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Multi-channel seismic reflection and sub-bottom profiling data reveal landward-dipping
normal faults as potential conduits for mantle-derived fluids in the coseismic slip area of the
2011 Tohoku earthquake (Mw9.0). Normal faults below the helium isotope anomaly sites
appear to develop through the forearc crust (i.e., the seafloor sedimentary section and
Cretaceous basement) and to evolve to lower dip angles as extension progresses deeper,
potentially extending down to the mantle wedge, despite their intermittently continuous
reflections. The faults are characterized by high-amplitude, reverse-polarity reflections
within the Cretaceous basement. Moreover, deep extension of the faults connecting to a
low-velocity region spreading from the Cretaceous basement into the mantle wedge
across the forearc Moho suggests that the faults are overpressured by local filling with
mantle-derived fluids. The locations of the normal faults are roughly consistent with
aftershocks of the 2011 Tohoku earthquake, which show normal-faulting focal
mechanisms. The 2011 Tohoku mainshock and subsequent aftershocks can lead the
pre-existing normal faults to be reactive andmore permeable so that locally trappedmantle
fluids can migrate up to the seafloor through fault fracture zones. The reactivated normal
faults may be an indicator of shallow coseismic slip to the trench. Locally elevated fluid
pressures can decrease the effective normal stress for the fault plane, facilitating easier slip
along the fault and local tsunami. The landward-dipping normal faults developing from the
seafloor down into the Cretaceous basement are predominant in themiddle slope region of
the forearc. A possible shear zone with high-amplitude, reverse-polarity reflections above
the plate interface, which is almost localized to the middle slope region, suggests more
intense basal erosion of the overlying plate in that region.
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INTRODUCTION

Large megathrust earthquakes along subduction zones pose
seismic and tsunami threats to densely populated coastal cities.
Many megathrust earthquakes and tsunamis have occurred in the
Japan Trench margin (Figure 1) where the Pacific plate subducts
beneath the northeast Japan arc (i.e., the Okhotsk plate) at a
convergence rate of 8.6 cm/yr (DeMets et al., 1990; Yamanaka
and Kikuchi, 2004). The forearc region of the Japan Trench
margin is typically characterized by extensional subsidence and
normal faults associated with tectonic or basal erosion
(i.e., removal of material from the base of the overlying plate),
which results from the subduction of the Pacific plate (von Huene
and Lallemand, 1990). Coseismic rupture of the 2011 Tohoku
earthquake (Mw9.0) nucleated at a depth of approx. 20 km has
propagated along the shallow plate-boundary fault nearly all the

way to the trench, yielding powerful tsunami waves (e.g., Ide et al.,
2011; Iinuma et al., 2012). Pore fluid pressure along the plate
interface (i.e., plate-boundary fault) might play an important role
in the occurrence of large megathrust earthquakes (e.g., El Hariri
et al., 2010). Helium isotopes are useful for elucidating fluid
behavior. They might provide crucially important information
about the source of interplate fluids. Geochemical evidence points
to a sharp increase in mantle-derived helium in bottom seawater
near the rupture zone 1 month after the 2011 Tohoku earthquake
(Sano et al., 2014). Taking account of the locations (sites N3, N2,
N1, and R in Figure 1) of helium isotope anomaly, mantle-
derived fluids are believed to have migrated from the mantle
wedge up to the forearc seafloor through the normal faults. However,
the geometry and characteristics of the normal faults as fluid
conduits remain poorly understood despite many earlier seismic
reflection studies (e.g. Kodaira et al., 2017; Tsuru et al., 2000;

FIGURE 1 | Bathymetry map of the Japan Trench margin off northeast Japan. The Pacific plate subducts beneath the Okhotsk plate (northeast Japan) at a
convergence rate of 8.6 cm/yr (DeMets et al., 1990). Heavy blue, black dotted, and red dotted lines respectively mark MCS lines D6 and D13 (this study), OBS line
MY102 (Miura et al., 2005), and seismic tomography line B (Liu and Zhao, 2018). Four black triangles mark helium isotope anomaly sites (Sano et al., 2014): sites N3, N2,
N1, and R fromwest to east. The 2011 Tohoku (Mw9.0) coseismic slip model with colors and thin blue contours is given by Iinuma et al. (2012). The red star denotes
the mainshock epicenter of the 2011 Tohoku earthquake. Centroid moment tensors (CMTs) for aftershocks of the 2011 Tohoku event within the overlying Okhotsk plate
(Asano et al., 2011) are displayed around the MCS and OBS lines. Green circles show DSDP site numbers of 434–441 (Nasu et al., 1980).
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FIGURE 2 | Pre-stack depth migrated (PSDM) seismic profile, interpretation, and Vp model for the PSDM on line D6. (A) Uninterpreted PSDM profile. Locations of
the helium isotope anomaly sites (Sano et al., 2014) are displayed: N3, N2, N1, and R. (B) Interpreted PSDM profile. The red star marks the hypocenter of the 2011
Tohoku mainshock (Mw9.0). Normal and reverse faults are denoted respectively by thin blue and red lines. A thin red line below site N3 in the middle slope region marks
the SBP line depicted in Figure 3. It is noteworthy that landward-dipping normal faults (thick blue F1 and F2 below sites N3 and N2, respectively) and a potential
shear zone (thick pink) develop in the middle slope region. Thin black, red, and blue dotted boxes are enlarged respectively in Figure 4, Figure 5, and Figure 7. (C) Vp
model overlaid by the PSDM profile.
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Tsuru et al., 2002; von Huene et al., 1994). Moreover,
structural features related to basal erosion causing the
normal faulting are less documented.

As described herein, we present seismic reflection images of
large-scale normal faults as mantle-fluid conduits potentially
across the entire forearc crust and a shear zone associated
with basal erosion in the coseismic slip region of the 2011
Tohoku earthquake. Furthermore, we discuss fluid migration
processes along normal faults, implications of normal faults
for shallow coseismic slip, and basal erosion in the forearc
crust of the Japan Trench margin.

SEISMIC REFLECTION DATA AND
INTERPRETATION

Multi-channel seismic (MCS) reflection data on approximately
175-km-long line D6 (Figure 1) were acquired by R/V Kairei of
the Japan Agency for Marine–Earth Science and Technology
(JAMSTEC) in May 2011, immediately after the Tohoku
earthquake (Mw9.0). For deep-penetration seismic imaging, a
large air-gun array (total volume approx. 128 L) was used as the
controlled sound source. The MCS data were collected with a
50 m shot interval and were recorded with an approx. 6,000 m,
444-channel streamer with 12.5 m group spacing. We applied
conventional MCS data processing techniques including trace
editing, band-pass filtering, spherical divergence correction,
signature deconvolution, multiple suppression by parabolic
radon transforms, and common midpoint (CMP) sorting to
obtain pre-conditioned CMP gathers for which the relative
amplitudes are preserved. Using the CMP gathers, we
developed P-wave interval velocity models with a layer
stripping method and Kirchhoff pre-stack depth migration
(PSDM) velocity analysis (Yilmaz, 2001). Velocity data from
ocean-bottom seismograph (OBS) wide-angle seismic refection
and refraction survey (Miura et al., 2005) on line MY102
(Figure 1) guided the PSDM velocity model building. We
performed grid-based traveltime tomography to refine the
PSDM velocity model. Both the final PSDM profile and
P-wave interval velocity model are shown in Figure 2 and
Supplementary Figure S1. To support the quality of the
migration at depth, we present PSDM gathers and their
semblance plots at several CMPs (Supplementary Figure S1).
Additionally, we have conducted 3.5 kHz sub-bottom profiling
(SBP) during the R/V Shinsei-maru cruise (KS-16-17) in
November 2016 to obtain high-resolution seismic images on
sites of a helium isotope anomaly that was reported by Sano
et al. (2014).

General Interpretation
On the PSDM profile of line D6 (Figures 2A,B), we observe a
bright reflector at the topmost oceanic crust (i.e., plate interface)
of the Pacific plate subducting beneath the overlying Okhotsk
plate, which can be traceable to more than 100 km landward from
the Japan Trench axis and down to approx. 21 km depth from the
sea surface. The seaward Pacific plate is characterized by many
horst and graben structures with normal faults. A strong reflector

of oceanic Moho discontinuity, which is observed beneath the
oceanic crust before subduction, is also observed even after
subduction of the Pacific plate, up to more than 100 km
landward from the Japan Trench axis. We identify prominent
reflections located at a maximum of approx. 2 km above the plate
interface from the CMP 14000 to 20500, which might be
interpreted as a shear-zone associated with plate subduction
(Figure 2B).

The seafloor morphology suggests that the overlying plate is
divisible into three domains from west to east: upper, middle, and
lower slope regions. Figure 1 shows that the plate interface in the
upper to lower slope regions on the PSDM profile of line D6 was
ruptured completely during the 2011 Tohoku event (e.g., Iinuma
et al., 2012). Based on seismic reflection characteristics and Deep
Sea Drilling Project (DSDP) drilling results (Nasu et al., 1980), the
overlying plate is divided simply into two seismic units (e.g.,
Kimura et al., 2012; Tsuru et al., 2000; von Huene et al., 1994)
from top to bottom: Unit A of Recent to Miocene sediments
overlies Unit B of the Cretaceous basement (Figure 2B). A bright
reflector between Units A and B is interpreted as an erosional
unconformity distinguishing the Miocene sediments from the
Cretaceous basement. The Pleistocene accretionary prism,
composed mainly of pelagic sediments that were conveyed
from subducting Pacific plate, is localized immediately
landward of the Japan Trench. Whereas many normal faults
develop in the upper and middle slope regions, reverse faults are
localized in the lower slope region. Amantle wedge is identified in
the upper slope region.We observe a reflector with low amplitude
of arc Moho landward from CDP 21000 at approx. 21 km depth.
Its location is guided by P-wave velocity (Vp) models from ocean
bottom seismograph (OBS) survey on line MY102 (Miura et al.,
2005) (Figure 1). Similar arc Moho reflection is observed at
approx. 21 km depth on another PSDM profile of line D13
(Figure 1 and Supplementary Figure S2) which is about
65 km north away from line D6.

Normal Faults Below Mantle Helium
Anomaly Sites
On the high-resolution SBP profile (Figure 3) close to mantle
helium isotope anomaly site N3 (Sano et al., 2014) around CMP
17500 on the MCS line D6 (Figure 2B), one can observe a
subsidence structure in the hanging wall of the landward-
dipping normal fault “F1.” A well-stratified sedimentary
sequence below the seafloor is clearly cut by normal fault F1,
suggesting that the fault remains active. The PSDM profile of line
D6 supports investigation of the deep extension of the normal
fault F1. Figure 2B and Figure 4 show that it cuts the top of the
Cretaceous basement (Unit B) as well as the overlying Recent to
Miocene sedimentary layer (Unit A). Normal fault F1 with an
approx. 50° dip within the sedimentary layer (Unit A) appears to
evolve to lower dip angles within the Cretaceous basement (Unit
B) as extension progresses deeper (i.e, approx. 20° dip at ∼10 km
depth and approx. 17° dip at ∼20 km depth), eventually down to
the mantle wedge at approx. 21 km depth. The approx. 70-km-
long normal fault F1 exhibits fault offsets of approx. 50 m
averaged over the entire sedimentary section (approx. 1.2 km
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thick) and approx. 200 m at the top of the Cretaceous basement
(Figure 4 and Supplementary Figure S3A), implying that
normal faulting has been reactivated many times and that it
remains active. Fault F1 is also identified on another PSDM
profile of line D13 (Supplementary Figure S2).

Normal fault F1 shows high-amplitude, reverse-polarity
reflections at depths of ∼5, ∼7, ∼10, ∼12, and ∼20 km
(Figure 4 and Figure 5), which are caused by a decrease in
acoustic impedance (velocity × density) across the fracture
zone of the fault, apparently indicating a fluid-rich and
consequently overpressured section along the fault. In fact,
fluid pressures influence the effective stress state acting on the
fault zone (e.g., Hubbert and Rubey, 1959). An increase in fluid
pressure, because of hydrofracture or dilation within the fault
zone, would cause decreases in effective stress and Vp, and
therefore, a subsequent reversal of acoustic impedance across
the fault (e.g., Tobin et al., 1994), resulting in the reverse-
polarity reflection. The deep portion of fault F1 from approx.
12 km down to approx. 22 km depth is spatially correlated with
a low Vp zone from seismic tomography (Liu and Zhao, 2018)

on line B (Figure 1 and Figure 6) using suboceanic
earthquakes. The low Vp zone suggests that the fault
fracture zone is potentially filled with fluids, although it
cannot be verified from PSDM velocities derived from near-
vertical MCS data. Considering the geometry by which the low
Vp zone extends into Unit B from the mantle wedge and
includes the deep portion of fault F1, we infer that mantle-
derived helium at site N3 originated from the mantle wedge
and migrated through fault F1, eventually reaching the seafloor
at site N3. The mantle wedge fluids might result from
dehydration reactions of the subducting Pacific slab (Zhao
et al., 2015).

We observe another landward-dipping normal fault “F2”
below mantle helium anomaly site N2 (Sano et al., 2014) around
CMP 14500 on the MCS line D6 (Figure 2B and Figure 4).
Normal fault F2 cuts the top of the Cretaceous basement (Unit
B) as well as the overlying Recent to Miocene sedimentary layer
(Unit A). Normal fault F2 with an approx. 52° dip within the
sedimentary layer (Unit A) appears to evolve to a lower dip
angle of approx. 12° dip at approx. 8 km depth within the

FIGURE 3 | High-resolution SBP profile and interpretation around site N3. Location of the SBP profile (∼11 km long) is presented in Figure 2B. (A) Uninterpreted
SBP profile. (B) Interpreted SBP profile. Heavy blue dotted line marks a landward-dipping normal fault (F1). It is noteworthy that displacement of a stratified sedimentary
sequence (in red) below the seafloor and subsidence structure in the hanging wall block, which are caused by normal faulting.
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FIGURE 4 | Enlarged PSDM section on line D6 and its interpretation showing landward-dipping normal faults of F1 and F2 in the middle slope region. Location of
the section is presented in Figure 2B. (A) Uninterpreted PSDM section. High-amplitude, reverse-polarity reflections (black–red–black) of the normal faults F1 and F2,
compared with seafloor reflection (red–black–red), suggesting high pore pressure of the fault zones. Close-up figures (thin blue boxes) of the faults F1 and F2 at shallow
depth are shown in Supplementary Figures S3A,B, respectively. (B) Interpreted PSDM section. Most normal faults cut down the Cretaceous erosional
unconformity.
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Cretaceous basement (Unit B) as extension progresses deeper.
Taking into account the geometry fault F2, the depth
extension of fault F2 appears to converge into fault F1 at
approx. 17 km depth rather than into either the plate
interface or the mantle wedge. The approx. 60-km-long

normal fault F2 exhibits fault offsets of approx. 30 m
averaged over the entire sedimentary section (approx. 1.5 km
thick) and approx. 100 m at the top of the Cretaceous basement
(Figure 4 and Supplementary Figure S3B), implying that
normal faulting has been reactivated many times and that it

FIGURE 5 | Enlarged PSDM section on line D6 and its interpretation showing deep extension of the landward-dipping normal fault F1 in the middle slope region.
The section location is presented in Figure 2B. (A)Uninterpreted PSDM section. Reverse-polarity reflections (black–red–black) of fault F1. (B) Interpreted PSDM section.
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remains active. Fault F2 is also identified on another PSDM
profile of line D13 (Supplementary Figure S2).

Similar to fault F1, normal fault F2 shows a high-amplitude,
reverse-polarity reflection at approx. 8 km depth (Figure 4),
suggesting a fluid-rich and therefore overpressured section
along the fault. Considering the reverse polarity of both faults,
their geometry and the presence of mantel-derived helium at site
N2, we interpret that fluids migrate upward from the mantle-
wedge through F1 and F2 to the surface. When we project
aftershocks of the 2011 Tohoku mainshock (Figure 1) on the
MCS profile of line D6, many normal-fault-type aftershocks
(Mw2 to Mw5) within the overlying plate are widely
distributed in the upper and middle slope regions, suggesting
reactivations of faults F1 and F2 after the 2011 mainshock.

We also observe several landward-dipping normal
faults around mantle-helium anomaly sites N1 and R
(Sano et al., 2014), respectively, around CMP 12000 and
9,000 on MCS line D6 (Figure 2B). However, we cannot
identify deep extensions of faults within Unit B, probably
because of insufficient seismic resolution to image the
faults or little contrast in acoustic impedance across the
deep fault.

DISCUSSION

Fluid Migration Along Active Normal Faults
We identify two landward-dipping normal faults F1 and F2 below
the mantle-helium isotope anomaly sites N3 and N2, respectively,
which extend into the Cretaceous basement and which potentially
reach the mantle wedge. Mantle-derived helium is inferred to
ascend through the normal faults as potential fluid conduits,
eventually producing mantle helium isotope anomaly near the
seafloor (Sano et al., 2014). Significant change of the mantle
helium isotope anomaly after the 2011 Tohoku earthquake
suggests that faults F1 and F2 are associated with coseismic
rupture propagation (e.g., Ide et al., 2011; Iinuma et al., 2012)
from the mantle wedge to the near trench and thus the episodic
forearc extension during the 2011 Tohoku event. Postseismic

wedge-stress relaxation might help normal faults to maintain
their activities. Two scenarios can be regarded as explaining
mantle fluid migration along normal faults F1 and F2: 1)
mantle fluid migration following large-scale normal faulting
through the entire forearc crust; 2) migration of mantle fluids
locally trapped at shallow depth.

Because a fault zone with weak coupling is prone to dilate at a
seismic slip (e.g., Boulton et al., 2017), aftershocks with normal-
faulting focal mechanisms, which follow the mainshock (Mw9.0),
might help the normal faults (i.e., fluid conduits) to remain
dilated or reactivated, allowing fluid migration along the faults
from the mantle wedge. Mainshocks (i.e., “breakthrough” events)
that rupture along the shallowmegathrust to near the trench have
greater diversity of intraplate aftershock faulting (i.e., focal
mechanism and spatial distribution) than events with rupture
confined to deeper portions of the megathrust (Wetzler et al.,
2017). The breakthrough ruptures essentially decouple the
subducting plate from the overlying plate, removing the time-
varying confining regional compression and allowing activation
of diverse intraplate faulting mechanisms, including outer rise
normal faulting associated with plate bending stresses (e.g.,
Christensen and Ruff, 1988) and intraslab faulting associated
with slab pull (e.g., Lay et al., 1989) and overlying plate
extensional and strike-slip faulting. In fact, many normal-
fault-type aftershocks were observed widely in the overlying
plate and on the outer rise of the Pacific plate immediately
after the 2011 Tohoku mainshock (Asano et al., 2011). These
aftershocks might have been attributable to the breakthrough
rupture involving shallow rupture of the 2011 Tohoku
megathrust with volumetrically extensive elastic strain drop
around the plate boundary that allows activation of diverse
intraplate faulting (Wetzler et al., 2017). The locations of the
normal faults F1 and F2 are roughly consistent with the 2011
Tohoku earthquake aftershocks, which demonstrate the normal-
faulting focal mechanisms (Figure 1). If such a large-scale normal
fault from the seafloor down to the mantle wedge were
reactivated, then at least M7-class aftershocks could have
occurred immediately after the 2011 Mw9.0 event. However,
such a large aftershock with a normal-faulting focal

FIGURE 6 | P-wave tomographic image (Liu and Zhao, 2018) along the profile B (Figure 1). Fault interpretations (Figure 2B) on the PSDM profile of line D6 are
shown in red box. The red star marks the hypocenter of the 2011 Tohoku mainshock (Mw9.0).
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mechanism was not observed in the overlying plate (e.g., Asano
et al., 2011), implying only a low probability of this case.

Alternatively, the fluid might migrate along the normal faults
up to the upper part of the Cretaceous basement. Then it might be
locally trapped during earlier coseismic and interseismic periods,
as suggested by high-amplitude, reverse-polarity reflections
(Figure 4) of normal faults within Unit B. The 2011 Tohoku
mainshock and subsequent aftershocks can lead pre-existing
normal faults to be reactive, more porous, and permeable such
that the trapped fluids are easily migrated up to seafloor along the
faults. Neighboring normal faults close to faults F1 and F2 can
facilitate fluid migration, resulting in high 3He flux and a
maximum excess 3He at sites N3 and N2 (Sano et al., 2014).
Considering the anomalously high speed (approx. 4 km a day) of
fluid migration through the entire fault conduit (Sano et al.,
2014), which is much faster than that estimated from pressure-
gradient propagation (e.g., Bourlange and Henry, 2007), the latter
case is more likely to be accepted.

Volcanism is expected to be a major route to carry suchmantle
helium to Earth’s surface (Sano and Fischer, 2013). In the forearc
region without volcanoes, mantle wedge fluids, resulted from the
dehydration reactions of the subducting Pacific slab (Zhao et al.,
2015), might carry mantle-derived helium to the seafloor so that
the excess 3He is contained in bottom seawater (Sano et al., 2014).
The slight 3He/4He anomaly at sites N3 and N2 revisited in 2016
(Escobar et al., 2019) suggests that the normal fault, as a fluid
conduit, appears to be currently inactive and sealed. Precipitation
of minerals such as calcite and phyllosilicates during the
interseismic period may have sealed the fault zone (e.g.,
Boulton et al., 2017).

Implications of Normal Faults for Shallow
Coseismic Slip
In general, normal and reverse faults can cause vertical
displacement of the seafloor to push water columns upwards,
eventually producing tsunami waves. Compared with tsunami
waves created by thrust or reverse faults (e.g., the 2011 Tohoku
earthquake and tsunami), tsunami waves by normal faults are less
common in subduction zones. Nevertheless, they do occur in
such places as the outer rise of the subducting plate during the
1933 Sanriku (Kanamori, 1971), 2007 Kuril (Ammon et al., 2008),
and 2009 Samoa (Lay et al., 2010) earthquakes. Based on heat
flow, seafloor observations, and MCS data, Tsuji et al. (2013)
proposed that landward-dipping normal faults ruptured around
site N1 during the 2011 Tohoku event might detach the seaward
frontal crust (i.e., foot wall block) from the landward crust
(i.e., hanging wall block) and then drive the foot wall block to
move toward the trench (i.e., horizontal motion of the seafloor),
promoting shallow coseismic slip and subsequent tsunami
generation (McKenzie and Jackson, 2012). That is a similar
mechanism to those occurring in the northern Japan Trench
(Tanioka and Seno, 2001) and Nankai Trough (Park et al., 2010).
However, there is little evidence to support that normal faults F1
and F2 ruptured entirely around sites N3 and N2 during the 2011
Tohoku event and thus generated such a horizontal motion of the
seafloor. Alternatively, the potentially reactivated faults F1 and F2

may be an indicator of coseismic rupture propagation to the
trench, because forearc extension is expected in the overlying
plate when earthquake rupture propagates to shallow depths (e.g.,
Li et al., 2014; Xu et al., 2016; Bécel et al., 2017). Assuming that the
∼5-m-high fault (F1) scarp observed at the seafloor on the SBP
profile (Figure 3) is associated with large megathrust earthquakes
including the 2011 Tohoku event and also develops continuously
fromMCS lines D6 to D13, the reactivated normal fault F1 might
have produced vertical displacement of the seafloor near the fault
and thus could have enhanced the local tsunami, even though this
effect might be much smaller than the shallow coseismic slip.
When the mantle wedge fluids enter active faults in the forearc
crust, the fault-zone friction is reduced (Zhao et al., 2015). More
specifically, the fluids trapped along normal faults F1 and F2, can
somewhat increase the pore fluid pressure of the faults because
the high-amplitude, reverse-polarity reflections are localized
(Figure 4). Locally elevated fluid pressures might decrease the
effective normal stress for the fault plane, facilitating easier slip of
the fault and local tsunami generation.

Basal Erosion in the Middle Slope Region
Forearc extensional subsidence and normal faults caused by
basal erosion are common in many convergent plate margins
such as the Peru Trench (von Huene and Lallemand, 1990),
Japan Trench (von Huene et al., 1994; Tsuru et al., 2002), and
Costa Rica margin (Ranero and von Huene, 2000). Wang et al.
(2011) proposed that shallow basal erosion might occur during
large interplate earthquakes. Then the extension field can be
formed on the forearc during interseismic wedge-stress
relaxation periods. Based on seafloor observations and MCS
data obtained for the Japan Trench forearc (Arai et al., 2014;
Tsuji et al., 2013), those studies suggest that the episodic forearc
extension and subsidence accompanied by normal faulting have
occurred during coseismic events (e.g., the 2011 Tohoku
earthquake). On the PSDM profile of line D6, one can
identify many normal faults developing in the upper and
middle slope regions. High-amplitude, reverse-polarity
reflections located at a maximum of approx. 2 km above the
plate interface appear to run roughly parallel to the plate
interface in the middle slope region (Figure 2B, Figure 7),
leading us to interpret that those reflections indicate a shear
zone associated with plate subduction processes such as basal
erosion. The maximum of approx. 2-km-thick material eroded
from the base of overlying plate tends to thin (approx. 0.5 km)
up-dip. Its down-dip extension is not clear, probably because of
insufficient seismic resolution. Seismic records show a similar
structure (so-called megalens) at the base of Middle America
convergent margin, which suggests basal or subduction erosion
(Ranero and von Huene, 2000). The high-amplitude, reverse-
polarity reflections of the shear zone on the PSDM profile of line
D6 suggest the presence of overpressured fluids. The base of the
overlying plate is hydrofractured (e.g., von Huene et al., 2004).
Consistent with potentially fluid-filled shear zone showing
reverse-polarity reflections is an argument that basal erosion
occurs in a low-stress environment in which fluid pressure is
elevated (Le Pichon et al., 1993). Most reflections from the shear
zone parallel to the plate interface appear to localize in the
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middle slope region where more normal faults develop,
implying more intense basal erosion in the middle slope
region than in upper or lower slope regions. Kimura et al.
(2012) estimated a lower interplate friction (μ′ < 0.03) for

the middle slope region than for the upper (0.03) and lower
(0.08) slope regions respectively, which shows good agreement
with our inference. It is not clear whether the 2011 Tohoku
earthquake was necessarily nucleated at the basal shear zone

FIGURE 7 | Enlarged PSDM section on line D6 and its interpretation showing a possible shear zone in the middle slope region. The section location is presented in
Figure 2B. (A) Uninterpreted PSDM section. High-amplitude, reverse-polarity reflections (black–red–black) of the shear zone (thick pink) above the top of oceanic crust.
(B) Interpreted PSDM section. The red star marks the hypocenter of the 2011 Tohoku earthquake (Mw9.0).
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with high-amplitude, reverse-polarity reflection (Figure 2B,
Figure 7), even though its hypocenter is roughly located at
the shear zone. However, fluid ovepressure in basal shear zones
of the overlying plate may have favored the rupture of the 2011
Tohoku event. This hypothesis can be tested by a further
investigation such as full-waveform inversion (e.g., Jamali
Hondori et al., 2021) of longer-offset (>10 km) seismic
reflection data, which would provide high-resolution Vp data
and thus accurate pore-fluid pressures along the basal
shear zone.

CONCLUSION

A) The pre-stack depth migrated profile and sub-bottom
profiling data reveal landward-dipping normal faults as
potential conduits for mantle-derived fluids in the
coseismic slip area of the 2011 Tohoku earthquake
(Mw9.0). Deep extension of the faults, characterized by
high-amplitude and reverse-polarity reflections, connect to
a low-velocity region spreading from the Cretaceous
basement into the mantle wedge across the forearc Moho,
suggesting that the faults are locally filled with mantle-
derived fluids and that they are therefore potentially
overpressured.

B) The 2011 Tohokumainshock and subsequent aftershocks can
lead the pre-existing normal faults to be reactive and more
permeable so that the locally trappedmantle fluids can readily
migrate up to the seafloor through the fracture zone of the
faults.

C) The reactivated normal faults may be an indicator of shallow
coseismic slip to the trench, because forearc extension is
expected in the overlying plate when earthquake rupture
propagates to shallow depths. Locally elevated fluid
pressures can decrease the effective normal stress for the
fault plane, facilitating easier slip along the fault and local
tsunami.

D) We identified a possible shear zone with high-amplitude,
reverse-polarity reflections above the plate interface, which is
almost confined to the middle slope region, suggesting more
intense basal erosion of the overlying plate in that region.
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