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Earthquake ground motion often triggers landslides in mountainous areas. A simple,
robust method to quickly evaluate the terrain’s susceptibility of specific locations to
earthquake-triggered landslides is important for planning field reconnaissance and
rescues after earthquakes. Different approaches have been used to estimate
coseismic landslide susceptibility using Newmark’s sliding block model. This model
requires an estimate of the landslide depth or thickness, which is a difficult parameter
to estimate. We illustrate the use of Newmark sliding block’s critical acceleration for a
glaciated valley affected by the 2015 Gorkha earthquake in Nepal. The landslide data came
from comparing high-resolution pre- and post-earthquake digital elevation models (DEMs)
derived from Spot 6/7 images. The areas where changes were detected provided an
inventory of all the landslides triggered by the earthquake. The landslide susceptibility was
modeled in a GIS environment using as inputs the pre-earthquake terrain and slope angles,
the peak ground acceleration from the 2015 Gorkha earthquake, and a geological map.
We exploit the depth information for the landslides (obtained by DEM difference) to apply
the critical acceleration model. The spatial distribution of the predicted earthquake-
triggered landslides matched the actual landslides when the assumed landslide
thickness in the model is close to the median value of the actual landslide thickness
(2.6 m in this case). The landslide predictions generated a map of landslide locations close
to those observed and demonstrated the applicability of critical acceleration for rapidly
creating a map of earthquake-triggered landslides.

Keywords: rapid terrain assessment, earthquake-triggered landslides, critical acceleration, 2015 Gorkha
earthquake, high resolution DEM, Newmark’s sliding block, Langtang valley, landslide thickness

INTRODUCTION

Earthquake ground motion is one of the main triggering agents for catastrophic landslides
worldwide. According to Keefer (1984), earthquake magnitudes greater than 6.0 Moment
Magnitude (Mw) can trigger landslides over areas extending up to 500,000 square kilometers.
The 1994 Northridge earthquake (Mw � 6.7) in California triggered more than 11,000 landslides over
an area of ∼10,000 km2 (Harp and Jibson, 1996). The 2002 Denali Fault earthquake (Mw � 7.8) in
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Alaska triggered more than 1,580 landslides in a glaciated area of
7,150 km2 (Gorum et al., 2014). The 2008 Wenchuan earthquake
(Mw � 7.9) in China caused 197,481 landslides in ∼110,000 km2

(Xu et al., 2014). In Nepal, the 2015 Gorkha earthquake (Mw �
7.8) triggered more than 25,000 landslides covering 61.5 km2 in
an area of 20,500 km2 (Gnyawali and Adhikari, 2017; Roback
et al., 2018; Tian et al., 2020).

Rapid assessment of earthquake-triggered landslide hazards is
vital for planning response and recovery operations, in the
immediate aftermath of an earthquake. Such landslides are
widespread, so usually, the reconnaissance is carried out by
flying helicopters in pre-defined priority tracks to identify the
landslide hotspots, valley blocking slides, and damaged
infrastructure locations. E.g., In the 2016 central Italy
earthquake sequence by Stewart et al. (2018) and Lanzo et al.
(2018); in the 2015 Gorkha earthquake sequence by Collins and
Jibson (2015); and in the 2016 Kaikoura earthquake by Jibson
et al. (2018). To efficiently plan the reconnaissance operation, as
well as pre-planning of the earthquake-triggered landslide (ETL)
hazards, a model to predict widespread landslide locations is
pivotal for disaster management.

Newmark (1965) proposed a method for analyzing the
deformation of embankments and dams caused by
earthquake shaking, assuming the dam moves as a single
rigid block. Although Newmark (1965) first developed this
method for embankments and dams,Wilson and Keefer (1983)
applied it for assessing the stability of natural slopes under
earthquake shaking. Permanent displacement of the landslide
occurs when the seismic acceleration exceeds a critical value
(Newmark, 1965). When the seismic acceleration exceeds the
critical acceleration, the block moves relative to the slope and
stops when the earthquake acceleration drops below the
critical acceleration. Newmark’s method considers only
rigid block movements with no internal deformations. Shear
deformation is assumed at the base of the block (Newmark,
1965). The method has been found suitable for shallow
landslides during earthquakes (Keefer, 1994; Keefer, 2002).
The Newmark sliding block method has been used to assess
earthquake-triggered landslides (ETL) in Los Angeles,
California (Jibson et al., 2000), Greece (Chousianitis et al.,
2014), Wenchuan, China (Chen et al., 2014), Longmenshan,
China (Yuan et al., 2016) and Lushan, China (Jin et al., 2019).

The Newmark method has been tested for evaluating slope
stability for several earthquakes. Two different approaches for
using the Newmark method are popular: a) evaluate the yield
displacement (Newmark’s displacement) of a sliding block or b)
evaluate the critical acceleration required to move a sliding block.
The displacement method uses a threshold displacement as a
sliding block criterion. The landslide displacement is calculated
by double integrating the recorded acceleration-time record of
the earthquake (Newmark, 1965) or using empirical formulae
(Jibson et al., 2000; Jibson, 2007). For the acceleration method or
simplified Newmark block method, the critical acceleration
needed to cause a block to slide is compared with the
measured peak ground acceleration (PGA). When PGA
exceeds the critical acceleration, the landslide is triggered. Both
approaches have been implemented to study ETL susceptibility.

Newmark’s displacement method was used to study areas
affected by the Chi-Chi earthquake in Taiwan and showed a
good prediction of shallow landslides compared with the
observed landslides (Wang and Lin, 2010). Similarly, Jin et al.
(2019) used a modified Newmark’s method and found that the
predicted landslide map agreed well with the actual distribution
of the landslides triggered by the Lushan earthquake, China.
Newmark’s displacement method was used to model ETL from
the 2015 Gorkha earthquake (Gallen et al., 2016). Although the
model results had similarities with the general landslide pattern,
the detailed distribution of landslides was not captured by the
Newmark model (Gallen et al., 2016). The model shortcomings
were attributed to large cell sizes in the digital elevation model
(90 m), aspects of the ground motion spectra that PGA does not
capture, and lack of spatial variability in surface material strength.
Other studies have used critical acceleration, instead of
Newmark’s displacement, to analyze the terrain’s susceptibility
to ETL (Chen et al., 2014; Xiaoli and Chunguo, 2019; Chen et al.,
2020). Chen et al. (2014) compared the landslide distribution
triggered by the 2008 Wenchuan earthquake with a critical
acceleration map and found good correspondence with the
actual landslide locations. An ETL susceptibility map can be
easily prepared from a probable PGA map using the critical
acceleration concept (Xiaoli and Chunguo, 2019). But to prepare
a map using Newmark’s displacement method, earthquake
acceleration-time records are needed, which are often not
available at the location of landslide-affected areas, and even
less so before an earthquake disaster. These studies indicate that
the critical acceleration method can help predict ETL locations
via comparison with an independent estimate of the peak ground
acceleration. Furthermore, when earthquake data are limited,
critical acceleration is a better approach than Newmark’s
displacement for rapid assessment of the terrain’s susceptibility
to ETL locations.

The evaluation of the method presented here to predict ETL
locations method requires a detailed inventory of actual ETL
locations and an estimate of the landslide depths, which can be
converted into thicknesses. Erial photographs or satellite images
are commonly used to delineate landslide areas (as polygons)
after an earthquake. These polygons can be used to validate the
prediction results from the critical acceleration model (Wang and
Lin, 2010; Chen et al., 2014; Shinoda and Miyata, 2017). These
landslide inventories capture the areal information but typically
lack the landslide depth data. Researchers have adopted different
approaches to estimate the landslide depth. Wang and Lin (2010)
estimated the depth using an empirical slope-depth relationship.
Shinoda andMiyata (2017) assumed a 2 m landslide depth for the
Niigata earthquake, based on a field study conducted by Kieffer
et al. (2006). Ma and Xu (2019) set the landslide depth as 3 m
based on field observation and previous research (Jibson et al.,
2000; Dreyfus et al., 2013). Landslide depths derived from these
approaches may not provide a reasonable estimate of the actual
depths because they are based on regional studies or estimates
from a few local field observations. Here, we determine the
landslide areas and depth information by subtracting a high-
resolution post-earthquake digital elevation model (DEM) from a
pre-earthquake DEM. The availability of landslide depth
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information from the DEMs enables the calibration of the critical
acceleration model and allows exploration of the relationship
between observed landslide thicknesses and the thickness used in
the model.

STUDY AREA

Here, we focus on the Langtang area in Nepal, affected by the
2015 Gorkha earthquake (Mw7.8), to evaluate the critical
acceleration method for ETL susceptibility assessment. This
area is a glaciated valley and a popular tourist destination. It
also had the largest and most destructive landslide triggered by
the 2015 Gorkha earthquake, a rock avalanche that killed more
than 350 people and buried the Langtang village (Kargel et al.,
2015). An air blast created by the rock avalanche uprooted trees
and flattened the forest on the opposite valley wall (Kargel et al.,
2015; Lacroix, 2016). Aside from this rock avalanche, three
different studies mapped between 160 and 205 landslides in
the study area (Lacroix 2016; Gnyawali and Adhikari, 2017;
Roback et al., 2018). The landslides varied in size from
rockfalls to very large landslides, and many landslides had
long-runout zones because of the steep terrain.

The valley lies approximately 60 km north of Kathmandu
(Figure 1A). Nearly half of the Langtang valley (46% or
166 km2) is covered by glaciers (Immerzeel et al., 2012).
Langtang Khola is the main river draining the valley
westwards to the Bhote Koshi River at Syabru Besi. The
Langtang valley has a U-shape (Immerzeel et al., 2012) and is

surrounded by high mountains with the highest peak, Langtang
Lirung, 7,227 m above sea level (masl) (Lacroix, 2016). The study
area is a part of the Langtang valley (91.4 km2) and has a length
and width of approximately 15 and 6 km (Figure 1B). The valley
has steep slopes prone to landslides (Lacroix, 2016).

The Gorkha earthquake epicenter was located approximately
70 km west of the study area. The 2015 Gorkha earthquake was
followed by numerous aftershocks, including five greater than 6.0
Mw between April 25 and June 10, 2015 (Kargel et al., 2015). The
peak ground acceleration measured at the closest seismic station
(KTP) was 2.41 m/s2 in the east-west direction. This station was
near Kathmandu, approximately 60 km south of the study area
(Takai et al., 2016). The 2015 Gorkha earthquake triggered more
than 25,000 landslides in Central Nepal (Gnyawali and Adhikari,
2017; Roback et al., 2018; Tian et al., 2020).

Most landslides in the study area had shallow depths (<5 m),
and many occurred in surficial glacial and post-glacial soils over
the bedrock (Figure 2). The bedrock geology is dominated by
gneiss in the valley, which likely resulted in glacial soils
dominated by sand and gravel particle sizes. Figure 1 shows
the bedrock units as U-1 to U-3, adapted from Jones et al. (2020).
The Syaprubesi formation (U-1) consists of gneiss dominated by
muscovite, biotite, and quartz, with subordinate plagioclase and
garnet. Likewise, the Bamboo formation (U-2) is gneiss
dominated by muscovite, biotite, and quartz, with subordinate
tourmaline. The Langtang formation (U-3) consists of
leucogranite, dominated by muscovite, tourmaline, epidote,
and occasionally garnet. These previously glaciated areas are
covered by various thicknesses of glacial materials such as

FIGURE 1 | Map of Langtang valley. (A) Study area lies approximately 60 km north of Kathmandu. The red star shows the epicenter of the 2015 Gorkha
earthquake. (B) Langtang valley topography indicated by yellow elevation contours. The blue lines are boundaries of geological units (Jones et al., 2020), U-1 (Syaprubesi
formation), U-2 (Bamboo formation), and U-3 (Langtang formation). U-4 is above the permanent snowline at 5,000 masl and consists of glacier ice and snow. The black
dashed line shows the catastrophic Langtang avalanche boundary that originated above 5,000masl and descended onto Langtang village at ∼3,400masl. The red
polygons are the avalanche’s entrainment areas (Gnyawali et al., 2020). The blue hatched polygon is the air-blast impact area on the opposite slope of the valley.
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glacial tills and glaciofluvial sediments, as well as more recent
colluvium and debris flow deposits. Terraces of glacial soils exist
near the valley bottom. Permanent snow occurs above the altitude
of 5,000 masl in the valley (Fujita et al., 2017), and the U-4 area is
covered by glacier ice and snow. During the 2015 Gorkha
earthquake, the catastrophic Langtang avalanche originated
from multiple high-altitude source areas in U-4 and involved
snow, ice, and rock fragments (Lacroix, 2016; Gnyawali et al.,
2020). As separate rock avalanches descended, they entrained
debris before merging into one large rock avalanche that traveled
to the valley bottom and burying the village of Langtang
(Figure 1B).

DATA AND METHODS

The critical acceleration method is used to map ETL
susceptibility. This method compares the critical acceleration

of a slope section with the expected PGA at this location to
assess slope stability. The critical acceleration is calculated using
topography and geology parameters. The slope angle is obtained
from a high-resolution pre-earthquake DEM (Lacroix, 2016).
The geotechnical parameters (cohesion, friction angle, and unit
weight landslide materials) are estimated from a geology map of
the Langtang valley (Jones et al., 2020). Table 1 summarizes
the different types of data used in this study. In addition, an
estimate of the landslide thickness is needed to calculate the
factor of safety. The landslide thickness is unknown before
an earthquake, but the model can be run using various
landslide thicknesses. For the Langtang Valley case history,
different thicknesses were used to create predicted landslide
distribution maps. The map found to best match the actual
landslide distribution map was used to determine the most
suitable landslide thickness. This thickness was compared to
actual landslide thicknesses found from analysis of the pre-and
post-earthquake DEMs.

FIGURE 2 | Photos of earthquake-triggered landslides in the Langtang valley extracted from video recordings (Collins, 2015). The camera locations for each
photograph (A–D) are shown in Figure 3. The yellow dot in panels (A) and (B) corresponds to the same landslide. US � upstream and DS � downstream.

TABLE 1 | Different types of data used in this study.

Data Date Description Application Source

Geological map 2019 Based on fieldwork Lithological classification Jones et al. (2020)
Pre-earthquake DEM 21-04-2014 4 m cell size Determine local slope angle and aspect Lacroix (2016)
Post-earthquake DEM 10-05-2015 4 m cell size Create the landslide inventory Lacroix (2016)
Gorkha earthquake ground motion 14-01-2016 On-line ground motion map Determine peak ground accelerations USGS ShakeMap
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The slope angle, geotechnical parameters, and landslide
thickness were used to calculate the factor of safety and
critical acceleration using Eqs 3, 4, respectively. The PGA
values for the 2015 Gorkha earthquake came from the USGS
ShakeMap for the Langtang valley (Figure 3). The calculated
critical acceleration for each slope section (cell) was compared
with the PGA from the Gorkha earthquake. If the PGA exceeds
the critical acceleration, the cell is classified as unstable. The
analysis yields an ETL susceptibility map using the critical
acceleration of many slope cells. The entire model takes
∼10 min (7 min to produce six landslide susceptibility maps
and 3 min to assess accuracy) on home desktop (Intel® Core™
i5-9300H; quad-core; 8 GB RAM) to calibrate landslide thickness.
The detailed methodology is described in the following sections
and summarized in Figure 4.

Digital Elevation Model Generation
A pre-earthquake (April 2014) and a post-earthquake (March
2015) DEM at a 4 m cell size were obtained from tri-stereo SPOT
6/7 images of the Langtang valley over 100 km2 area. The DEMs
were taken from Lacroix (2016). Some voids existed in the pre-
earthquake (2014) DEM created from the Spot 6/7 stereo images.
These voids were filled by interpolation from neighboring cells in
QGIS. The DEMs were computed using the NASA open-source
software Ames Stereo Pipeline (Broxton and Edwards, 2008). The

reliability of the ground elevations in the DEM varies as a
function of slope gradient. The ground elevation variability,
calculated through the standard deviation of the difference of
the 2014 and 2015 DEMs in stable areas, ranged from 0.5 m on
flat terrain up to 12 m on slopes of 80° (Lacroix, 2016).

Preparation of the Landslide Map
An initial map of landslide locationswas prepared by subtracting the
post-earthquake (2015) DEM from the pre-earthquake (2014) DEM.
However, the inherent uncertainty in the DEMs, created from errors
in the stereo pair image processing, makes this step complicated. To
increase confidence in the landslide map, a DEM error map was
subtracted from the DEM difference map. Only cells with positive
values in a range between 1 and 75m were used as the map of
landslide locations. The negative values indicated possible deposition
areas and were eliminated from further analysis.

When the catastrophic Langtang avalanche descended into the
Langtang village, it created an air blast that flattened the forest
canopy on the opposite face of the valley wall. This phenomenon
caused a positive elevation difference in DEM subtraction,
thereby falsely classifying cells as a landslide. This air-blast
zone (∼2 km2) was removed from the landslide map.
Furthermore, some slope area materials were entrained during
the avalanche descent, causing considerable depth variation
(Gnyawali et al., 2020). These sites, which covered an area of

FIGURE 3 | Landslide source area cells computed from pre- and post-earthquake DEM differences and adjusted for DEM elevation accuracies, modified after
Lacroix (2016). (A–D) are camera locations corresponding to Figure 2. The difference between the 2 DEMs encompasses both the landslide depth and the removal of
trees over the landslide. USGS Shakemap contours of the peak ground acceleration (PGA) ranging from 0.52 g (at U-4) to 0.62 g (at U-2) are shown in shades of green
to blue.
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approximately 0.25 km2, were eliminated from the map. Figure 3
shows the resulting final map for the source areas of earthquake-
triggered landslides. Landslide locations involved approximately
5.2 km2 of the study area.

2015 Gorkha Earthquake Ground Motions
The measured ground motions caused by the Gorkha earthquake
were important input for estimating ETL locations. The peak
ground acceleration (PGA) closely correlates with landslide
occurrence as a triggering factor (Keefer 1984; Kieffer et al.,
2006; Qi et al., 2010; Dai et al., 2011; Tiwari and Ajmera,
2017). A benefit of using PGA is that probabilistic PGA maps
are readily available for Nepal (Ram and Wang, 2013; Rahman
and Bai, 2018). Jibson (2007) developed an empirical relationship
to determine Newmark’s displacement using critical acceleration
and Arias intensity (Arias, 1970). Arias intensity depends upon
the recorded earthquake acceleration-time history. However,
earthquake acceleration-time data are not available for the
study area, which makes the use of PGA attractive given the
availability of USGS ShakeMap estimates of PGA around
the epicentre of the Gorkha earthquake. ShakeMap provides

near-real-time maps of PGA and other ground motion
parameters (peak ground velocity, pseudo-spectral acceleration,
intensity) following significant earthquakes, and this source for
PGA was used in the critical acceleration model. ShakeMap
simulates PGA by combining information from individual
stations, site amplification characteristics, and ground motion
prediction equations (GMPEs) for the distance to the hypocentre
(Worden et al., 2010; Worden et al., 2020). We adopted PGA
values from ShakeMap for this model. The PGA ranges from
0.52 g (northern part, U-4) to 0.62 g (southern part, U-2) in the
study area. The PGA contours from the USGS Shakemap for the
Gorkha earthquake are shown in Figure 3.

Critical Acceleration Method
The ETL locations are assessed in the critical acceleration method
by comparing each slope section’s critical acceleration and the
PGA from an earthquake. If the earthquake ground acceleration
surpasses a critical acceleration, the slope may fail during shaking
(Chen et al., 2020). In the context of Newmark’s method, the
dynamic stability of a slope is related to its static stability. Before
an earthquake, a block’s stability is affected by its weight and the

FIGURE 4 | Flowchart for creating ETL maps using DEM, critical acceleration, and earthquake PGA.
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friction angle and cohesion acting along a potential sliding
surface, as illustrated in Figure 5. The forces acting parallel to
the slip surface from adjacent blocks above and below the block
shown are assumed to cancel each other. The factor of safety FS of
the sliding block, as shown in Figure 5, can be expressed as:

Fs � cA +W cos α · tan ϕ
W sin α

(1)

WhereW is the weight of the block, ϕ and c are the friction angle
and cohesion along the sliding surface, α is the slope angle of the
slip surface, which is assumed equal to the ground surface, andA
is the area of the sliding surface. The groundwater table was
likely below the landslide slip surface at most locations because
the 2015 Gorkha earthquake occurred during the dry season and
the typical landslide depths were less than 3 m (Gallen et al.,
2016). Therefore, the groundwater pressures are not included in
Eq. 1. The critical acceleration method was applied to each cell
in the pre-earthquake DEM. Figure 5 shows a unit thick section
of a block on the slope. The DEM cell size is based on a
horizontal grid. Using the DEM cell size as the smallest
block size in the critical acceleration analysis, Eq. 1 can be
re-written as:

FS � cA
W sin α

+W cos α · tan ϕ
W sin α

FS � cA
c. A.T .sin α

+ tan ϕ
tan α

The above equation can be simplified as Eq. 2, which shows that the
factor of safety is influenced by topographical, geological parameters,
and landslide thickness and is independent of DEM cell size.

FS � c
cT · sin α + tan ϕ

tan α
(2)

Where c is the unit weight of the landslide material, and T is the
thickness of the sliding block. The thickness of the sliding block is
D · cos α, where the landslide depth, D, is observed from
differences in DEM elevations.

In GIS implementation, cohesion raster, friction angle raster,
and unit weight raster are obtained from the geology map.
Similarly, slope raster is calculated from pre-earthquake DEM
and block thickness is the assumed landslide thickness whose
value varies in the model. Eq. 3. Demonstrates the use of Eq. 2 in
a GIS environment.

FS � (cohesion raster)
(Unit weight raster) × block thickness × sin(slope raster)
+ tan(friction angle raster)

tan (slope raster) (3)

Newmark (1965) showed that the critical acceleration ac for a
potential landslide block is a simple function of the static factor of
safety Fs and the slope angle.

ac � (Fs − 1) · sin α · g (4)

In Eq. 4, g is the gravitational acceleration.
Chen et al. (2014) investigated landslide areas associated with

critical accelerations to determine PGA for the 2008 Wenchuan
earthquake in China and showed that critical acceleration is a
reliable criterion for assessing slope stability. Xiaoli and Chunguo
(2019) analyzed the slope stability for the 2014 Ludian earthquake
in China and showed that Newmark’s critical acceleration and

FIGURE 5 | Schematic diagram illustrating the forces acting on a block resting on an inclined plane for static (pre-earthquake) conditions on a GIS environment.
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PGA could be used to estimate accurate ETL locations. Similarly,
Chen et al. (2020) concluded that it is possible to quickly evaluate
ETL by comparing critical acceleration and PGA.

Predicting Landslide Source Areas Using
Critical Acceleration Method
Input parameters for the landslide predictions include estimates
of the shear strength and unit weight of the landslide materials
or ice/snow, slope angles extracted from the pre-earthquake
DEM (Lacroix, 2016), and PGA data obtained from USGS
shakemap, Table 2. The values of cohesion, friction angle,
and bulk density used in the analysis were adopted from
published literature. Field observations of the ETLs indicated
that these often occurred on steep slopes covered with a layer of
colluvium. The sliding surface may have been within colluvium
or slightly deeper within weathered and fractured bedrock. The
assumed shear strength parameters for the sliding surface are
listed in Table 2. The estimated friction angle and cohesion were
based on published values for colluvium and increased to
account for field evidence that most shallow landslides
involved fractured bedrock, which likely has higher shear
strength than colluvium. The bulk density for the sliding
block was based on a combination of typical colluvium and
fractured gneiss densities. For U-1 to U-3, the selected values
were guided by values presented by Irfan and Tang (1992). The
geotechnical properties for the glacier snow-ice (U-4) were
obtained from Gnyawali et al. (2020).

Critical acceleration values were calculated for each cell. The
DEMwas resampled to generate different cell sizes, and a range of
landslide thicknesses was assumed to calculate the critical
accelerations for each cell using Eq. 5. The calculated critical
acceleration at each site was compared with the PGA at each site
to determine if the cell was stable or could slide during the
earthquake. All cells determined to be unstable (PGA > ac) were
used to produce a predicted distribution or map of earthquake-
triggered landslides. Different maps were created for different
assumed landslide thicknesses and cell sizes. Finally, the predicted
landslide maps were compared to those observed from DEM
differencing.

An estimate of the landslide thickness was required to
calculate the static factor of safety. The landslide thickness was
varied until the resulting prediction of landslide locations

appeared to match the landslide map obtained from DEM
subtraction.

Accuracy Assessment
A quantitative assessment of the match between predicted and
observed landslide locations were obtained using a confusion
matrix, which is a method for assessing the accuracy of a binary
classification, in this case, for cells classified as either stable or
unstable. The landslide map extracted fromDEM subtraction was
considered as the reference map, and the critical acceleration
method provided prediction maps. A correctly predicted cell
consists of two classes: i) an unstable cell occurs in both maps
(true positive), TP, and ii) a stable cell occurs in both maps (true
negative), TN. Similarly, incorrectly predicted cells include two
classes: i) an unstable cell in the reference map but a stable cell in
the predicted map (false negative), FN; and ii) a stable cell in the
reference map but an unstable cell in the predicted map (false
positive), FP.

The Matthews correlation coefficient (MCC) is used as a
measure of the quality of the classification. MCC accounts for
true and false positives and negatives and is generally regarded as
a balanced measure that can be used even if the classes are of very
different sizes (Chicco and Jurman, 2020; Chicco et al., 2021). The
MCC is a correlation coefficient between the observed and
predicted binary classifications; it returns a value between −1
and +1. The MCC is calculated as:

MCC � TP × TN − FP × FN�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (5)

The value of MCC ranges from −1 to +1, where +1 represents a
perfect prediction, 0 represents a random prediction, and −1
represents a total disagreement between prediction and
observation. MCC was used to evaluate the cells in the ETL
prediction maps relative to the reference landslide map.

Several studies (Rong et al., 2020; Wang et al., 2020; Meena
et al., 2021) have adopted MCC to evaluate landslide
susceptibility maps. Rong et al. (2020) obtained MCC � 0.44
for a hazard map of rainfall-induced landslides in Shuicheng,
China. Wang and Lin, 2010 compared four different landslide
susceptibility mappingmethods and found thatMCC varied from
0.4 to 0.5. In this study, the highest MCC value was 0.13, which
indicates a modest positive relationship with the reference
landslide map obtained from DEM differencing.

Cell Size
Previous DEM-based investigations of ETL were performed with
relatively large DEM cell sizes (greater than 10–90 m) compared
to that available for the Langtang Valley. For example, Chen et al.
(2014), Gallen et al. (2016), and Allstadt et al. (2018) used 90 m
cell sizes. Wang and Lin (2010) used 40 m cells, and Dreyfus et al.
(2013), Shinoda and Miyata (2017), and Ma and Xu (2019) used
10 m cells. An assessment of cell size on the predicted spatial
distribution of unstable and stable cells was performed to assess
the influence of size. The DEM cells were resampled in QGIS
from 4 to 40 m cell size, using bilinear interpolation. For each
resampled DEM, a series of analyses were done with varying
landslide thicknesses. The landslide thickness was varied from 2

TABLE 2 | Parameters used in the critical accelerationmodel and their uncertainty.

Geological unit Parameter Unit Value Uncertainty

U-1, Syaprubesi formation Cohesion, c kPa 47 High
U-2, Bamboo formation Friction angle, ϕ degree 35 Low
U-3, Langtang formation Unit weight, γ kN/m3 1800 Low

U-4, snow and ice Cohesion, c kPa 27 High
Friction angle, ϕ degree 11.5a Low
Unit weight, γ kN/m3 850a Low

aGnyawali et al. (2020).
cohesion (c) and friction angle (ϕ) are for the sliding base of a block of fractured bedrock or
colluvium; the bulk density (ρb) is for the equivalent of a block of fractured bedrock
covered with a layer of colluvium.
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to 4.2 m with a 0.2 m increment. The critical accelerations for the
various assumed landslide thicknesses were obtained. The critical
accelerations were then used to create maps of predicted ETL for
each assumed landslide thickness. These maps were compared
with the DEM-derived landslide map.

RESULTS AND DISCUSSION

Spatial Distribution of Landslides -
DEM-Derived Versus Satellite Imagery
Landslide inventories for the Langtang area were obtained from
previously mapped landslide scars visually identified in satellite
imagery (Gnyawali and Adhikari, 2017; Roback et al., 2018). As
an alternative method for determining the landslide locations, the
elevation differences between pre- and post-earthquake DEMs of
the Langtang valley (Lacroix, 2016) were used. These maps
provide a reference for comparison with predicted landslide
locations obtained by applying the critical acceleration and
PGA estimates.

The spatial distribution of landslide source areas obtained by
DEM differencing in the Langtang valley is shown in Figure 3.
The spatial distribution shows a cluster of landslides near the
valley bottom and in the snow-covered region. As expected, the
landslide map shows a high concentration of landslide source
areas where the large Langtang avalanche occurred and in areas
with steep slopes.

A visual comparison of the landslide sources detected using
DEM differencing and existing landslide inventories (Lacroix,
2016; Gnyawali and Adhikari, 2017; Roback et al., 2018)
shows some consistency. However, exceptions occurred in
snow-covered regions and along the Langtang river banks,
where landslides were captured in the DEM-derived map but
were not found by visual interpretation of satellite imagery.
Previously published maps of landslides in the Langtang
Valley consisted of a relatively small number of locations
compared to what was found by DEM differencing. In the
snow-covered area (U-4), none of the visually prepared
inventories had landslide source areas. However, the main
Langtang avalanche originated from this area (Lacroix, 2016).
Visual interpretation of satellite imagery for landslide
mapping is a challenge if no contrast is seen between pre-
and post-earthquake imagery (as in snow-covered areas) or
terrain deformations do not result in long runout scars. The
detection of landslide areas based on satellite image
interpretation is sensitive to the image quality and the
interpretation of those images. This results in landslide
inventories that may miss landslides (Roback et al., 2018).
However, it is important to note that DEM differencing
derived landslide inventories are also subject to errors. For
example, shadows, occlusions, and poor correlation can result
in data gaps and residual artifacts in each of the cross-track
stereo DEMs. Thus, interpretation requires caution and
expert judgment. Ideally, visually prepared landslide
inventories from satellite images and DEM differencing
derived landslide cells should be used as complementary to
each other.

The DEM differencing technique has been applied in
numerous studies (Tsutsui et al., 2007; Martha et al., 2010;
James et al., 2012) to study geomorphological changes,
including detection of shallow landslides. Tsutsui et al. (2007)
used this technique to detect landslides triggered by earthquakes
in Japan and cyclones in Taiwan. They concluded that this
technique delineated the large-scale landslides with an
accuracy >70% for slopes under 40° and accuracy <40% for
slopes over 40°. Kim et al. (2020) showed that DEM
differencing could detect landslides in hilly and densely
vegetated areas if the DEM uncertainty is constrained.

In this study, the DEM differencing technique was the desired
approach for checking the result of the critical acceleration
method because the ultimate goal is to use existing pre-
earthquake DEMs and post-earthquake ShakeMap PGA to
quickly generate maps of likely ETL locations to help plan
field reconnaissance and rescues immediately after an
earthquake. In an emergency situation, there may not be
sufficient time to acquire and map many landslides using
satellite imagery. Furthermore, to obtain a reliable estimate of
the landslide depths for many landslides over a wide area, DEM
differencing provided the best approach.

Landslide Thickness
The 2015 Gorkha earthquake triggered mostly shallow landslides.
The landslide depth is measured vertically, while the landslide
thickness is measured normal to the slope (Figure 5). The median
landslide depth for all areas observed fromDEM differencing was
4.8 m for cells that were 4 m in size. The median landslide depths
were 3.8 m for U-1, 4.5 m for U-2, 3.6 m for U-3, and 6.7 m for
U-4. U-4 was the source area of the largest rock-ice avalanche in

FIGURE 6 | Matthews correlation coefficient for various DEM cell sizes
(4–40 m) and assumed landslide thicknesses.
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the valley, which deposited 7 × 106 m3 on the valley floor
(Lacroix, 2016). The calculated depths from DEMs in
vegetated areas can be exaggerated by vegetation loss when a
shallow landslide occurs (Lacroix, 2016). The thickness

(measured perpendicular to the slope) of the material that
failed was calculated using the slope at each cell. The median
landslide thicknesses in each area were 2.4, 2.5, 1.9, and 3.3 m for
U-1 to U-4, respectively.

The sliding block’s thickness is an important parameter when
using the critical acceleration method with a sliding surface that
has cohesion. Ma and Xu (2019) used an average landslide
thickness of 3 m based on a field investigation for the 2013
Lushan earthquake in China. Shinoda and Miyata (2017)
studied regional landslides using Newmark’s method and
found that a 2 m landslide thickness worked well for the Mid
Niigata earthquake. The thickness ranged from 0.8 to 4.6 m for
landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1)
(Saito et al., 2018). Shinoda et al. (2019) used a 3 m landslide
thickness based on a JSEG (2017) report of regional landslide
susceptibility for the 2016 Kumamoto earthquake. The median
landslide thicknesses in the Langtang region caused by the 2015
Gorkha earthquake are similar to these other studies, and most
landslides are shallow, except for a few much larger landslides.

Cell Size and MCC
Figure 6 illustrates the influence of the DEM cell size on
predicting stable and unstable cells. As the DEM cell size
increases, the predictive accuracy as measured by MCC
decreases. This suggests that a small (4 m) cell size is best
when using the analysis approach presented here. Although
doubling the cell size to 8 m gives a similar prediction
accuracy while reducing the amount of data to be processed
and stored in the GIS. The landslide thickness used in the critical
acceleration model that best matches the spatial distribution of
DEM-derived stable and unstable cell locations is approximately
2.6 m, as seen by the peak in theMCC curve for the 4 m cell size in
Figure 6. When larger DEM cells are used, a thicker landslide
gives the best match with the observed ETLs. Note that when the
landslide thickness was less than 1 m, almost all cells were
predicted to be stable (not shown in the figure).

Wang et al. (2020) studied the influence of DEM cell size on ETL
hazard assessment using Newmark’s sliding blockmethod and found
that a 30m size gave a similar prediction to a 10m cell size. In
contrast, this study shows that a smaller cell size gives better results.

The influence of the landslide thickness on the predictions of
landslide locations was explored. The results using a DEM cell
size of 4 m with an assumption of a constant landslide thickness
of 1, 2, 2.4, and 2.8 m are shown in Figure 7. Pixels with a brown
color represent unstable cells predicted using the critical
acceleration method. This figure clearly shows how sensitive
the number and locations of predicted ETLs are to the
assumed landslide thickness. When the thickness is less than
2.4 m, the critical acceleration model incorrectly classifies too
many cells as stable, whereas when the thickness is 2.8 m, too
many cells are predicted as unstable.

Critical Acceleration Model Predictions
Versus DEM-Derived Map
An assumed landslide thickness of 2.6 m was used to determine
the predicted ETL locations using the critical acceleration

FIGURE 7 | Predicted earthquake-triggered landslide maps for different
assumed landslide thicknesses (A–D) with a DEM cell size of 4 m.
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method. Figure 8 shows a comparison between the DEM-
derived ETL locations and those predicted using the critical
acceleration method. Cells predicted to be stable often
correspond to locations where no elevation changes occurred
in the DEM, which is a good match. However, cells predicted to
be unstable in region U-4 are more scattered than those
observed from DEM differencing.

Immediately after an earthquake occurs, the resulting
thickness for ETLs is typically unknown. Gallen et al. (2016)
used an aggregate strength parameter to account for the unknown
landslide thickness. The aggregate strength parameter is the ratio
of soil cohesion and landslide thickness. They used a range of
aggregate strength parameters varying from 5 to 15 kPa m−1 and
concluded that the lower and upper bound of the aggregate
strength parameter is 10 kPa m−1 and 15 kPa m−1. This study
took advantage of the post-earthquake DEM to measure the
thickness for many landslides, which gave a median value of
2.6 m. Using this value gives an aggregate strength parameter
equal to 10.4 and 18 kPa m−1 in U-4 (glacier snow-ice) and U-1 to
U-3, respectively. These values are similar to the values found by
Gallen et al. (2016).

While the predicted landslide map has many similarities to the
DEM-derived landslide distribution, there are differences. The
prediction map is missing patches of landslides near the river in
geological units U-1 and U-2. River erosion through colluvium
and debris flow deposits near the valley bottom created over-
steepened slopes prone to failure during the earthquake. Thus,
many ETLs are observed along river banks (Tian et al., 2019). But
the effect of slope undercutting or toe erosion by the river is often
not captured in the DEM despite its small cell size. Thus, when
running the critical acceleration model, it misses small steep
slopes. Furthermore, these landslides often occur at the edges of
terraces with top slopes <25°, which have a high factor of safety
(Eq. 3). So, these cells were often classified as stable in the map
showing predicted ETL. The critical acceleration method is a

reliable technique for assessing earthquake-triggered landslides.
However, cohesion plays an important role; thus, calibration of
cohesion is critical to assessing slope stability.

Slopes
The predicted landslide distribution was examined in terms of
slope angle, slope aspect, and bedrock geology. Most unstable
cells (46.5%) in the study area faced southerly (SE to SW). 50 per
cent of the cells in U-1 with a slope angle >78° were classified as

FIGURE 8 |Comparison of ETL locations from (A) DEM subtraction and the (B) critical acceleration model with an assumed landslide thickness of 2.6 m and a 4 m
cell size.

FIGURE 9 | DEM uncertainty plot. (A) Mean DEM error as a function of
slope angle, (B) Distribution of landslides in different slope ranges.
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unstable during the earthquake. Similarly, 42% of cells with a
slope angle >79° and 36% of cells with a slope angle >80° were
unstable in U-2 and U-3, respectively. While slopes with angles
between 70 and 80° had a high proportion of unstable cells, more
than 45% of the unstable cells occurred for slope angles between
40 and 60°. The median slope for unstable cells in U-1, U-2, U-3,
and U-4 are 41, 50, 49, and 51°, respectively.

Uncertainty in Input Parameters
Primary input parameters for the critical acceleration method are
topography data, geology data, and ground motion data. The
topography is obtained from a pre-earthquake DEM (Lacroix,
2016). The reliability of the ground elevations in the DEM varies
as a function of slope gradient (Figure 9). The ground elevation
variability, calculated through the standard deviation of the
difference of the 2014 and 2015 DEMs in stable areas, ranged
from 0.5 m on flat terrain up to 12 m on slopes of 80° (Lacroix,
2016).

The landslide distribution is more continuous in the predicted
map than in the landslide inventory derived from the DEM
difference. This is perhaps due to the DEM error, uncertainty
in geotechnical parameters, and PGA estimates from ShakeMap.
The local variation in soil strength can affect the landslide
distribution. The shear strength parameters were fixed over a
large area due to no knowledge of their potential variations. This
simplification affects the results from the critical acceleration
model. Table 2 list the relative uncertainty in geotechnical
parameters for the study area. Moreover, the absence of
unstable cells near the river might be caused by ignoring
potential groundwater pressures in the analysis.

USGS ShakeMap (map version 1, 2020-06-03) was used to
generate an ETL susceptibility map in the Langtang valley.
Two uncertainties linked with ShakeMap are (1) spatial
variability of PGA near stations and (2) uncertainty in the
ground-motion estimation relationships used to fill gaps
between stations (Wald et al., 2008). The ShakeMap of the
2015 Gorkha earthquake has an uncertainty grade “C” (USGS,
2021a), which corresponds to a moderate quality ShakeMap
(Wald et al., 2008). A middle range (“C”) grade corresponds
to a moderate magnitude earthquake suitably represented with
a point source location (Wald et al., 2008). A description of
the USGS ShakeMap for the Gorkha earthquake is given in
Table 3.

CONCLUSION

The purpose of this paper was to demonstrate the use of a DEM
and the critical acceleration method to quickly predict landslide
locations after an earthquake as an aid to rapid landslide
assessment and recovery after a devastating earthquake. The
methodology was assessed by comparing predictions of
unstable and stable cell locations with previously published
ETL inventories, as well as a map of landslide locations
obtained from the elevation difference between pre- and post-
earthquake cells in the DEMs.

A DEM for most places on the earth is now available (e.g.,
Shuttle Radar Topography Mission), and DEMs are expected to
improve quality over time with new satellite technologies. Thus, a
critical input needed to predict the ETL locations is readily
available.

Estimates of cohesion, friction angle, and unit weight of the
landslide materials needed for the analysis can be inferred
from geology maps (Hartmann and Moosdorf, 2012; USGS,
2021b) of the area of interest. For the case study presented
here, the geological information was very limited, and the
analysis only used two sets of values. However, in regions
where better geological mapping is available, the shear
strength parameters and bulk unit weight can vary
according to the geological maps, which would help fine-
tune the prediction of ETL locations.

For large earthquakes, PGA estimates are created by USGS
ShakeMap soon after their occurrence. The landslide
prediction method relies on comparing the critical
acceleration within a GIS environment with estimates PGA
for the raster cells over the area of interest. The PGA estimates
from ShakeMap will likely improve as this tool becomes better
calibrated, and this will contribute to better estimates of ETL
locations.

The critical acceleration model is sensitive to the assumed
landslide thickness when cohesion is present along the slip
surface. Furthermore, it appears that the landslide thicknesses
yielding the best match to observed stable and unstable cell
locations can be influenced by the DEM cell size. Further
research is needed to optimize the choice of a landslide
thickness for conducting a regional analysis to predict ETL
locations. This value will likely depend on the terrain and the
soil and bedrock geology in the area of interest. However, as a
starting point, evidence from past ETLs indicates that the typical
landslide thickness is often in the range of 2–4 m.

ETL susceptibility mapping can be achieved in earthquake-
prone mountainous regions because the basic input parameters
needed for a Newmark model analysis (e.g., terrain, geology, and
a probable PGA) are typically available. Therefore, applying a
critical acceleration model in a GIS environment can assist with
timely planning for disaster response after an earthquake. As
expected, the results will be subject to error due to the simplifying
assumptions used in the method. However, the results should still
provide a fast way to prioritize the investigation of potential
landslide areas after an earthquake. Furthermore, this approach
has potential use in early planning for ETL by mapping the

TABLE 3 | Metadata of USGS ShakeMap for the 2015 Gorkha earthquake.

Description Remarks

Map version 1
Date 2020-06-03 05:35:56 (UTCa)
Mean of map uncertainty 1.003
Empirical ShakeMap grade C
Flagged seismic station 4
Flagged DYFIb stations 26
Site correction applied GMPE native

aUniversal Time Coordinated.
bDid You Feel It.
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terrain susceptibility using readily available probabilistic
PGA maps.
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