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Rock debris on the surface of a glacier can dramatically reduce the local melt rate, where
the primary factor governing melt reduction is debris layer thickness. Relating surface
temperature to debris thickness is a recurring approach in the literature, yet
demonstrations of reproducibility have been limited. Here, I present the results of a
field experiment conducted on the Canwell Glacier, Alaska, United States to constrain
how thermal data can be used in glaciology. These datasets include, 1) a measured sub-
daily “Østrem curve” time-series; 2) a time-series of high resolution thermal images
capturing several segments of different debris thicknesses including the measurements
from 1); 3) a thermal profile through a 38 cm debris cover; and 4) two Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite thermal
images acquired within 2 and 3min of a field-based thermal camera image. I show
that, while clear sky conditions are when space-borne thermal sensors can image a glacier,
this is an unfavorable time, limiting the likelihood that different thicknesses of debris will
have a unique thermal signature. I then propose an empirical approach to estimate debris
thickness and compare it to two recently published methods. I demonstrate that
instantaneous calibration is essential in the previously published methods, where
model parameters calibrated only 1 h prior to a repeat thermal image return diminished
debris thickness estimates, while the method proposed here remains robust through time
and does not appear to require re-calibration. I then propose a method that uses a time-
series of surface temperature at one location and debris thickness to estimate bare-ice and
sub-debris melt. Results show comparable cumulative melt estimates to a recently
published method that requires an explicit/external estimate of bare ice melt. Finally, I
show that sub-pixel corrections to ASTER thermal imagery can enable a close
resemblance to high resolution, field-based thermal imagery. These results offer a
deeper insight into what thermal data can and cannot tell us about surface debris
properties and glacier melt.
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1 INTRODUCTION

Most large-scale glacier models consider a glacier to be composed
solely of ice and snow. However, eroded rock debris from
surrounding bedrock can enter a glacier and is either
sequestered within the ice or rafts on the glacier surface
(Goodsell et al., 2005). A layer of rock debris at the surface
causes a modulation of the net atmospheric energy flux that
reaches the sub-debris ice surface. A debris layer that is less than a
few centimeters thick can enhance the local melt rate, while a
debris layer with a thickness greater than a few centimeters causes
an exponential decrease in the local melt rate, scaling with
increasing debris thickness (Østrem, 1959; Mattson, 1993;
Evatt et al., 2015). Englacial debris is exhumed to the surface
through glacier melt causing an increased accumulation of
surface debris towards the terminus of a glacier where melt
rates would be the highest in a debris-free setting (Anderson,
2000).

Earth’s mountain glaciers are 7.3% debris-covered (Herreid
and Pellicciotti, 2020), yet estimates of debris thickness, the key
variable governing sub-debris melt rates, are only now being
derived at large scales (Kraaijenbrink et al., 2017; Rounce et al.,
2021) and their accuracy will benefit from further validation.
Debris thickness can be derived from a high density network of
excavation point measurements (e.g., Anderson et al., 2021),
naturally occurring cross sections (e.g., Nicholson and Mertes,
2017) or ground penetrating radar (e.g., Nicholson et al., 2018);
however, these methods are time and resource intensive and
impractical at large spatial scales. Proposed methods to derive
debris thickness at wider spatial scales are 1) empirical relations
between debris thickness and satellite thermal data (e.g., Ranzi
et al., 2004; Mihalcea et al., 2008a; Kraaijenbrink et al., 2017); 2)
debris thickness derived from satellite thermal data as the residual
of a physically-based surface temperature inversion (Foster et al.,
2012; Rounce andMcKinney, 2014; Schauwecker et al., 2015); 3) a
sub-debris melt inversion (Ragettli et al., 2015; Rounce et al.,
2018); and 4), a combination of both a sub-debris melt inversion
and a surface temperature inversion (Rounce et al., 2021). While
studies using moderate/coarse resolution thermal data acquired
from satellites is common, the use of field-based oblique or
airborne/unmanned aerial vehicle (UAV) acquired high
resolution thermal data is surprisingly rare in glaciology
(Hopkinson et al., 2010; Aubry-Wake et al., 2015, 2018;
Herreid and Pellicciotti, 2018; Kraaijenbrink et al., 2018), and
none of these studies used their thermal data to explicitly solve for
debris thickness and/or glacier melt rates.

A thermal data approach to derive debris thickness is based on
a relation first described by Lougeay (1974). Lougeay (1974)
established the shallow, ∼0.5 m, debris thickness detection
limit as the surface temperature signal from thick debris cover
decouples from the cooling effect of the ice below. This limitation
persists through modern methods, yet thermal data remain a
recurring central component of new methods to derive debris
thickness. While debris thicknesses that exceed 0.5 m are
common, an argument can be made that the required debris
thickness estimate accuracy decreases as the debris thickness
increases and the sub-debris melt rate asymptotically

approaches 0, or a low rate of melt (Kraaijenbrink et al.,
2017). Because debris thickness is a relatively stable quantity
over short timescales (months to years), scientists can, optimally,
be selective with the acquisition timing of the data used to derive a
debris thickness estimate. More realistically, the data acquisition
will be limited by satellite pass frequency, snow cover and cloud
cover constraints. Mihalcea et al. (2008a) considered the strength
of the relation between debris thickness and in-field surface
temperature data as a function of time of day. Their results
suggested the early morning hours optimize the correlation, while
the weakest correlation was observed in the afternoon. To my
knowledge, this experiment has not been repeated and a deeper
understanding of the variable meteorological conditions and
diurnal/seasonal timing of data acquisition would help
optimize debris thickness estimate methodologies as well as
better inform what information can be feasibly extracted from
thermal data. Here, I use a high spatiotemporal resolution time-
series of thermal imagery over variable debris thicknesses to
consider the time of day and meteorological conditions that
are most favorable for acquiring an optimal thermal image to
derive debris thickness.

The stability of debris thickness over months to years also
posits the main challenge for researchers attempting to derive
debris thickness from surface temperature measurements: a
constantly changing independent variable needs to repeatedly
return a constant dependent variable. While solving for debris
thickness is a nontrivial challenge in its own right, apart from
mountain erosion rate problems and the study of peri/
supraglacial landforms, the explicit volume of rock debris
rafting on a glacier is a largely inconsequential quantity. For
research centered around water resources and sea level rise, it is
strictly the impact this layer of rock has on sub-debris melt rates
that is significant. To this point, a debris thickness estimate that
succeeds in extracting a constant and correct value from surface
temperature data is also removing information coupled to the
energy flux that is driving sub-debris melt. While a thermal image
time-series of bare-glacier ice at the pressure-melting point will
reveal nothing about the melt rate occurring in frame, a thermal
time-series of neighboring supraglacial debris that is sufficiently
thick to thermally decouple from a melting ice heat sink below, or
possibly a thermal time-series of a local valley wall that can be
considered a debris cover of infinite thickness, can presumably be
used to derive the melt rate at both bare glacier ice locations and
below a debris cover of any thickness. In this study, I explore both
of these propositions: 1) can a simple function relate variable
surface temperatures to stable debris thicknesses while retaining
model stability through time where parameter calibration is not
required for each thermal image? And 2), can surface temperature
collected at a location with thick debris, or of a neighboring
glacier valley wall, be used to solve for glacier melt below any
known thickness of debris?

To evaluate these questions, I use data from a carefully
orchestrated field experiment that includes an Østrem curve
time-series (sub-debris melt rates collected at neighboring
locations of variable debris thickness at a sub-daily interval)
that is coincident in time with, and captured within the frame
of, a high resolution thermal camera time-series. This enables a
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field-based derivation of the mirrored relation between surface
temperature and sub-debris melt rates as a function of debris
thickness that has been established through modeling (Nicholson
et al., 2018). While this analysis relies on a carefully chosen field
site and data that are not feasibly acquired at wide scales, I present

a set of methods where each field-based thermal image can
essentially be treated as if it were a moderate resolution
thermal satellite image. Following these methods, input data to
solve for debris thickness and sub-debris melt can be extracted
from the thermal image itself with an optional alternative input

FIGURE 1 | (A) thermal camera in position to capture (B). (B) one (unprocessed) frame of the thermal time-series with black lines defining image segments (1–7)
described in Section 3.1. (8) is the corner of a weather station structure and (9) is an aluminum ablation stake, both were cut out of each thermal image to not influence
segment statistics. (10) is the side of a medial moraine with a thinly debris-covered, or proto, ice cliff visible. The nadir footprint of (B) is shown in (C) and one to seven
correspond to their respective image segments. The line of sight distance is shown between the thermal camera [10 m away from (1)] and the seven segments.
Ablation was measured at (1)–(5) where the atmospheric classification pie is centered over the ablation measurement location.
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from a thermistor deployed at the surface of local and thick debris
cover. I quantify the success of the proposed methods and
consider factors that cause method failure, specifically, by
indirectly solving for debris layer saturation. I then compare
these results to two recently proposed/published methods from
Rowan et al. (2021) and Rounce et al. (2021).

Finally, to further bridge the gap between fine-scale, in-field
studies and moderate-scale satellite based methodologies, I
propose a sub-pixel signal correction for satellite thermal data.
I evaluate this correction using two Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)
satellite images, one acquired during the day and one at night,
where both were acquired within minutes of high resolution field-
based thermal images.

2 STUDY SITE

Canwell Glacier (Figure 1) is a 60 km2 glacier in the Delta
Mountains, a sub-range of the eastern Alaska Range
(63°19.8′N, 145°32′W). The lower-middle ablation zone of
Canwell Glacier was a carefully selected field site for the
experiment conducted in this study, meeting a specific set of
conditions packed tightly into one location. Several prior field
seasons were spent developing and testing field methods and
surveying debris thicknesses for an ideal field site and thermal
camera vantage point (Supplementary Figure S1). Looking
orthogonal to glacier flow, from the higher elevation and more
thickly debris-covered southern half of the ablation zone, there
are seven swaths of near-homogeneous surface types in one field
of view. Medial moraine bands at different stages of englacial
exhumation and/or with different source-point erosion rates are
visible, either as a discrete band surrounded by bare glacier ice, or
connected to neighboring moraines as they coalesce down glacier,
while still retaining their near-homogeneous rock composition
and thickness (Supplementary Figure S1). The presence of
relatively thick (∼38 cm) debris cover next to swaths of
thinner debris cover and bare ice provides an ideal natural
setting to measure the Østrem curve, normalized to bare
glacier melt rates, under effectively homogeneous
meteorological conditions, as well as allowing this field
experiment to be conducted with only one thermal camera.
Further, the off-glacier valley wall is also within the frame of
view adding one more potentially useful point of reference that I
explore further in this study.

3 DATA AND METHODS

3.1 Field-Based Thermal Infrared Camera
Data
Between July 30, 2016 23:42 AKDT (Alaska daylight time) and
August 30, 2016 20:14 AKDT, a field experiment monitoring sub-
debris glacier melt and temperature at an array of locations was
conducted (data gaps will limit different experiments in this study
to subsets of this time range). Using a FLIR T620 camera
(uncooled microbolometer, 640 × 480 resolution, spectral

range 7.5–14.0 μm, accuracy ±2°C, thermal sensitivity <0.04°C
at 30°C), surface temperature was monitored at a 15 min interval
for 164 h, broken into six observations periods under different
meteorological conditions. Due to data gaps, there were 102 h,
split between four observation periods (1 August 11:42 AKDT to
3 August 10:57; 3 August 3:45 to 4 August 16:13; 10 August 21:47
to 11 August 8:02; and, 16 August 23:15 to 17 August 19:45)
where measurements from all data sources were collected
simultaneously. The thermal camera was mounted on a
surveying tripod and deployed at the same coordinate location
for each of the six periods. Emissivity was set to one and distance
set to 0 to facilitate post-processing. Within each oblique thermal
image, seven distinct image segments were captured, each with a
near-homogeneous debris thickness (Supplementary Figure S1).
The segments, ordered in distance from the thermal camera and
corresponding to locations shown in Figure 1, are:

1. 38 cm (average) debris thickness (10 m from sensor)
2. 8 cm debris thickness (110 m)
3. Debris-free glacier ice (225 m)
4. 4 cm debris thickness (275 m)
5. Debris-free glacier ice (490 m)
6. 10 cm debris thickness (620 m)
7. Off glacier, southwest facing valley wall (1,000 m)

3.2Meteorological Data to Process Thermal
Imagery
Air temperature and relative humidity are required input to solve
for surface temperature from a thermal image. Measurements of
1.5 m air temperature and relative humidity were collected at a
10 min interval throughout the duration of this study at site 1 (on
top of structure 8) labeled in Figure 1. The measurements were
made using an ONSET HOBO U23 Pro v2 Temperature/Relative
Humidity Data Logger housed in a radiation shield. A second,
identical structure and sensor configuration was deployed to the
same debris-covered location as well as a bare ice location
(Figure 1, site 5) in 2012 spanning the same period of time as
the data collected in 2016 (31 July 23:42 AKDT to 30 August 20:
14 AKDT). These 2012 data are used in this study to amend a
2016 sensor deployment deficiency, providing hourly correction
factors to quantify the difference in air temperature over debris
cover and bare ice which is notably different (Supplementary
Figure S2). To provide context to analysis of debris saturation,
precipitation was also measured at site 1 (on top of structure 8)
labeled in Figure 1, using a HOBO tipping bucket Rain Gauge
Data Logger.

3.3 Solving for Surface Temperature
Thermal infrared cameras are often sold along with integrated
software packages that facilitate post processing. There is nothing
inherently wrong with using proprietary software packages, but
given the complexities and scales that glacier research is
conducted on, it is helpful to have oversight/control of the
equations used to decompose the several entangled signals
present in at-sensor radiance values. In contrast to other
geophysical applications of thermal imagery, e.g., volcanology
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where dramatic thermal anomalies (+100s of degrees) are the
signal of interest (Spampinato et al., 2011), applications in
glaciology mainly use absolute temperature values that have a
relatively low deviation (∼10–30°C over varying debris
thicknesses), thus further increasing the importance of careful
image processing. Here, I present a method to process field-based,
oblique time-lapse thermal imagery which poses unique
difficulties from, 1) variable atmospheric attenuation that can
be present in one frame imaging several surfaces at different
distances (in this study, ranging from a few meters to a kilometer
away from the sensor); 2) variable atmospheric attenuation
through time; and 3), image shift and rotation from both
imaging an unstable landscape and, in the case of this study,
acquiring the image time-series from an unstable location on the
glacier surface. The method uses Thermimage (Tattersall, 2017)
to automate the extraction of raw values from FLIR images and
(TỲč and Gohlke, 2015) to co-register images in the series. This
processing routine was developed specifically for a glacier setting
by including atmospheric corrections accounting for variability in
near-surface conditions over bare and debris-covered ice surfaces
present along the line of sight distance from the thermal camera
sensor to the target surface. Aside from this correction, which can
be omitted, the image processing routine is suitable for any Earth
science application with a few meters to a few kilometers line of
sight surface to sensor distance. The code uses both R and Python
packages combined in one open-source Jupyter Notebook
available at (https://github.com/samherreid/ThermalTimelapse).

The value assigned to each pixel in a thermal image is a
quantization of the net radiant intensity,Wtot (Wm−2), received at
the sensor within a set, sensor specific, spectral range
(7.5–14.0 μm for the camera used in this study). Following the
formulation from Usamentiaga et al. (2014), the surface
temperature of an object, Ts (K), can be calculated by:

Ts �
�������������������������������������������������
Wtot − (1 − εobj) ∗ τatm∗σ ∗ (Trefl)4 − (1 − τatm) ∗ σ∗(Tatm)4

εobj ∗ τatm ∗ σ

4

√
(1)

where εobj is the emissivity of the object, τatm is the transmittance
of the atmosphere between the sensor and the object, σ is the
Stefan-Boltzmann constant (5.67 × 10–8 Wm−2K−4), Trefl (K) is
the reflected temperature and Tatm (K) is the temperature of the
atmosphere.

None of these quantities (apart from σ) are constant in time
or space. However, variability in εobj through time, e.g., from
rock surfaces becoming wet, was assumed to be negligible. In
this study, εobj was varied in space based on site specific values
extracted from an ASTER image, acquired on August 30th, 2016
at 13:25 AKDT, that was processed to estimate surface
emissivity (AST05) (following Gillespie et al., 1998; Abrams
et al., 2002). These values averaged to a debris cover emissivity of
0.94 and an ice emissivity of 0.97. Trefl was assigned for each
thermal image by extracting the mean temperature of the
aluminum poles of the weather station structure visible in the
field of view of each image (Figure 1). This loosely follows the
reflector method described in Usamentiaga et al. (2014);
however, variation from vectors normal to a smooth

cylindrical aluminum surface rather than normal to a
complex, randomly oriented crumpled and then flattened
aluminum surface (a more favorable configuration) was not
quantified. Atmospheric temperature (Tatm, Section 3.2)
measurements coincident in time with each thermal image
were extracted, and a correction (derived from local data
collected 4 years earlier in 2012) was applied to account for
air temperature variability for the portions of each thermal
image that were debris-free. A set of correction factors were
computed for each hour of the day by finding the difference
between hourly averaged 1.5 m air temperature collected at
location Figure 1 1) and the same measurement recorded at
location Figure 1 5) (Supplementary Figure S2).

The final parameter needed to solve Eq. 1, τatm, can be
formulated as the product of the two main quantities that
cause signal attenuation received at the thermal camera,

τatm � τmτs, (2)

where τm is molecular absorption by constituent gases and τs is
scattering by particles in the atmosphere (Gaussorgues, 1994).
Following Gaussorgues (1994), τm is simplified to account for the
two dominant constituent gases of the atmosphere, water vapor
and gaseous carbon dioxide:

τm � τH2OτCO2. (3)

As electromagnetic radiation travels through the atmosphere
from the target glacier surface to the infrared sensor, some of the
radiation is absorbed by atmospheric water vapor molecules
(Gaussorgues, 1994). Discrete volumes of interest requiring a
solution for atmospheric water vapor content can be
approximated as a solid angle or ellipse-based cone, where the
point of the cone is at the sensor and the ellipse base approximates
the glacier surface radiation source area surrounding each
(rectangular) pixel in a thermal image. The number of water
vapor molecules present within this cone is a function of the local
partial pressure of water vapor and the presences of gaseous water
vapor molecules (Gaussorgues, 1994). These quantities are
governed both by predictable factors (e.g., elevation, diurnal
and seasonal cycles) and chaotic factors (e.g., wind and
weather systems). Considering these factors, τH2O cannot be
considered static even at sub-hourly time scales. For this
study, the volume of the ellipse-based cone was simplified to a
one-dimensional distance, x, from the object surface to the
infrared sensor. This is a practical simplification even in an
oblique setting because objects that are close to the sensor
have a sufficiently disproportionate pixel resolution to the
length of x scale ratio of millimeters to meters and objects
imaged in the distance have a scale ratio of centimeters to
100s of meters. The quantity of water vapor along x is most
commonly expressed as a height of precipitable water, which is
the amount of liquid water that would result from the
condensation of all of the present water vapor molecules
(Gaussorgues, 1994). Precipitable water, h, can be expressed as

h � ∫x

0
qvρdx, (4)
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where qv (dimensionless) is specific humidity, the mass mixing
ratio of water vapor to the total mass of the moist air along x, and
ρ (kg m−3) is the density of the moist air. h has units of kg m−2

which is equal to a one-dimensional height of water in mm. h is
frequently solved for over a vertical column from the ground to
the top of the atmosphere. Many parameterizations exist for this
quantity (e.g., Maghrabi and Al Dajani, 2013), but are not
applicable to a horizontal x with a variable length and also
where pressure and temperature profiles cannot be
approximated as simple functions of elevation. h is therefore
estimated using measured relative humidity, RH (dimensionless),
Tatm (K) and sensor to surface distance, x (m).

The longest x over which h was solved for was 1 km with
variable ground-surface types (alternating between debris cover
and bare glacier ice, Figure 1C) where RH and Tatm cannot be
assumed constant. For this study, the landscape imaged
repeatedly was broken into segments where each segment
contains area with a near constant debris thickness
(Supplementary Figure S1) and a similar ground to sensor
distance, x (Figure 1; 1–7). For each segment, h is
approximated from the quadrature of Eq. 4 by

h � qviceρicexice + qvdebρdebxdeb, (5)

where the distance, x, is the sum of two components accounting
for variability in the atmosphere above two distinct surfaces, bare
ice, xice, and debris cover, xdeb (Figure 1). Using a set of standard
equations, Tatm and RH can be used to solve for qv and ρ over bare
ice (qvice, ρice) and over debris cover (qvdeb, ρdeb) (Supplementary
Appendix). With a solution for h from Eq. 5, spectral
transmittance through the atmosphere considering molecular
absorption of water vapor, τH2O, can be estimated as a
function of wavelength (λ, μm) (Passman and Larmore, 1956;
Gaussorgues, 1994) (Supplementary Appendix). Numerical
integration of τH2O(λ) over the specific thermal camera
spectral range (in this study 7.5–14.0 μm) enables a solution of
τH2O.

Solving for spectral transmittance through the atmosphere
considering molecular absorption of gaseous carbon dioxide, τCO2

and signal attenuation from scattering by particles in the
atmosphere, τs, can be estimated more simply as functions of
λ and sensor to object distance, x (Gaussorgues, 1994)
(Supplementary Appendix). Together, these calculations of
τH2O, τCO2 and τs enable an estimate of τatm for each image
segment that accounts for the specifications of the thermal
camera, the physical setting of the experiment and the
instantaneous near-surface atmosphere.

The unique setting of imaging a glacier surface with
simultaneous measurements of non-zero melt means that bare
glacier ice can be expected to be at the pressure melting point.
While small impurities are present on even bare ice surfaces with
the potential to raise the surface temperature slightly above 0°C, I
used this setting of a known, in-frame temperature to identify and
correct an assumed linear −2°C sensor bias for all of the images
used in this study.

The procedure described here forms the basis of a thermal
image processing routine that considers variable surface types,
variable line of sight distances and variable near-surface

atmosphere along the line of sight distance within a single
thermal image. This routine was applied to 684 images
acquired over a total span of 164 h. This process was fully
automated including automated rotation, translation and
scaling data shifts (TỲč and Gohlke, 2015) to co-register
images to match manually defined image segments (black lines
in Figure 1B). Locations in the image where unnatural objects
were present (e.g., an ablation stake and the corner of a weather
station) were removed to not disrupt the mean, median and
percentile values computed for each segment.

3.4 Sub-daily Ablation Measurements
Contemporaneous with the thermal image time-series, sub-
daily melt measurements were made within four of the seven
segments defined in Figure 1: Segments 1, 2, 4, and 5 with
debris thicknesses 38, 8, 4, and 0 cm, respectively. Melt
measurements were made using a “glacier selfie stick”
approach where a graduated, rigid aluminum ablation stake
was drilled into bare, or sub-debris ice with a visible spectrum
time-lapse camera loosely attached and floating on the surface
to photograph the progressive exposure of graduations 5 times
per day (Figure 2, Supplementary Video S1). For the ablation
stake located closest to the thermal camera [Figure 1 (8), 38 cm
debris thickness], the visible spectrum time-lapse camera was
fixed to the floating meteorological station. These
measurements enabled a sub-daily measurement of melt and
were validated against periodic, field-based manual
measurements. The presence of the camera assembly at the
ablation stake also impacted melt, which was most visible at the
bare ice location. Instances where the camera assembly caused
clear excess lowering were corrected for by adding back the
height of an unnatural (few cm) trench, yet these instances were
rare and the assembly remained largely flush with the visible
surrounding surface (Supplementary Video S1). Each of the
four image time-series were post-processed to derive melt rates
by manually measuring the graduation exposure rate. While the
cameras acquired five images per day, the frequency of melt
measurements were also a function of melt. If the melt rate
between images was low, e.g., for the locations with a thicker
debris cover, measurements intervals were lengthened until a
discernible change could be confidently measured. This makes
selecting a meaningful common dt for the computed melt rate
difficult. For the purposes of the modeling effort described in
Section 3.6 below, where high frequency (10 or 15 min)
measurements were downsampled to a 1 h frequency, these
melt measurements were resampled to 1 h. This resampling
produces error in the melt model validation, but preserves the
diurnal variation in the melt rate below thin debris cover and at
bare ice. This diurnal variation is a unique signal since most
melt measurements of bare glacier ice or sub-debris melt are
averaged over days to weeks or months. The bare ice ablation
stake, with the highest melt rate, needed to be occasionally re-
drilled to maintain a continuous record. These disruptions to
the melt record and subsequent post processing proved difficult
to mitigate, where disruptions to the melt rate only causes
obvious momentary unrealistic values, while a large and more
subtle error can accrue in the cumulative melt signal. Large
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errors were manually smoothed by taking an average between
the surrounding days melt measurements at the same time of
day. Finally, to have all of the ablation records begin at the same
time, linear regression was used to solve for melt over the hours
needed to be subtracted from earlier emplaced ablation stakes
to align with the initial measurement of the last emplaced
ablation stake.

Melt measurement error was estimated at 0.12 cm per
measurement, which sums to 0.6 cm per day if all five images
were suitable for use. This value is the result of watching the
landscape shift in the background of each image which is caused
by movement of the camera assembly unrelated to melt-driven

surface lowering. Figures 2C,D shows an extreme shift event
where the camera tilted backwards overnight giving the
impression of glacier accumulation. While the distance to the
background landscape is unknown as well as the angle of rotation,
it is still a clear indication of when the measurement will contain
an error, requiring a correction factor that will carry through the
remaining melt measurements when solving for cumulative melt.
A video (Supplementary Video S1) of the complete visible time-
lapse datasets from the four locations shows that while events like
the one shown in Figures 2C,D do occur, through much of the
time-series, the camera position (and background landscape)
remains stable, facilitating meaningful melt measurements.

FIGURE 2 | (A,B) glacier selfie stick configuration used to collect a sub-daily record of surface lowering at locations (2), (4), and (5) in Figure 1. Location (1) had its
ablation time-lapse camera fixed to the floating weather station structure. Errors in this style of measurement can be estimated by observing offset in the surrounding
landscape compared with the melt signal. (C,D) an example of a particularly large camera movement between two successive images (the camera was set to turn off
during the night) where a simple reading of the graduations exposed would suggest glacier accumulation (red bar) but is clearly an error of upward camera rotation
based on the lowering of the background landscape. An additional advantage of this method to record ablation is the background imaging of the local sky and cloud
fraction.
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3.5 Thermal Diffusivity
For the three locations of measured ablation with debris cover
[Figure 1(1,2,4)], temperatures were recorded within the debris
layer in 4 cm increments from the debris-ice interface to the
surface. These measurements were collected using ONSET U23
Pro v2 External Temperature Data Loggers at a 10 min increment
(resampled to 1 h for the modeling effort, described in Sections
3.4, 3.6). At the location of the thickest debris cover [Figure 1(1),
38 cm debris thickness], further analysis was conducted to
investigate the energy transfer within the debris layer
concurrently with the ablation and thermal time-lapse
measurements. Thermal diffusivity, in a strictly conductive
energy transfer setting, can be solved for using the finite-
difference method to approximate the Biot-Fourier diffusion
equation,

zT
zt

� κc
z2T

zh2d
(6)

where T is temperature (°C), hd is depth (mm), t is time and κc is
thermal diffusivity (mm2s−1) (Hinkel et al., 1990; Conway et al.,
2000; Rowan et al., 2021). The subscript, c, denotes the exclusion
of any heat transfer mechanism besides conduction.

A second approach was used to solve for thermal diffusivity
from diurnal amplitude decay with depth, incorporating all
heat transfer mechanisms. In order to automate the selection
of diurnal maximum and minimums, a Savitzky-Golay filter
was applied (polynomial order 3, window length 51) to
smooth the jagged nature of a surface, or near-surface
temperature profile as clouds pass overhead. Considering
the change in temperature amplitude with depth for each
day, amplitude derived thermal diffusivity, κa can be
calculated,

κa � ω(h1 − h2)2
2(ln(A(h1)) − ln(A(h2)))2 (7)

where A(h1) and A(h2) are temperature amplitudes at depths h1
and h2, respectively Wang et al. (2020). ω is the radial frequency,

ω � 2π
ϕ

(8)

where ϕ is the period of the diurnal cycle set to 86,400 s (24 h).
Using the smoothed temperature profiles, phase shift was

calculated at each measurement depth by finding the lag in
time between the maximum temperature at depth and the
maximum temperature at the surface for each day. The slope
of phase shift with depth is also proportional to thermal
diffusivity (Anderson, 1998).

3.6 Methods to Estimate Debris Thickness
and Sub-debris Melt
The simultaneous hourly measurements of sub-debris melt under
variable debris thicknesses and the corresponding surface
temperatures offer an ideal framework to evaluate, and
possibly improve upon, methods to solve for debris thickness
and sub-debris melt.

Exponential scaling is often used to describe the nonlinear
relation between surface temperature and debris thickness (e.g.,
Mihalcea et al., 2008b), yet local variability intrinsic to the relation
are embedded within the model parameters, limiting
transferability. Here, I propose a method similar to
Kraaijenbrink et al. (2017) that draws on information present
in the same thermal image used to estimate debris thickness to
constrain the exponential scaling. The approach here differs from
Kraaijenbrink et al. (2017) by 1) introducing one model
parameter that I hypothesize will be stable through time and
for other locations on Earth; and 2) looking both within the
glacier domain as well as outside the glacier domain, to the local
valley walls, to constrain a realistic relation between debris
thickness and surface temperature even if there is no thick
debris cover present within a thermal image (or no debris
cover at all).

I define Ts
∗ as the “warmest local temperature” extracted from

the thermal image. Ts
∗ is used as a reference surface temperature

representing the local radiative forcing without heat sinks. For
any location with little or no prior knowledge of the setting, for
example, a routine iterating through all glaciers on Earth, Ts

∗ can
be defined as Ts

∗ � max(max(Ts),max(Tsbuffer)), where Ts is
surface temperature across the glacier domain and Tsbuffer is
off-glacier surface temperature within a set buffer distance
outside of the glacier domain to capture the local valley walls.

FIGURE 3 | Thermal camera derived surface temperatures over the
observation period shown in Figure 5. Debris cover surface temperatures
approach the warm valley wall temperature as debris thickness increases.
Where debris is sufficiently thick, it is possible surface temperature from
these two surfaces could be used interchangeably to force a model of local
sub-debris melt, giving preference to whichever is easier to collect in a given
field setting. Model coefficients should be able to accommodate any valley wall
aspect. Imaging rock surfaces, preferably till, rather than vegetation is likely
critical to maintain a similar emissivity. These data suggest an off-plot, non-
zero convergence, likely due to differences in emissivity/aspect/surface angle,
or the temperature at the surface of a 38 cm debris cover may not be entirely
free from close proximity temperature modulation from glacier ice below.
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The assumption behind looking off-glacier is that the maximum
temperature in close proximity, and at a similar elevation, will be
from a rock surface with a similar emissivity and surface
roughness to a thick debris cover that is decoupled from heat
sinks regardless of whether there is thick, thin or no supraglacial
debris present at that location. The maximum function is used to
discard less ideal, e.g., vegetated, surfaces that will likely be cooler
than till or bedrock. Measurements from this study show the
surface temperature of thick debris cover can exceed even south
facing valley wall temperature, but the two quantities, thick debris
Ts and valley wall Ts, are correlated (Figure 3). Since the field
experiment presented here is conducted with the knowledge that
there is thick debris cover, Ts

∗ is set to max(Ts) which, for this
time-series, is equivalent to Ts at the 38 cm debris thickness
segment. If using only max(Ts) or max(Tsbuffer), it is possible for Ts
to exceed Ts

∗ which can be accommodated by using a piecewise
function. Where available, Ts

∗ is taken from the thermal camera
data. For the sub-debris melt analysis expanding beyond the
thermal camera observation windows, Ts

∗ is set to the
temperature measured by the contact thermistor at the top of
the thermal profile at the 38 cm debris thickness segment
(Section 3.5).

With Ts
∗ established, a relation to solve for debris thickness,

hdeb, can be expressed as,

hdeb(Ts) �
min a9 exp

Ts
∗

Ts
∗ − Ts

( ), hmax( ), 0≤Ts <Ts
∗

hmax, Ts ≥Ts
∗

⎧⎪⎪⎨⎪⎪⎩
(9)

where a9 is the single model coefficient (subscript referring to
the equation number in this paper, subsequently developed
model coefficients, ax, bx and cx, will follow the same, subscript
to the equation number, notation) that I hypothesize will be
stable through space and time because much of the local and
regional variability, both in terms of micrometeorology and
broad geographical/orographical effects, will be captured in
Ts
∗. hmax is a user defined value of “thick” debris cover where

associated sub-debris melt rates can be assumed to have
asymptotically approached a stable, low value. Here, I set
hmax to 40 cm. While an exponential function is generally
successful at capturing the relation between surface
temperature and debris thickness for debris thicknesses
around 40 cm or less, towards thicker debris cover, it is
unrealistic that small, incremental increases in surface
temperature should return exponentially thicker debris
cover. Lacking data to support, for example, a third-order
polynomial fit that would smoothly transition to a constant
debris thickness while surface temperature continues to
increase, I have opted to flat-line debris thickness to make
clear that what can be safely resolved is that the debris is thick,
but the model is unable to predict an absolute thickness. This
method also cannot predict debris thicknesses when
temperatures are below freezing.

I compare this approach to two recently proposed/published
methods from Rowan et al. (2021) and Rounce et al. (2021).

Analysis by Rowan et al. (2021) shows a power-law relation
between debris thickness and near-surface temperature which
they invoke to suggest solving for sub-debris melt from surface
temperature data. Following this framework, I evaluate the
inverse of the power-law from (Rowan et al., 2021, Figure 7A),
where

hdeb(Ts) � a10T
b10

s . (10)

I also evaluate the approach used by Rounce et al. (2021) where
debris thickness is estimated using the Hill equation,

hdeb(Ts) � Tsb
c11

11

a11 − Ts
( ) 1

c11

. (11)

With hdeb either known or estimated from one of the methods
described above, it becomes feasible to estimate sub-debris melt
rate, _b. For the method I propose here, I continue to use Ts

∗ as
defined above, but now use it to first solve for debris cover surface
temperature. This may sound redundant, since Ts

∗ was derived
from distributed surface temperature data. However, the above
method was developed to solve for stable (over the timescale
considered here) debris thickness. To solve for debris thickness,
especially over large spatial scales, there are at best a few suitable
(cloud and snow free) satellite-based thermal images acquired per
year. To force a method to derive _b, Ts

∗ is not discovered, as above,
but rather measured (or derived) continuously from a fixed
location. For this study, Ts

∗ is again set to Ts at the “thick”
38 cm debris thickness segment from thermal camera data where
available, and from the contact thermistor at the debris surface for
the longer time-scale analysis. In future applications, Ts

∗ can be
measured from either a contact thermistor at the surface of thick
debris (which is an exceptionally easy sensor to deploy in the
field) or by taking repeat thermal images below as much of the
cloud canopy as possible which could be possible from a vantage
point off-glacier where a power source might be more readily
available.

Using Ts
∗ and one model coefficient, distributed debris surface

temperature, Ts, can be estimated at the same temporal interval as
Ts
∗ where debris thickness is known,

Ts(Ts
∗, hdeb) � Ts

∗ − (Ts
∗ exp(−a12hdeb)). (12)

With distributed Ts derived through time, _b can be estimated as,

_b(Ts
∗, hdeb) � a13(1 − b13)(Ts

∗ − Ts(Ts
∗, hdeb)) + a13b13Ts

∗, Ts
∗ ≥ 0

0, Ts
∗ < 0

{
(13)

where a13 � _b0/Ts
∗, the ratio of bare ice melt rate, _b0, and Ts

∗. This
term scales the relation to melt. I hypothesize a13 will remain
relatively stable through space and time because it is a ratio of two
physically related quantities. If true, this would mean that _b0
would not need to be explicitly derived from other melt modeling
methods to solve for bare ice and sub-debris melt rates. a13 will
likely need to be recalibrated between geographic regions where
the energy balance terms are not similarly weighted and the
hypothesis may be rejected where the weighting is locally variable,
e.g., where turbulent fluxes are an important component of the
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energy balance (Steiner et al., 2018). b13 is a term that accounts for
the thermal inertia of a debris cover, where melt below thick
debris is forced by energy transfer occurring over a period longer
than the 24 h diurnal cycle. Here, I parameterize b13 as
b13 � median( _b38)/median( _b0), where _b38 is the melt rate
below a “thick” 38 cm debris cover (note _b38 is a melt rate,
while b13 is a model parameter). This ratio is the empirical
middle value of a fairly difficult to obtain set of
measurements. It scales the empirical asymptotic convergence
of the full (in time) melt rate dataset collected for this study and is
possibly stable through space and time. If stable, this would
facilitate transferability and reduce the frequency these
cumbersome measurements would need to be repeated. With
the two model parameters expressed in their expanded ratio form
and explicitly solved for (meaning without taking the median
values), the last term of Eq. 13 reduces from

_b0
Ts
∗

_b38
_b0
Ts
∗, to _b38. This

sets the melt rate for the region of the curve after the exponential
decay approaches the asymptote. Because the parameterized form
is scaled by Ts

∗, melt will not continue throughout the winter as
surface temperature drops to 0°C, or below, from the piecewise
case of sub-freezing temperatures.

While Eq. 12 has the same arguments as Eq. 13 and could thus
be easily written into Eq. 13, it is worthwhile to consider it as a
separate step because surface temperature measurements are
easier to obtain than sub-debris melt measurements for the
purposes of method validation.

The analysis presented in this study is over a small portion of
one glacier where factors like elevation dependent temperature
lapse rates can be neglected. In order to derive distributed results
from the new methods presented here, Ts

∗ will need to be
extracted at elevation bins to solve for hdeb, and corrected for
elevation to solve for _b.

Finally, I evaluate the method proposed above against the
approach used by Rounce et al. (2021) where _b is estimated using
a second-order reaction rate equation,

_b( _b0, hdeb) �
_b0

1 + a14 _b0hdeb.
(14)

While Rounce et al. (2021) used an energy balance model to solve
for _b0 and a14, for this study, I simply fit Eq. 14 to measured _b0,
thus evaluating the expression as if bare ice melt was externally
modeled perfectly (under the assumption that my bare ice melt
measurements are correct). To evaluate the methods used in this
study, the coefficient of determination was found between
instantaneous measurements (debris thickness, surface
temperature or glacier melt rates) and the respective
instantaneous modeled values.

3.7 Sub-pixel Correction for ASTER Thermal
Data
Three ASTER thermal images were acquired under clear sky
conditions that were coincident in space and time (2 min, 3 min,
and 3 h separation) with the terrestrial based, high resolution
thermal images collected within this study. Of the two ASTER
images with a separation of minutes, one was acquired during the

night (August 28, 2016 23:16 AKDT) and the other during the
day (August 30, 2016 13:25 AKDT) about 1.5 days later. These
images were processed on-demand by NASA to surface kinetic
temperature (AST08) which has a spatial resolution of 90 m and a
temperature accuracy and precision of about 1.5 K (Gillespie
et al., 1998; Abrams et al., 2002).

Due to the high spatial variability in surface characteristics that
can occur over very short length scales within a debris cover
(Kraaijenbrink et al., 2018), a correction was applied to the
ASTER thermal pixels that were coincident with this study.
While acknowledging the ASTER processing algorithm is not
linear, the most simplistic approach to applying any correction at
all is through linear spatial averaging. Using the high resolution,
manually digitized bare glacier ice and ice cliff map used as a
validation dataset in Herreid and Pellicciotti (2018), the fraction
of bare glacier ice within each ASTER pixel was found. Assuming
the temperature value assigned to the ASTER pixel is an area
weighted average of the true temperature distribution within the
pixel area and assuming the areamapped as bare ice or ice cliff has
a surface temperature of 273.15 K, the surface temperature of the
remaining debris-covered fraction of the pixel can be computed.
This debris area only temperature, Tscor, can be defined as

Tscor � TssatLsat
2 − (273.15βiceLsat

2)
(1 − βice)Lsat2

(15)

where Tssat (K) is the raw satellite temperature for the whole pixel,
Lsat is the length of one edge of a satellite pixel (90 m for ASTER)
and βice is the fraction of a pixel that can be assumed to have a
surface temperature of 273.15 K.

4 RESULTS AND DISCUSSION

The field data collected in this study provide an Østrem curve
time-series, capturing the diurnal variation in melt rates below
different thicknesses of debris cover, which are all spatially
contained within the field of view of a high resolution thermal
image time-series. A record of temperature within a 38 cm thick
debris layer is also coincident in time and space. These data are
best shown as a video time-series (Supplementary Video S2).

4.1 Optimal Timing for Thermal Image
Acquisition
For each thermal image segment with a near-homogeneous
debris thickness (Figure 1, Supplementary Figure S1),
median and percentile statistics were computed (Figure 4).
The time-evolution of the median and spread of temperatures
within each segment illustrate when it is most feasible to
automate the differentiation of these segments and assign a
debris thickness. The ideal setting is when there is near-
homogeneous temperatures within a segment (narrow
individual ranges, Figure 4F), heterogeneous temperatures
across segments (high stacked spread, Figure 4G) and even,
un-clustered distribution of the spread (swaths equal in
magnitude, Figure 4H).
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While satellites can only acquire surface temperature data when
the surface is not obstructed by clouds, Figure 4 suggests that the
two cloud-free days (August 29 and August 30) were the least
optimal of the collected time-series. During these clear sky
conditions, the percentile spread in individual segments is high,
and the spread between segments is uneven to nonexistent. The
warmest two segments (with debris thicknesses of 38 and 8 cm)
became nearly isothermic during the peak heat of the day. On the
contrary, it appears that overcast days without precipitation offer
themost ideal conditions for deriving debris thickness from surface
temperature (some rain occurred during this time-series but no
major rain events were recorded). While this could be useful for
small scale studies using terrestrial or airborne/UAV imaging
platforms that can operate under a cloud ceiling, it adds to the
challenge of using thermal satellite data to derive debris thickness.

There are reasonable arguments to use thermal data from both
night and day-time imagery to derive debris thickness. During the
night the near-isothermic state described above would be avoided,
and, drawing on the stored heat signal of a thick debris cover, or its
absence for a thin debris cover, the surface temperature may scale
well with debris thickness. On the other hand, during the day, direct
short-wave radiationwill warm thick debris cover surfaces while thin

layers remain cool, even under direct incoming short-wave radiation.
Both approaches seem reasonable and possibly a combinationwill be
most successful. The key circumstances to avoid are a night
isothermic state when debris cover of all thicknesses cool off, or
during peak heat of a clear daywhenmost rock surfaces are heated to
a high temperature and decouple from a predictable relationwith the
ice below.Within the data acquired in this study, there is evidence of
all four states: an optimal night setting, an optimal daytime setting,
isothermic nights and isothermic days. Both isothermic states (for all
segments at night and the two segments with the thickest debris
cover during the day) occur during the clear sky days, August 29 and
30. The remaining measurement days have variable degrees of
spread but differentiation seems feasible at any time of day.
Based solely on the spread of the full thermal histogram over the
observation period (Supplementary Video S2), daytime offers a
more broad spectrum of temperature to discretize.

4.2 Solving for Debris Thickness From
Surface Temperature Data
Three empirical equations relating surface temperature to debris
thickness were evaluated using the same input data over the same

FIGURE 4 | (A–C) segments where glacier melt was not measured. Location from Figure 1 is given on the y-axis label. Light and dark blue are the 10–90 and
33–66 percentile temperature range, respectively. The green dot is the segment median temperature. (D) select images from the glacier selfie sticks. Ignoring the ablation
stake in the center frame, cloudiness and the local weather can be observed. Segment median temperature (E) and 33–66 percentile range (F) for the four segments
where ablation was measured. The colors correspond to: blue, bare glacier ice at Figure 1 location (5); orange, 4 cm debris thickness (4); green, 8 cm debris
thickness (2); and purple, 38 cm debris thickness (1). (G) spread ofmedian values for segments in (E) by stacking the gap, in °C, between two neighboring segments. The
difference swath is assigned the color of the upper segment. (H) same as (G), normalized to 100%. (I) precipitation of liquid water. Solid red vertical lines show noon of
each day, and grey swaths show the local night (corrected for local latitude). The two vertical red dashed lines in (F) show the timing of two ASTER thermal images that
were acquired concurrently with this time-series.
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FIGURE 5 | (A,B)measured debris thickness, solid flat lines with a ±1 cm error buffer; and modeled debris thickness, forced with Ts from thermal camera segment
medians over the measured debris thicknesses. Model coefficients were calibrated for every timestep. A successful model would match the flat line debris thickness of
the same color for every timestep. Different models are denoted by shape at each timestep. Debris thickness colors are the same as (I) and Figures 3, 4, 6: blue, bare
glacier ice at Figure 1 location (5); orange, 4 cm debris thickness (4); green, 8 cm debris thickness (2); and purple, 38 cm debris thickness (1). Solid red vertical lines
show noon of each day, and grey swaths show the local night [same in (I)]. (C–E)Normalized [(x −median(x))/median(x)] variability in model coefficients calibrated at every
timestep for the three methods used. Legend gives the model coefficient name, subscript with equation number, and color coded to the plot of its variability through time.

(Continued )
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102 h of observation (Figure 5). Each approach was evaluated in
four ways: 1) the number of required model coefficients and their
stability through time; 2) the optimal performance of the method
where a new set of model coefficients were calibrated for each
hourly instance in the 102 h time-series; 3) method performance
when holding the model coefficients stable through time as the
median values of the model coefficient set derived in 2); and 4)
using the model coefficients that were best fit one and 2 h prior.

General results from this analysis show that the methods from
Rowan et al. (2021) and Rounce et al. (2021) (Eqs. 10, 11,
respectively) easily translate variable surface temperatures
through time into stable and correct debris thicknesses when
calibrated at every timestep (Figures 5A,B). A notable exception
for both methods is an under estimation of debris that is 4 cm
thick, both methods returned a near-zero debris thickness for
every timestep. The method presented here (Eq. 9), is notably less
stable, especially at 8 cm debris thickness, where, at its worst, the
debris thickness estimate is off by nearly a factor of 2. A visible
advantage of this method is the ability to better estimate the 4 cm
thick debris cover. Given these visible shortcomings and
advantages, when calibrated at every timestep, all three
methods have a high (>0.90) coefficient of determination for
every timestep (Figure 5F).

The equations from Rowan et al. (2021) and Rounce et al.
(2021) produce a nearly identical curve (Supplementary Video
S3, frame examples at the top of Figure 5), yet Eq. 11 from
Rounce et al. (2021) requires one additional model coefficient
(c11) that appears to remain constant and does not absorb any
temporal variability (Figure 5C). The remaining two model
coefficients in Eq. 11 (a11 and b11) and the two in Eq. 10
from Rowan et al. (2021) (a10 and b10) show considerable
variability through time with varying adherence to a diurnal
pattern (Figures 5C,D). The two parameter sets are most stable
during mid-day on August 4th, which for Eq. 11, means the
values are constrained within the ±100% deviation from median
bounds, which is still considerable variability. For the rest of the
series, both approaches deviate outside of these bounds to absorb
the surface temperature variability. While these two methods are
very accurate when instantaneously calibrated, their coefficients
of determination are rarely above zero when the median model
coefficient values were used (Figure 5G, Supplementary Table
S1). Rounce et al. (2021) implemented a clever methodology to
derive, and optimize a parameter set for each surface temperature
instance within a dataset covering all mountain glaciers on Earth.
In this case, temporal transferability is not necessarily relevant,
but even a short dt between neighboring thermal images might

cause a depreciation of results. To explore this, I used each
method to solve for debris thickness with the current timestep
surface temperature, but used the best fit model coefficients from
one and 2 h prior (Figure 5H). Results from this experiment
show a dramatic loss of performance, where R2 averaged across
the time-series decreased from 0.99 (no lag), 0.53 (−1 h) and 0.37
(−2 h) for Eq. 11 (Rounce et al., 2021); and 0.98 (no lag), 0.54
(−1 h) and 0.41 (−2 h) for Eq. 10 (Rowan et al., 2021).

While the method proposed here, Eq. 9, carries more
variability than the other two methods when calibrated at
every timestep, it has some key advantages when used in less
ideal conditions. Nearly all of the local variability in surface
temperature is accounted for by Ts

∗, which means the single
model coefficient is simply scaling a physical relation and not
needing to vary itself to accommodate different thermal
distributions. The parameter stability apparent in Figure 5E
carries through both experiments, of a constant median value
and −1 and −2 h, with a notably high coefficient of determination.
For the hours lag experiment, average R2 remains constant at 0.98
(no lag), 0.98 (−1 h) and 0.98 (−2 h). While these results show
more variability from Eq. 9 around the 8 cm debris thickness, it is
a quantifiable variability. Because evidence suggest the method is
stable, an appropriate error can be assigned and assumed also
stable enabling confident and constrained estimates of debris
thickness through time.

4.3 Solving for Bare Ice and Sub-debris Melt
from Surface Temperature Data
Following the same framework used to evaluate debris thickness
methods above, I propose a method to solve for bare ice and sub-
debris melt from debris thickness and surface temperature and
compare it to the method from Rounce et al. (2021). The method
used by Rounce et al. (2021) (Eq. 14) is not forced by surface
temperature, but is a similar simple parameterization of sub-
debris melt. For the 102 h time-series, where hourly sub-debris
melt is known, measured bare ice melt, _b0, and constant, known
debris thicknesses were used as input to Eq. 14 and a least squares
fit was used to optimized a14, the single model coefficient, for each
timestep. Similarly, the 102 h time-series was used to fit the sub-
debris melt method presented in this study for each timestep, but
instead of melt data, Eq. 12, solving for debris surface
temperature, was forced with thermal camera derived surface
temperature over thick debris (Ts

∗) and the same constant, known
debris thicknesses. The model coefficient, a12, was fit using
thermal camera derived surface temperature for the known

FIGURE 5 | Dashed lines are ±100% deviation from the median value. Vertical lavender swaths are where the model failed, e.g., log of a negative. (F–H) R2 for each
model, color defined in legends (C–E), where: (F) calibrated at every timestep; (G) constant median model coefficients, derived over this time-series (C–E), applied at
every timestep; and (H) using model coefficients calibrated 1 h prior (wide, transparent line) and 2 h prior (thin solid line). (I) same figure configuration as (A,B) but for bare
ice and sub-debris melt, comparing only two methods. Measurements are colored swaths, model results are solid lines. For this experiment, both methods were
prescribed measured bare ice melt and therefore match it perfectly. (J,K) same figure configuration as (C–E) but for sub-debris melt. b13(median) is derived from median
melt data spanning the whole time-series in Figure 6 and used for the calculations here and in Figure 6. b13, light pink, is the same data ratio but using the explicit
solution for each timestep, not medians, to show its relative stability, it is not used elsewhere. (L,M) R2 for each model, color defined in legends (J,K) where dark blue is
Eq. 12, solving for surface temperature; and light blue is Eq. 13, solving for sub-debris melt. (L) calibrated at every timestep; (M) constant median model coefficients,
derived over this time-series (J,K), applied at every timestep. Three timestep examples are shown at the top of the Figure illustrating (A,B,I). Model color coding follows
the legends in (C–E); measurements are black dots.
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debris thicknesses. This solution of debris surface temperature
was then used in Eq. 13 to solve for sub-debris melt where a13 was
set to the ratio of _b0 and Ts

∗, adjusted for each timestep, and b13
was set to the ratio of median melt rate measured below 38 cm of
debris and median melt rate of bare ice (both medians computed
from the entire time-series in this study, shown in Figure 6). This
means that for this limited 102 h time-series, both methods are
prescribed measured bare ice melt rates and will fit the (identical)
bare ice validation time-series perfectly. This enables the
evaluation of how each method resolves sub-debris melt
starting from a perfect solution of bare ice melt, and enables
an evaluation of model coefficient stability.

The general results of this experiment are shown in Figure 5I
and the Supplementary Video S3 (where three frames are shown
at the top of Figure 5. Error within the melt measurements make
model validation less robust. I do not have complete confidence
that instances of notable deviation, for example, measured sub-
debris melt being higher below 8 cm of debris than below 4 cm of
debris in the morning of August 4th, are correct. Still, both

methods preform reasonably well with average R2 values of 0.85
for Eq. 14 (Rounce et al., 2021) and 0.71 for Eq. 13 (Figure 5L).
Repeating the experiment with the median model coefficient,
average R2 reduces to 0.77 for Eq. 14 and is 0.50, notably less for
Eq. 13 (Figure 5M). Using median model coefficients seems to
cause Eq. 13 to fail dramatically during nights whenmelt is nearly
shut off for all debris thicknesses. Interestingly, these nighttime
failures are not necessarily caused by a failure of the surface
temperature estimates from Eq. 12, which remain stable and
accurate for most of the time-series (Figures 5L,M). During the
night of August 3rd, R2 of estimated surface temperature crashes,
but appears independent of when sub-debris melt is unable to be
resolve, for example, the evening of August 1st, afternoon of
August 2nd (preceding the surface temperature crash) and the
morning of August 11th. Model coefficients appear to remain
mostly stable for both methods (Figures 5J,K), which is
encouraging for the method presented here because this
means that the ratios contained within a13 and b13 are stable,
physical relations that can now be prescribed as constants,

FIGURE 6 | Time-series showing data and model results at locations (1)–(5) in Figure 1. (A) raw temperature profile data where each line is a temperature record
from within the debris cover (4 cm spacing). Black is the surface and dark purple is the debris-ice interface. (B) same as (A) but smoothed to automate the selection of
diurnal maxima and amplitude values. The series is segmented per day (colors). The phase shift gradient is shown: white dots are diurnal maxima and the black line is a
least squares linear fit of these points. These gradients are plotted in temperature over time space, but due to the linear spacing of the sensors, is proportional to the
time over debris depth gradient (C) (black dots). Blue dots in (C) are the maximum phase shift in hours between the top surface layer and the bottom of the debris layer.
Both values in (C) are computed for each day. (D) median (dot) and 33–66 percentile range (bar) of apparent thermal diffusivities calculated for each day from two
methods: diurnal amplitudes (κa, red) and the Biot-Fourier diffusion equation considering only conductive heat transfer (κc, black). (E) local precipitation rate (grey vertical
bars) measured at location (8) in Figure 1. The black line scaled by the second y-axis is the difference between κa and κc. (F–I) ablation modeled from Eq. 13 (this study)
solid lines; and from Eq. 14 (Rounce et al., 2021) dashed lines. Measuredmelt is wide transparent. Colors are the same as Figures 3–5: blue, bare glacier ice at Figure 1
location (5); orange, 4 cm debris thickness (4); green, 8 cm debris thickness (2); and purple, 38 cm debris thickness (1). (J) R2 between the measured and modeled
Østrem curve for each time step; turquoise, this study; yellow-green, Rounce et al. (2021). The model following Rounce et al. (2021) was forced with measured bare ice
melt and is therefore omitted from (F) and not included in the R2 calculation (J). (K) cumulative melt. Selfie stick sub-daily measurements are shown as black dots. Error
bounds around measured melt are colored, transparent; and traditional, manual ablation stake measurements are shown as colored triangles. Model results are shown
as a solid line (this study), and dashed (Rounce et al., 2021). All colors in (K) match (F–I).
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eliminating the need for an explicit solution of _b0, which Eq. 14
will always need. By prescribing these ratios as constants, I next
apply both approaches to a wider time-series of measurements
and evaluate the loss of performance from my method forced
with surface temperature and debris thickness alone, against Eq.
14 forced with measured _b0.

For the time interval August 1st 2:00 AKDT to August 28th 13:
00 AKDT 2016, thermal camera images were not continuously
collected, so Ts

∗ was set to contact thermistor data collected at the
surface of the 38 cm debris cover temperature profile (Sections
3.5, 3.6). Using Ts

∗, debris thickness andmedian values of a12, a13,
and b13 derived above (Supplementary Table S1), Eqs. 12, 13
were used to estimate sub-debris melt below 0, 4, 8 and 38 cm of
debris, where sub-debris was simultaneously measured for
validation (Figures 6F–I; Supplementary Video S4). Forced
with measured _b0 and the median value of a14 derived above,
Eq. 14 was also used to estimate sub-debris melt, but only below
4, 8, and 38 cm of debris since melt at 0 cm ( _b0) was used as model
input. Eq. 14 from Rounce et al. (2021) out performs the method
presented here (Figure 6J) with averaged R2 values of 0.50 and
0.38 for the twomethods, respectively.While the instantaneous fit
to Østrem curve measurements have a relatively low R2, estimated
melt summed over the 28 days observation period was close to the
measured value (Figure 6K; Table 1). The largest error was
modeled melt falling 11 cm below the lower error bound for
summed measured melt at 4 cm debris thickness. Summed melt
at the lower error bound was 111 cm, indicating the least accurate
melt measurement from the method presented in this study had a
10% error. The bare ice estimate was off by only 5 cm, indicating
3% error from the middle measured value (the estimate fell within
the error bounds). Some instances where one, or both, methods
performed poorly appear to be non-random, correlating with
rainfall (Figures 6E,J). The next section considers moisture
entering the system and how it could disrupt sub-debris melt
estimates.

4.4 Solving for Debris Layer Saturation to
Isolate a Source of Sub-debris Melt
Estimate Failure
For a statistical glacier melt model framework emphasizing
simplicity, minimal input and transferability, there will always

be a trade off in performance relative to more sophisticated
approaches with more comprehensive input data. Still, it is
worthwhile to consider additional data when available to look
for patterns of when the simple method fails and if there might be
a simple fix, or an approach to infer method confidence as a
function of some variable. From the melt modeling experiment
conducted in this study, there are numerous instances where the
method fails, yet there is an apparent pattern of failure around
rain events (Figures 6E,J). Evaporative cooling of the debris and
interstitial water modifying the thermal properties of the debris
layer (Collier et al., 2014) are two possible explanations for the
phase shift gradient variability visible in Figures 6B,C. While at
least one rainy day shows a phase shift gradient that is reduced to
near zero, it seems more common that introducing moisture into
the debris layer causes more thermal resistance, a more gradual
phase shift gradient and an increase in the number of hours it
takes diurnal surface warming to reach a depth of 38 cm. During
days of heavy rain, apparent thermal diffusivity formulated to
include all energy transfer mechanisms, κa, spikes while apparent
thermal diffusivity considering only conduction, κc remains
essentially static (Figure 6D). Drawing on this observation,
the difference between κa and κc appears to have the potential
to be a proxy measure of precipitation, where relative
precipitation rate may even be inferred (Figure 5E).
Emphasizing again a methodology favoring simplicity and
minimal field sensor deployment, it might be advantageous to
establish a network of surface and sub-debris thermistor strings
rather than one or two costly and cumbersome weather stations.

4.5 Improving ASTER Thermal Data for
Wide-scale Applications
While I provide evidence in Section 4.1 suggesting clear days are the
least favorable for deriving debris thickness from thermal data
(Figure 4, August 28 to August 30), it was during these days that
two ASTER scenes were acquired concurrently within minutes (a
third within hours) of a high resolution, field-based thermal image.
The timing of the ASTER images are shown in Figure 4F (red
dashed vertical lines) and show that the August 28th acquisition
narrowly missed the nighttime isothermic state, and captured the
August 30th warming limb of the diurnal cycle. The sub-pixel bare
ice correction described in Section 3.7 was applied to each image

TABLE 1 | Cumulative melt (∑ _bΔt) from August 1st 2:00 AKDT to August 28th 13:00 AKDT 2016. Difference, in parentheses, is the difference relative to the nearest (±) error
bound, where “(0)” means the sum fell within the error bounds.

Location
(Figure 1)

hdeb

(cm)
Measurement Modeled (This study) Modeled (Following Rounce et al., 2021)∑ _bΔt

(cm)
% of ∑ _b0Δt ∑ _bΔt

(cm)
Diff. from
true (cm)

Diff. |%
of true|

∑ _bΔt
(cm)

Diff. from
true (cm)

Diff. |%
of true|

5 0 152 ±
11

100 147 −5 (0) 3 — — —

4 4 121 ±
10

80 100 −21 (−11) 17 (10) 107 −14 (−4) 11 (4)

2 8 80 ± 4 53 72 −8 (−4) 10 (5) 84 +4 (0) 5
1 38 31 ± 2 20 32 +1 (0) 3 33 +2 (0) 6
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(Figure 7) and a comparison between ASTER and field-based
thermal camera surface temperature data is shown in Figure 8
where the ASTER data is draped over a local DEM [from Herreid
and Pellicciotti (2018)] and obliquely angled to mimic the field of
view of the field-based thermal image. While acquired under less
favorable conditions, the relation between the ASTER pixels
contained within the field of view of the field-based thermal
camera image agree with R2 values of 0.70 and 0.78 for the
nighttime August 28 and daytime August 30 images, respectively.
The near isothermic state during the night is apparent, yet a thermal
delineation can still be made between the near-field 38 cm thick
debris cover and the adjacent 8 cm thick debris (segment boundaries
are shown in Figure 1). The ability of these two ASTER images to
replicate high resolution field-based data during less than ideal
conditions is promising for satellite based methodologies to
derive debris thickness.

5 CONCLUSION

Thermal imagery, particularly from field-based or airborne
sensors, have been under utilized in glaciology. In an effort to

bring attention to thermal image applications, I have established a
series of methods and field experiments using surface
temperature data to solve for glacier melt below rock debris in
a mountain glacier setting. I begin with a decomposition of the
many factors that are entangled within a raw thermal image and
describe a method to solve for surface temperature from a field-
based, oblique thermal image time-series. My hope is that, instead
of appearing discouragingly complicated, future glaciolgists can
use this paper, and the accompanying annotated Jupyter
notebook as a way to bypass industry focused literature that
rarely addresses the specific problems (environmental factors,
line of sight distances) encountered in glacier, or more generally,
Earth science applications.

The series of field experiments explored in this study build upon
one another with standalone methods and results. The first used
the tight (dt � 15min) time-series of thermal imagery,
encompassing seven segments with different debris thicknesses,
to determine the ideal time of day andmeteorological conditions to
acquire a thermal image for the purpose of deriving debris
thickness. This is a relevant question when designing a field
campaign that will collect thermal imagery, in a situation where
it is possible to task a satellite or when it would be helpful to know
what information can be extracted from the one good image that
exists over a particularly cloudy field site. Results from this analysis
suggest thermal images acquired below a cloud cover at most times
of day, apart from cold nights when all surfaces become isothermal,
are best suited to derive high confidence debris thickness estimates.
The least favorable time appears to be clear sunny days with cool
nights, which is unfortunately the late ablation season conditions
when satellite data is the most useful for many applications in
glaciology. The closing section of this paper, however, applies a
sub-pixel correction to two ASTER thermal images that fall within
this least favorable window and the resulting images are
promisingly similar to high resolution field-based thermal
imagery captured within minutes of the satellite data.

Building on the conceptual framework of when a thermal
image would be best suited to derive debris thickness, I applied
two methods, and proposed a third, to solve for debris thickness
from surface temperature, validated against known debris
thickness segments. This approach makes use of the unique,
low and consistent dt (relative to satellite data) between thermal
images to evaluate how the three methods mitigate diurnal and
meteorological variability in order to return a stable-through-
time debris thickness output. The method I propose treats part of
the thermal image like a model coefficient that is able to absorb
the temperature variability and allow the one model coefficient to
remain stable through time. The other two established methods
perform well when calibrated for each instance, yet have
diminished results, by almost 50%, if the set of model
coefficients used were optimized only 1 h earlier. Where
instantaneous calibration is feasible, all of the methods can
confidently capture the relation between an instance of surface
temperature and stable debris thicknesses, however, the stability
demonstrated in the method proposed here opens new avenues
for easy transferability in space and time.

Finally, I build on the application of surface temperature data
in glaciology by solving for one of the key unknowns remaining in

FIGURE 7 | Example of the linear spatial averaging (Eq. 15) applied to
ASTER surface temperature data. The sub-pixel area and thermal signal of
locations known to be bare glacier ice, or ice cliff area, are removed. The
dashed line outlines the study site (Figure 1C).
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mountain glacier research, sub-debris melt rates. For this analysis,
I partially diverge from using thermal imagery in order to
consider a wider time interval where data were available. I use
a contact thermistor at the surfaces of a “thick” debris cover and
known distributed debris thickness to solve for both bare ice and
sub-debris melt. While the sensor is different, the key quantity
remains surface temperature which can be measured using either
approach. Debris thicknesses were prescribed from
measurements, but in future applications at wider scales or
where less prior knowledge is available, debris thickness can
be derived from one of the methods described in this paper.
The method was evaluated alongside an alternative
parameterization of sub-debris melt forced, in part, with
externally modeled bare ice melt rates, or, for the controlled
method evaluation experiment conducted in this study, forced
with directly measured bare ice melt rates. Both methods were
evaluated against a time-series of sub-daily Østrem curve
measurements. While the approach described here using only
surface temperature and debris thickness as input was
outperformed by the method forced with bare ice melt
measurements, this is fairly predictable trade-off of
performance for simplicity, and, perhaps surprisingly, the
divergence between the two methods and the measured
validation data was on the order of a few to 10 cm for
summed melt values over a 28 days observation period,
equivalent to a maximum error of 10%. Further development

and evaluation of this, or a similar approach will likely be able to
reduce this error term further. As first steps towards this, I present
some approaches to identify instances of debris cover saturation
where a temporary alternative parameterization of sub-debris
might better fit the apparent altered energy transfer state.

The methods proposed in this study can be implemented at
any location on Earth with one good satellite thermal image to
derive debris thickness and one local time-series of surface
temperature collected at either a location of “thick” debris or a
neighboring valley wall. The surface temperature data can be
collected either via thermal camera or a contact thermistor
which is a notably cheap, small and easy sensor to deploy in the
field, relative to a traditional weather station, and runs a very
low risk of being damaged from wind, bears or other factors
that hamper glacier data collection. Further, by burying a
thermistor string within the debris layer, it may be possible
to solve indirectly for precipitation from apparent thermal
diffusivity calculations which further simplifies field sensor
deployment. For the next few implementations, model
coefficients should be again empirically derived from a
network of coincident measurements of debris thickness,
surface temperature and sub-debris melt, but if the set of
model coefficients prove to remain stable and transferable,
especially at different locations on Earth, this will support
wider application in space and time with fewer validating
measurements.

FIGURE 8 | Two image pairs of oblique field-based thermal camera data coupled with space-borne ASTER thermal data that are coincident in time. The ASTER
data is draped over a DEM and displayed obliquely to match the view angle of the thermal camera image. The image pair (A,B) are coincident in time by 2 min and (D,E)
are coincident in time by 3 min. Surface temperatures were averaged over the image segments shown in Figure 1A,B; regression is shown between the infrared (here
shortened to “IR”) camera and ASTER thermal data. Bare ice segments were excluded from the regression because the ASTER values were unnaturally set to 0°C
from Eq. 15. The 1:1 line is plotted for reference. (C) corresponds to image pair (A,B); (F) corresponds to image pair (D,E). Temperatures in (A,B,D,E) are all scaled to the
temperature scale in (E).

Frontiers in Earth Science | www.frontiersin.org August 2021 | Volume 9 | Article 68105917

Herreid Surface Temperature in Glaciology

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


The methods and comparative results presented in this study
offer a new evaluation of what thermal imagery and surface
temperature measurements can tell us about a glacier setting.
Future studies may be better equipped to make informed
methodological choices and have a greater understanding of
what information can and possibly cannot be extracted from
surface temperature measurements. This study emphasizes
simplistic, empirical methods that require minimal input and
field data. The intent is to bring method stability and constrained
confidence to large-scale problems. Next steps would be to
successfully distribute these methods accounting for elevation
and constraining a field sensor array that is minimal but
adequate. With several well resolved full glaciers, it would
become easier to evaluate new and existing methods to derive
debris thickness and sub-debris melt from remote sensing data
alone and arrive at confident global scale solutions that will aid
water resource management and reduce error in glacier sourced
eustatic sea level rise estimates.
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