIRIR290Age
(year)

Loess
accumulation
rate (cm/ka)b

Contact age
(ka)c

3.09 ± 0.4 11.37± 0.7 1.94± 0.04 88.4 ± 4 2 ± 5 0.27± 0.03 4.07± 0.18 6135± 290 9765 ± 485 11.26 12.4 ± 0.6

2.98 ± 0.4 10.65± 0.7 1.85± 0.04 86.34 ± 4 6 ± 5 0.29± 0.03 3.77± 0.17 6650± 345 10410 ± 480 13.45 12.6 ± 0.6

Samples were measured in the Optically Stimulated Luminescence (OSL) Chronology Laboratory in the Key Laboratory of Western China’s Environmental Systems
(Ministry of Education), Lanzhou University, Lanzhou 730000.
aWater content is the actual measurement of water content.
bThe loess accumulation rate was calculated by sample depth divided by the OSL age.
cThe contact age is identified as the age when loess began to deposit on terrace surfaces, and it is calculated by the accumulation rate and the thickness from the OSL
sample to the loess base (30 cm for both samples).

RESULTS

Geometry of the Subsurface Fault
According to the deformation pattern of terraces (Figure 4), the
coupled deformation and related fault geometry can be separated
into two parts: The first part is the Dahe Anticline deformation,
relating to a back thrusting fault derived from the decollement
(Zuza et al., 2016; Hu et al., 2017) and the second part is the
monocline with north-ward tilting terraces on the south of the

anticline and probably related to the thrusting on the base fault
with a south-ward tilting shape (Hu et al., 2017).

Based on the factors of a gentle tilting and wide backlimb, a
relatively short forelimb, and a blind fault under the anticline,
we can interpret the anticline using a listric fault model (Amos
et al., 2007; Hu et al., 2015) for the backlimb and using a
trishear-fold model (Erslev, 1991) above the fault tip for the
forelimb. In building the detailed fault-and-fold geometry, two
boundary conditions, a dip angle at the upper tip of the blind
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TABLE 2 | 10Be samples and analysis results for terraces of the Bailang River.

Sample
number

Sample
location

Latitude
(N◦)

Longitude
(E◦)

Elevation
(m)

Thickness
(cm)

Shielding
factora

Quartz
(g)

10Beb (106

atoms g−1)

10Bec (106

atoms
g−1)

Uncorrected
Aged (ka)

Loess
thickness

(cm)

Loess
agee

(ka )

Agef

(ka)

BLH081201 T4 39.1354 99.4230 2169 5 1 30.8414 2.17 ± 0.017 1.92± 0.15 101.2 ± 8.2 140 12.42 109± 8

BLH081301 T5 39.1321 99.4368 2278 5 1 30.0338 4.15 ± 0.023 3.90± 0.15 183.9 ± 15.2 170 12.64 204± 7

aThe shielding factor includes corrections for horizon shielding and the dip of the surface.
bThis value is the measured 10Be concentration of the given samples.
cThe 10Be concentration is corrected for inheritance of 2.5 ± 1.5∗105 atoms g−1, which followed the estimation by Cao et al. (2019) and Yang et al. (2018).
dExposure ages were calculated without corrections for loess cover by CRONUS-Earth online calculators http://hess.ess.washington.edu/math/v3/v3_age_in.html.
eContact ages were computed from the loess thickness and respective loess accumulation rate, as shown in Table 1.
f Exposure ages were calculated with the correction for loess cover followed Hetzel et al. (2004).

fault and a dip angle of the decollement at the north boundary,
are assumed based on local investigations. Previous investigations
in this area showed that faults at the surface usually have steep
dip angles of 40◦–70◦ (Tapponnier et al., 1990; Yang et al., 2018;
Cao et al., 2019; Ren et al., 2019), and a seismic reflection
profile (Zuza et al., 2016) illustrated a dip angle of ∼55◦ for
this fault tip. Thus, we assume a dip angle for the upper dip
of the blind fault as 55◦ ± 5◦ (θ). According to the landform
pattern that, all the terraces are merged into the fluvial plain
to the north of the anticline, probably indicating no uplift at
this region and suggesting a horizontal we assume a dip angle
of 0◦ for the decollement at the north boundary, which is also
in agreement with previous interpretation for the decollement
dip at the south of the Yumu Shan (Tapponnier et al., 1990; Hu
et al., 2017). Enclosed by the two axle surfaces, a listric fault
geometry can be constructed (Figure 5B). By the width of the
anticline (5.3 km) and the fault dip angle at the fault upper tip,
the radius of the fan is estimated as ∼6.5 km, and then the
fault depth of the decollement at the north can be estimated
as ∼2.8 ± 0.3 km (the uncertainty is mainly derived from the
uncertainty of the fault dip angle θ). The southward tilting at
the forelimb of the anticline is simply interpreted by a trishear
zone (Figure 5B) in the shallow depth and with a surface width
of∼1.3 km (Figure 4B).

The subsurface fault geometry at the second part is estimated
by the kinematic theory of fault-bending fold that, the uplift
rate is a function of the dip angle with a constant fault
slip rate (Thompson et al., 2002; Hu et al., 2015). At the
15-km point, the river incised 40 m from T4 to T3. Using
the incision amount and the age, the incision rate can be
estimated as 0.3–0.4 mm/a. If we assume this relatively long-
term river incision rate in equilibrium with the local rock
uplift rate and using the fault slip rate of 1.8 ± 0.4 mm/a
(detailed discussion for this value is in the section “Deformation
rate”) for the base thrust in this region (Hetzel et al., 2019;
Hu et al., 2019b), the dip angle of the base fault at this
point can be calculated as 11◦ ± 2◦. At the 10-km point,
using the same method, the local uplift rate is calculated
as 0.8–1.2 mm/a, and then the dip angle can be estimated
as 34◦ ± 8◦. With these two constraints for the fault dips
and the horizontal fault surface under the Dahe Anticline,
the subsurface fault geometry under the south monocline is
constructed (Figure 6).

From south to north, the overall geometry for the subsurface
fault estimated by terrace deformations can be described
as a convex-up curve changed to a horizontal decollement,
and at the horizontal decollement, a concave-down curve of
the back thrust grew. By comparing the geometry with the
seismic reflection profile (Figure 7), the fault structure is
closely match with each other, especially for the depth of the
horizontal decollement, for the geometry of the curved back
thrust, and for the curved south-dipping thrust. Although a
natural fault is not following an ideal curve and shows some
small fault bends and secondary fault traces (as illustrated
in the seismic reflection profile, Figure 7), which cannot
be estimated in this study, the overall geometry for the
fault in controlling local deformation can be successfully
estimated by the surface deformation pattern, and it verified
the validation of the geomorphic method in estimating the
subsurface fault geometry.

Deformation Rate
The TCN exposure dating on the terrace surface yields an age of
204± 7 ka for T5 and an age of 109± 8 ka for T4 (Table 2). With
the fault geometry, terrace deformation geometry, and terrace
ages, the slip rate for the back thrust can be estimated. The first
method (Figure 5B) for the estimation is using the tilting angle
of terrace surfaces and the turning radius R (∼6.5 km). Relative
to T3, the tilting of T5 surface is ∼1.9◦, and this angle will yield
a slip amount of 215 m. From T5 (∼204 ka) to T3 (∼16 ka), the
slip rate can be estimated as 1.1–1.2 mm/a. The tilting angle of
0.7◦ for T4 surface (relative to T3) yields a slip rate 0.8–0.9 mm/a.
The second method uses the terrace height at fold crest and θ

(55◦ ± 5◦) to calculate the total slip amount. In relation to T3,
the estimated fault slip rate for T5 is 1.0 ± 0.2 mm/a and for T4
is 0.8± 0.2 mm/a by T4. For the connection of the back thrust to
the horizonal decollement, the slip rate on the back thrust could
be estimated as the shortening rate (part of the total shortening) at
the horizonal decollement, thus we can apply the commonly used
area-balance method (Lavé and Avouac, 2000) to calculate the
slip rate (Figure 5C). The uplifted area of T5 and T4 also relative
to T3 can be calculated by a triangle, and using the decollement
depth estimated in the previous section, the slip rate is estimated
as 0.8 ± 0.2 mm/a. We can find that these estimations for the
fault slip rate by three methods are highly in agreement and give
an average value of 0.9± 0.3 mm/a.
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FIGURE 6 | The overall geometry for the subsurface thrust fault. In calculating the fault dip, we assume that the river incision equal to the rock uplift. Sf = the full fault
slip rate along the base thrust, Sb = the fault slip rate along the back thrust, Sd = the fault slip rate to the north of the back thrust, U = vertical component of the
dip-slip rate or uplift rate, θ = the local fault dip angle.

FIGURE 7 | Comparison between the fault geometries estimated by terrace deformation, and the interpretation form the seismic reflection profile of
Zuza et al. (2016).
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DISCUSSION

Implications for Local Deformation
Kinematics
Based on the geological (Tapponnier et al., 1990), seismic (Zuza
et al., 2016), and geomorphic (Hu et al., 2017, 2019b) evidences,
the deformation of the Yumu Shan and the piggy-back basin
at its south is interpreted by thrusting along an upper crust
decollement (Tapponnier et al., 1990; Hu et al., 2017). This base
thrust fault is connected to the NQF at the south in a relatively
deeper crust (Zuza et al., 2016). Furthermore, to the south margin
of the piggy-back basin, no active fault has been found along
the eastern extending trace of the Fodongmiao-Hongyazi Fault
(FH), although a clear geology and topographic boundary can be
identified along this line. This evidence probably suggests that
the NQF had been active along this boundary before the thrust
fault propagating to the north below the piggy-back basin and
to the Yumu Shan. Thus, we can assume the NQF has been
inactive after its north-ward propagation in this region, and the
slip rate along the decollement and at the NYF (if without internal
shortening in the piggy basin) should be equal to the slip rate
on the NQF. On the west of the Bailang River, a dip-slip rate of
1.7 ± 0.3 mm/a for the FH fault can be estimated according to
1.2 ± 0.1 mm/a vertical slip rate (Yang et al., 2018; Hetzel et al.,
2019) and 45◦ ± 5◦ dip angle for the fault close to the surface
(Yang et al., 2018). At the eastern portion of the Yumu Shan, Hu
et al. (2019b) estimated a full dip-slip rate of 1.8 ± 0.4 mm/a,
which is in good consistency with the rate on the FH fault. Thus,
we could assume that the full dip slip along the decollement under
the piggy-back basin is in a rate of 1.8± 0.4 mm/a.

At the eastern portion of the Yumu Shan, this rate is probably
fully concentrated on the faulting and the folding across the
Yumu Shan range (Hu et al., 2019b), while it is not concentrated
at the western portion of the Yumu Shan by the observation in
this study. We suggest a 0.9 ± 0.4 mm/a shortening or fault
slip is accommodated by the Dahe Anticline within the piggy-
back basin, and the rest half-slip is accommodated by the western
portion of the Yumu Shan range. After revisiting the terrace
deformation pattern along the Dahe River (Hu et al., 2017), we
find the anticline deformation could be extending to a wider
width of∼6 km with a relatively wide and gentle-tilting backlimb,
rather than a folding with a width of 3 km. Thus, using a new
method in this study, we estimated the subsurface fault geometry
using T5 surface along the Dahe river, and it yields a similar
geometry result (Figure 5A) as that along the Bailang River.

Advantages and Limitations in
Estimation of the Fault Geometry Using a
Geomorphic Method
Across tectonic active fault-and-fold belts, river terraces are
usually widely distributed, which provide us available materials
to constrain the deformation kinematics, such as the Himalaya
(e.g., Lavé and Avouac, 2000; Burgess et al., 2012), the Tian
Shan (e.g., Burchfiel et al., 1999; Goode et al., 2014), the Taiwan
Range (e.g., Simoes et al., 2007), the New Zealand (e.g., Amos
et al., 2007), and the Qilian Shan (e.g., Hu et al., 2015; Cao

et al., 2019). These widely distributed materials were mostly used
to determine the fold types and deformation rates, while this
study along with other relative studies (Amos et al., 2007; Hu
et al., 2015; Wang et al., 2020) indicate that the geometry of
fold-related fault could be also successfully estimated based on
the terrace deformation and kinematic models for fault-related
folds (Brandes and Tanner, 2014). Thus, this geomorphic method
could provide us a valuable way to estimate the subsurface
fault geometry in a basement-involved range, where the seismic
reflection data are usually lacking or have great uncertainty in
determining the fault trace. From these studies, we can know that
a geomorphic constraint on deformations not only gives us the
availability to study the fold geometry and deformation rates, but
also at the same time, it would provide us a new way to obtain the
subsurface fault geometry.

In this study, we should notice that a listric fault-related
fold model was applied to reconstruct the terrace deformation.
Along the Bailiang and Dahe rivers, the tilted terrace surface
at the backlimb is not strictly a planar surface (with a constant
dip angle), which suggests that the subsurface fault probably
is not an ideal curve, has some small fault bends or a certain
amount of internal shearing (Hu et al., 2019b). The uncertainty
with the chosen fold model can be also derived from the fold
geometry, likewise, the terrace deformation may be interpreted
by a hanging-wall shearing model along a fault-bend fold (Suppe
et al., 2004; Wang et al., 2020). For the shear fault-bend
folding, how to obtain the subsurface fault geometry is still a
question; however, the listric fault-related fold (e.g., Hu et al.,
2017) and classic fault-bend folding models (e.g., Stockmeyer
et al., 2017) have been successfully applied to reconstruct the
subsurface fault geometry based on the geomorphic deformation.
In regard to a buried fault, another uncertainty in calculating the
subsurface fault geometry is that we need an assumption for a
dip angle of the upper-most fault trace. Here, the assumption
depends on a seismic reflection profile, which gave us a robust
boundary condition. While we do not have a seismic reflection
profile, people usually made the assumption according to nearby
investigations on the fault dips on the break-through thrusts
at the surface (Hu et al., 2015; Liu et al., 2019). Although this
assumption could be validated according to the similar lithology
in a nearby region, the investigated dip angles of the thrust at the
surface usually have a wide range (Yang et al., 2019), which could
introduce a certain amount of uncertainty for this assumption.
To resolve this problem, surveying by the Ground Penetrating
Radar (GPR) would be an efficient method (Amos et al., 2007) to
determine the shallow-buried thrust fault.

CONCLUSION

In comparison to a seismic reflection profile, the high consistency
of the subsurface fault geometry estimated by the terrace
deformation across an active folding region proved the validation
of the geomorphic method in estimating the subsurface fault
geometry. Although the uncertainty can be derived from the
selection of fold kinematic models and from the assumption
of the fault dip at one boundary, the overall geometry for the
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blind thrust fault is successfully estimated by a geomorphic
deformation. Based on the fault geometry, a more reliable
kinematic for local crust deformation can be constructed.
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