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This paper presents a generalization of the bias-variance tradeoff applied to the recent
trend toward natural multi-hazard risk assessment. The bias-variance dilemma, a well-
knownmachine learning theory, is presented in the context of natural hazard modeling. It is
then argued that the bias-variance statistical concept can provide an analytical framework
for the necessity to direct efforts toward systemic risk assessment using multi-hazard
catastrophe modeling and inform future mitigation practices.
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1 INTRODUCTION

Several examples of severe compounded impact from complex natural hazards interplay have
occurred over the last decades. A few examples over such a limited timeline are the 2011
Tohoku earthquake and tsunami in Japan (Shibahara, 2011), the 2015 Gorkha (Kargel et al.,
2016; Gautam, 2018) and 2016 Kaikoura earthquake (Dunant et al., 2021b; Jibson et al., 2018)
with landslide and landslide dam events in Nepal and New Zealand respectively, the 2018
Sulawesi earthquake and subsequent tsunamis and liquefaction in Indonesia (Widiyanto et al.,
2019) and the 2019 Cyclone Idai with catastrophic consequences due to strong winds and
flooding (Chatiza, 2019; Devi, 2019). Already in 2005, a World bank report pointed out that
approximately “3.8 million square kilometres and 790 million people are relatively highly
exposed to at least two hazards. About 0.5 million square kilometres and 105 million people are
relatively highly exposed to three or more hazards” (Dilley, 2005). In their paper, de Ruiter et al.
(2020) mention that the “current state-of-the art risk assessment models” are not adequate
anymore for dynamic and interacting hazards. Even though the Sendai Framework for Disaster
Risk Reduction mentioned the need to assess the risks from “all hazards” (UNISDR, 2015)
which echoes the previous Hyogo Framework for Action (UNISDR, 2005) as well as several
acknowledgments by the scientific community (Kappes et al., 2012; Gill and Malamud, 2014;
Alexander and Pescaroli, 2019), quantitative risk assessments of complex multi-hazard
interplay are rare (Kappes et al., 2012). Natural hazard risk assessment are still frequently
done through a “field of study” lens whereby experts would base the risk assessment on a
specific hazard in their dedicated area of expertise (e.g., earthquake for seismologists).
Quantitative risk assessment is usually a statistical endeavour and this paper will show how
a statistical concept, the bias-variance dilemma, can inform the discussion on the future needs
for natural hazard modeling. While the first part of this paper will be an introduction to multi-
hazard risk models and the bias-variance dilemma, the Discussion will focus on generalizing the
concept to the quantification of risk from natural hazard and its impact on disaster
preparedness. Generalizing the bias-variance dilemma to the natural multi-hazard domain,
might provide new insights, pragmatic perspectives and meaningful discussions on effort
allocation toward quantitative hazard risk assessment.
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2 MULTI-HAZARD MODELS

Many current risk studies still consider hazard in isolation, where the
risk to exposed elements is sourced from one hazard in isolation also
referred to as “single hazard”models (Gill and Malamud, 2014). As
mentioned in the Introduction, disaster risk authorities and scientist
pointed out the shortcoming of considering the hazards in silos
(AghaKouchak et al., 2018; Arosio et al., 2018). In an effort to answer
this call, and because of the difficulty inherent in considering
interwoven hazards (Liu et al., 2015), current multi-hazard
studies largely rely on semi-quantitative studies to assess the risk
frommulti-hazard (e.g., using indices, indexes) (Kappes et al., 2012).
But a probabilistic quantification of the multi-hazard risk is often
required to provide guidance on the allocation of resources to
alleviate the risk. Recent studies are trying to find applicable ways
to answer this complex challenge by considering natural hazards as
part of an interconnected system (Mignan et al., 2014; Arosio et al.,
2018; Dunant et al., 2021a; Dunant et al., 2021b). Few publications
actually compare the results of single hazard models and multi-
hazard models to generalise the argument for multi-hazard models.
It can be understood as the hazard landscape can vary widely, a
localized case study comparison would hardly be a valid argument.
Following this limitation and in line with the argument of many risk
scientists (Gill and Malamud, 2016; AghaKouchak et al., 2018), the
following paragraphs are an attempt to frame, using an analytic
approach, why single hazard model could distort the risk output and
why multi-hazard modeling is necessary for more appropriate
mitigation measures.

3 THE BIAS-VARIANCE DILEMMA

The concept originated from Geman et al. (1992), which shows that
when an attempt ismade to infer results from a stochastic prediction,
a tradeoff is required between amodel’s ability tomaximize accuracy
(minimize bias) and precision (minimize variance). The bias error
would be the error between the exact value that is to be predicted and
the value predicted by the model. In the case of a stochastic event set,
the variancewould be the spread between the different realizations of
this predictive event set. To clarify what the bias and variance
represent, a graphical representation is often used, where model
predictions are attempting to reach an ideal case at the center of a
target (Figure 1).

In Figure 1, the center of the target represents, for the purpose
of the paper herein, the true value of the risk from “all hazards”
(UNISDR, 2015) with a perfect model and an infinity of data
point to calibrate it. The points on the target represent the
attempts to aim at - or predict - the center of the target (via
modeling in this case). The variance is represented as the distance
between the centroid point of the predicted results whilst the bias
is the distance between the centroid and the true value targeted.
The center of the target would represent a bias and variance
approaching 0. The concept of bias-variance is often used in
machine learning and neural networks when trying to establish
the best fit between a function and a reference dataset in order to
minimize the error on the prediction. Bias-variance and a value
representing the aleatory uncertainty of the system (a proxy to the

“irreducible error”) are used to estimate (and hopefully minimize)
the mean squared error following Equations 1, 2 (Geman et al.,
1992; Hastie et al., 2009; Fortmann-Roe, 2012).

Error � bias2 + variance + Irreducible Error (1)

formally expressed as:

Err(x) � [Ef̂ (x) − f (x)]2+E[f̂ (x) − Ef̂ (x)]2+σ2
e (2)

with Err(x) being the square prediction error at x by f̂ (x), the
model fit function of f(x).

Varying complexity of a stochastic model and data availability
will translate in a tradeoff between minimizing bias and
minimizing variance. In the context of artificial intelligence
and machine learning this effect is referred to as underfitting
when bias is too high or overfitting when variance is too high
(Fortmann-Roe, 2012) (Figure 1). In simplistic terms, the four
possible fringe combinations of the bias-variance states are low
bias-low variance, low bias-high variance, high bias-high
variance, and high bias-low variance. The ideal case - better
predictability of the model - is low bias-low variance. Conversely,
the worst case scenario is high bias-high variance. Intermediary
states are high bias-low variance and low bias-high variance.
As illustrated by Figure 1, correct prediction and modeling
become a balancing act between too much complexity (overfitting-
high variance) and not enough complexity (underfitting-high
bias).

4 DISCUSSION: BIAS-VARIANCE
PERSPECTIVE ON MULTI-HAZARD RISK
ASSESSMENTS

4.1 Why Should We Bother With
Multi-Hazard Risk Assessment?
The recent push to develop a more holistic approach to natural
hazard assessment (multi-hazard) can be informed and, as the
following paragraphs will try to demonstrate, supported by a
generalization of the bias-variance concept. Despite the primary
focus of this concept on machine learning related topics, the bias-
variance tradeoff has been generalized outside its core
contribution before, notably in scientific publication, to inform
debates on topic such as education (Doroudi, 2020), cognition
(Dwivedi et al., 2020), and pathology (Rashidi et al., 2019). To the
author’s knowledge, it has not been used to inform the discussion
on the evolution and direction of the research for natural hazard
quantitative risk.

Several solutions have been proposed to decrease either bias or
variance in order to improve model predictability. As a biased
model is inclined towards some particular feature to predict
the result (e.g., single hazard model in a multi-hazard
environment are highly biased and high/low variance
depending on the data availability), the remediation pass by
the use of a broader scoping and an increase in complexity of
the model (e.g., multi-hazard considered). On the other hand,
high variance models are too broad in scope and require a more
constrained model by, generally, the addition of more data
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(Figure 2) (Fortmann-Roe, 2012). Those options provide the
basis for possible improvement of the risk modeling.

In the attempt to prepare for natural disasters, scientists
attempt to simplify the problem at hand by providing
explanation in terms of ever smaller entities. This process is
also known as reductionism (Fang and Casadevall, 2011). In the
context of earth sciences, this is represented by the division of the
natural risk “system” into technical specialties (e.g., seismology,
geomorphology, hydrology etc.). Those subsystems are easier to
analyse and led to successful mitigation of natural disasters
through engineering, policy, and planning. The direct
consequence of reductionism to the topic presented herein is
that current hazard related risk assessment treats the natural
phenomena (hazards) mostly in isolation. In the context of the
bias-variance perspective, “single-hazard” methods can be
considered highly biased as isolation of phenomena leads to
the omission of relational behaviours, causal processes, and
their resulting emergent properties [e.g., risk amplification
(Mignan et al., 2014; Mignan and Wang, 2020)]. From this

perspective, using multi-hazard ensembles seems to be a
valuable proposition for the future of risk assessment as the
added complexity and richness (meaning gathering of data of
different types as opposed to data gathering of the same type)
(Figure 2) would lead to a reduction of the bias and predictive
model closer to the “ground truth” [not dissimilar to “ensemble
learning” approaches in machine learning (Opitz and Maclin,
1999)]. The use of biased single hazard models is therefore not
considered an issue as long as they are part of a risk ensemble
aimed at assessing the “true” risk. This notion reverts to the
“micro-worlds” from Minsky and Papert (1972) [referred to as
“highly developed (schematic) model of many phenomena”]
where a set of biased model can be used to lower the
ensemble bias at the expense of higher variance.

Low variance models, even though a solid option in a data rich
environment, might prove to be difficult to access in the context
of natural hazards. Natural hazard occurrences follow universally
a power law linking probability of exceedance to intensity of
phenomena (Malamud and Turcotte, 1999; Corral and González,

FIGURE 1 | Representation of the bias-variance tradeoff from a risk perspective.
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2019). Hence, it would indicate that the opportunities for data
gathering decrease exponentially with the risk of damage or
casualties (as higher intensity hazards are more likely to cause
physical damage). If high intensity natural hazard data is harder
to get, it would imply that the capacity to reduce the variance for
hazard related risk models is bounded by the occurrence of severe
events. This point can relate to the concept of the “costs of
information search” (Stigler, 1961) in economics where an
optimal behaviour is bounded by access to information/data.
Data gathering should, obviously, remain of prime importance as
the ultimate aim is still a low bias-low variance model. But,
progress toward lower variance modeling will likely be slower
than lower bias solutions when dealing with “long tail” natural
processes.

The explanation from the previous paragraphs gives a hint
that, in the near term, it would be easier to achieve progress
through more accurate but less consistent (low bias-high
variance) models driven by complexity and system thinking
than consistent models with less accuracy (high bias-low
variance) where progress is data-driven.

Lower bias methods can provide interesting progress in
coming risk studies, but limitations will also appear. As the
variance and complexity of the model increases, the risk of

overfitting the data escalates too and the prediction of the
model becomes less effective (Figure 2) (Fortmann-Roe,
2012). So, if multi-hazard modeling tends to approach more
the true nature of the risk than current single hazard models, we
have to be wary that too much complexity might impair the
precision of our multi-hazard models in the future and a healthy
medium between accuracy (bias) and precision (variance) would
need to be found. This would call for effort in quantifying the
relationship between model complexity and risk (Figure 2).

Not all landscape and environments are sensitive to multi-
hazard in the same way. A bias-variance perspective can help to
identify multi-hazard prone environment. From a bias-variance
perspective, if the lower bias risk model gives the same results as
the higher bias risk model, then we are probably not facing a
multi-hazard problem (or the parameters influencing the risk
have not been properly mapped out).

4.2 Unbiased Preparedness
The bias-network dilemma can also inform the action and
preparedness to disasters. In a multi-hazard environment, single
hazard model would not only strongly bias the risk assessment
but, more dramatically, bias the action and response to such a
model. As the risk assessment evolve toward complex risk

FIGURE 2 | Representation of the bias-variance tradeoff in a multi-hazard context.
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assessments (lower bias hazardmodel), the solution spacewidens also
as more scenarios need to be accounted for (lower bias “solution
model”). Indeed, multi-hazard models can help generate “knowledge
ensembles” (Spiro et al., 1991) as a direct consequence of a broader
representation of the risk through complexmodel architecture. Lower
bias models (multi-hazard models), because they are navigating
outside bounded disciplines and theories, could potentially offer
an easier access to “out-of-the-box” and innovative solutions. This
point assumes that the “solution space” would be intrinsically
correlated to the “problem space.” For example, let’s assume that
a risk assessment focuses on earthquake hazard leading to the
conclusion that retrofitting is the best option, while under the
threat of earthquake and landslides, a combination of retrofitting
and relocation would become the best option -as the “problem space”
widens so does the “solution space.” We could then argue that a
multi-hazard context (previously referred as problem space) give
opportunities to develop synergistic solutions (win-win situations)
against a wide spectrum of hazards.

It is also plausible that under a richer risk modeling
framework-using a wider hazard spectrum-mitigation to
unplanned disaster happens as a serendipitous consequence. To
illustrate this point, let’s imagine an example based on the 2008
Wenchuan earthquake in China which caused cascading effects,
one of the most significant being the “Tangjiashan landslide dam,
which was triggered by the Ms � 8.0 Wenchuan earthquake in
2008 in China (which) threatened 1.2 million people downstream
of the dam. All people in Beichuan Town 3.5 km downstream of
the dam and 197,000 people inMianyang City 85 km downstream
of the dam were evacuated 10 days before the breaching of the
dam.” (Peng and Zhang, 2013). If we consider a risk assessment of
the Beichuan Town undergone before the Wenchuan event, it is
clear that a biased approach only including earthquake would have
missed a large part of the actual events and a multi-hazard
approach (less biased) would have been closer to predict a
range of disasters inline with what happened. A multi-hazard
approach (e.g., earthquake, landslide, and flood) would have led
toward a synergistic response to multipolar disasters which,
inadvertently, could prepare better against unpredicted events
(for the sake of arguments, let’s depict the example of a large
pollutant release in the JiangJiang river upstream of the Beichuan
township).

5 CONCLUSION

The paper present an analytical argument to the state and
future of natural hazard modeling from a generalization of the
bias-variance tradeoff concept. A look back at the work done
on machine learning and previous papers on the
generalization of the concept provide an additional case to
existing positions for multi-hazard modeling as a standard to
natural hazard risk assessment. The paper points out that
achieving lower variance and data-driven related
improvement might prove difficult because of the power
law distribution of natural hazards. On the other hand, the
implementation of lower bias multi-hazard models are
relatively new to risk modeling and could still be a low-
hanging fruit for rapid and significant improvement. An
added, and concealed, advantage of a systemic, and multi-
hazard models (low bias) to risk assessment is the possible
emergence of new (synergistic) resilient solution outside
existing frames of reference (high bias) and, also, positive
serendipitous mitigations. A caveat still exists as excessively
complex modeling will impair the predictability of multi-
hazard risk models, hence the complexity of risk models
should be studied further.
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