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Carbon dioxide (CO2) injection has become an important technology to enhance oil
recovery in ultra-low permeability reservoirs. Compared with other CO2 flooding
technologies, CO2 miscible flooding has a better development effect, and the minimum
miscible pressure (MMP) is a key parameter to realize miscible flooding. Therefore, it is very
important to accurately predict the MMP. The prediction methods of MMP generally
include laboratory experiment method and theoretical calculation method. In this study, a
long-slim-tube displacement experiment method was used to determine the MMP in the
study area, and the experimental temperature and pressure were consistent with those
under reservoir conditions. The research results show that the recovery ratio increased
gradually with the increase of experimental pressure, but the increase amplitude gradually
decreased. According to the relation curve between crude oil recovery ratio and
experimental displacement pressure, when the experimental pressure was larger than
29.6 MPa, the recovery ratio did not increase significantly with the increase of
displacement pressure, which indicates that the interfacial tension between crude oil
and CO2 disappeared under this pressure and they reached a miscible state. It is
speculated that the MMP between crude oil and CO2 system in the study area
predicted by the long-slim-tube displacement experiment method was 29.6 MPa. The
results of this study help to realize miscible flooding in ultra-low permeability reservoirs and
thus enhance oil recovery.
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INTRODUCTION

Enhanced oil recovery (EOR) by carbon dioxide (CO2) injection
has been widely applied by the U.S., Russia, Canada, China, and
other countries (Mogensen, 2016; Azizkhani and Gandomkar,
2020). CO2 injection applies to most ultra-low permeability
oilfields. Compared to other gas injection technologies, CO2

injection has the merits of significantly enhanced oil recovery
and low cost, so it is widely used (Jalilov et al., 2017; Kolster et al.,
2017; Oschatz and Antonietti, 2018; Zhou et al., 2018; Chen et al.,
2020). At the same time, some CO2 can be stored underground by
CO2 flooding to reduce greenhouse gas emissions (Qin et al.,
2015; Ahmadi et al., 2017; Birdja et al., 2019; Zhang et al., 2020a).
In this regard, CO2 flooding has a broad application prospect in
the context of energy shortage, energy conservation, and emission
reduction (Guo et al., 2017; Berneti and Varaki, 2018; Mutailipu
et al., 2019; Gong et al., 2020). Laboratory and field tests have
shown that CO2 miscible flooding is superior to immiscible
flooding in enhancing oil recovery for light oil and middle
viscosity crude oil (Wu et al., 2015; Shao et al., 2020; Wu
et al., 2020), and the minimum miscible pressure (MMP) is a
key parameter to realize miscible flooding. Therefore, it is very
important to accurately predict the MMP.

The determination methods of MMP generally include
laboratory experiment method and theoretical calculation
method. Laboratory experiment methods cover long-slim-tube
displacement experiment method, interfacial tension method,
rising bubble apparatus (RBA) method, and vapor density
method. Theoretical calculation methods are mainly empirical
formula method, equation of state method, and simulation
calculation method (Zhang et al., 2008; Yang et al., 2019;
Zhang et al., 2020b; Kaufmann and Connelly, 2020).

Long-Slim-Tube Displacement Experiment
Method
This method is an effective one-dimensional flow displacement
experimental model. When the pore size of the porous medium is
very small, viscous fingering will be offset by lateral diffusion. The
repeated accurate results can be given by the slim-tube
experiment method. Ultimate recovery factors obtained from
the displacement experiments are plotted into a curve, and the
turning point in the curve is determined as the pressure at which
dynamic miscibility appears for the first time (Han et al., 1989;
Zuo et al., 1993; Yi, 2000; Li et al., 2002; Hao et al., 2005).

Interfacial Tension Method
From 1965 to 1989, Benham, Stalkup, Holm, Lake, and other
scholars believed according to their research results that when the
fluids mix at any ratio and reach miscibility, interface between
fluids will disappear, that is, the interfacial tension becomes zero.
When the interfacial tension under different gas components and
different pressures is determined by an interfacial tension tester,
and the interfacial tension is extrapolated as zero, the
corresponding pressure is the minimum miscible pressure
(MMP) (Zhang et al., 2006; Peng et al., 2007; Gunde et al.,
2010; Ghorbani et al., 2014; Li et al., 2016).

RBA Method
Determining the MMP with this method was proposed by
Christiansen and Kim in 1986. This method has the
characteristics of short determination period and relatively low
instrument requirements, allowing direct observation of the
miscible process; the MMP is determined based on the shape
and movement distance of the bubble, rather than the pressure
associated with recovery ratio (Elsharkawy et al., 1996; Dong
et al., 2001).

Vapor Density Method
This is a dynamic test method proposed by Harmon and Grigg in
1988 (Richard and Reid, 1988). It has the characteristics of short
time and low cost. It directly determines the relationship between
the density and pressure of injected gas-rich phase and confirms
the MMP of miscible gas and crude oil using the dissolution
characteristics of gas and oil.

Empirical Formula Method
It is a simple and fast theoretical method for calculation and
often used to predict the MMP. Scholars have proposed many
empirical formulas according to different applicable
conditions (Yuan et al., 2005; Ye, 2009; Li et al., 2012),
including MMP (pmm) correlation (Ye, 2009), National
Petroleum Council (NPC) method (Ye, 2009), Holm and
Josendal correlation (Li et al., 2012), Mungan correlation
(Yuan et al., 2005), Glaso empirical formula (Glaso, 1985),
Johnson and Pollin (JP) empirical formula (Johnson and
Pollin, 1981), the Petroleum Recovery Institute empirical
formula (Johnson and Pollin, 1981), Cronquist empirical
formula (Cronquist, 1978), Yellig–Metcalfe correlation
(Yellig and Metcalfe, 1980), empirical formula by ORR and
SILVA (1987), empirical formula by Alston et al. (1985), and
so on. The empirical formula method is simple and fast in
calculation, but because the parameters examined are
different and have their respective applicable scope, there
are differences in prediction accuracy. In the practical
application, the appropriate formula should be selected
according to the actual situation of the reservoir.

Equation of State Method
This is a numerical method based on the system phase
equilibrium theory and the equation of state. By studying the
relationship between phase behavior and miscible function of the
CO2–crude oil system, we can get the bubble point value of the
system and then obtain the MMP value of the system (Guo et al.,
1999; Sun et al., 2006; Ye et al., 2012; Fazlali et al., 2013). The
equations of state for calculating the MMP include
Peng–Robinson equation of state (PR-EOS) (Guo et al., 1999;
Ye et al., 2012), Nasrifar–Moshfeghian equation of state (NM-
EOS) (Fazlali et al., 2013) andmodified statistical associating fluid
theory equation of state (mSSAFT-EOS) (Sun et al., 2006). The
MMP can be calculated quickly and accurately with the equation
of state method, but there is no clear judgment criterion for the
miscible function, so it needs to be considered comprehensively
according to the actual reservoir conditions and fluid
characteristics in calculation.
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Simulation Calculation Method
The method includes phase behavior simulation calculation method
and artificial intelligence algorithm (Chen, 2016). In the phase
behavior simulation calculation method, the effect of CO2 gas
injected into the reservoir on crude oil properties is investigated by
the phase behavior simulation technology, then the parameters of
equation of state are adjusted by fitting PVT experimental data to
establish a phase statemodel that conforms to the realfluid, andfinally
the MMP of oil and gas system is calculated by simulating the
multistage contact experiment process. Artificial intelligence
algorithm is a new MMP predicting method in recent years,
which mainly includes artificial neural network (ANN) method,
genetic algorithm (GA), particle swarm optimization (PSO), ant
colony algorithm (ACA), simulated annealing algorithm (SAA),
least-squares support vector machine (LSSVM) (Shokrollahi et al.,
2013; Alomair and Iqbal, 2014; Rostami et al., 2018), and gene
expression programming (GEP) (Tatar et al., 2013; Kamari et al.,
2015; Tian et al., 2020). Compared with other numerical methods, the
artificial intelligence method has the unique ability to identify the
implicit linear or nonlinear relationship between input variables and
target output values and a large number of parallel operations; it has a
high prediction accuracy and is capable of processing large amounts of
data in parallel. However, as the prediction process is realized by
multiple conversion calculations and programming of input
parameters, the internal correlation between each input parameter
and MMP cannot be intuitively observed.

Among all the prediction methods, the long-slim-tube
displacement experiment method has been widely used and
recognized by researchers and scholars (Han et al., 1989; Zuo
et al., 1993; Yi, 2000; Li et al., 2002; Hao et al., 2005; Zhang et al.,
2008; Ekundayo and Ghedan, 2013; Zhang and Gu, 2015; Yang et al.,
2019). The long-slim-tube displacement experiment can be operated
repeatedly. Compared with other methods, this method is more
aligned with the characteristics of oil and gas displacement process
in the porous medium of crude oil reservoir. Moreover, it can greatly
eliminate the influence of unfavorable factors such as heterogeneity,
mobility ratio, viscous fingering, and gravity separation of lithology.
Therefore, the long-slim-tube displacement experiment method was
chosen to determine the MMP in the study area.

DETERMINATION OF MINIMUM MISCIBLE
PRESSURE

Experimental Material
The crude oil used in the experiment was the simulated crude oil
prepared with the ground crude oil and natural gas in the study

area according to formation conditions and fluid characteristics.
The experiment temperature was 108.5°C. When the temperature
and pressure of the formation were 108.5°C and 23.8 MPa, the
viscosity of crude oil was 1.88 mPa s. The molecular weight of C7+

in crude oil composition was 347.29 g/mol, and the density of C7+

was 0.8971 g/cm3. The composition data of crude oil components
are shown in Table 1. The purity of CO2 gas was 99.9%, and its
properties were exactly the same as the gas injected in the
study area.

Preparation of the Formation Oil Sample
The experimental formation oil was prepared with ground oil and
natural gas. Preparation process: pour a certain amount of ground
oil into the high pressure physical instrument PVT barrel, seal it
and heat it up to the formation temperature, then add the gas into
the PVT barrel at the saturation pressure, stir and increase
pressure to the formation pressure, and measure the saturation
pressure of crude oil and the dissolved gas–oil ratio. If the
saturation pressure and the actual formation oil saturation
pressure are not equal, we should adjust the amount of
dissolved gas in the PVT barrel until the saturation pressure
and gas–oil ratio measured are equal to that of the formation oil
(Li, 2006; Lewis, 2008; Abdalla et al., 2014; Adekunle, 2014).

Experimental Apparatus
The experimental apparatus mainly included (Yang et al., 2015;
Han et al., 2016; Fathinasab et al., 2018) the piston container of
simulated crude oil, the piston container of CO2, the piston
container of formation water, slim tube filled with quartz sand
particles, back pressure control valve, gas flowmeter, liquid
flowmeter, etc. The sketch of experimental apparatus and flow
chart are shown in Figure 1.

The injection pump was ISCO full automatic pump, with
working pressure between 0 and 70 MPa and accuracy of 0.01 ml.
The working pressure range of back pressure control valve was
−70 MPa. The long slim tube was a one-dimensional artificial
porous medium spiral stainless steel coil tightly filled with
approximately 200 meshes of pure quartz sand. The accuracy
of gas flowmeter was 1 ml. The highest temperature of thermostat
was 200°C. The experimental parameters are shown in Table 2.

Experimental Procedure
The experiment was carried out in accordance with the petroleum
and natural gas industry standard of the People’s Republic of
China (Measurement Method For MinimumMiscibility Pressure
By Slim Tube Test, 2016) (SY/T 6573-2016).

(1) Experiment preparation

Temperature setting: turn on the power switch of the
thermostat to heat up. When the temperature is close to the
formation temperature, start the constant temperature controller.
After 3 h, the temperature can be completely maintained at the
predetermined value.

Tube cleaning: saturate the slim tube model adequately with
petroleum ether, and use high-pressure air to dry the
petroleum ether.

TABLE 1 | The composition data of crude oil components.

Component Mole fraction (%) Component Mole fraction (%)

CO2 0.025 n-C4 1.220
N2 0.971 i-C5 0.166
C1 28.739 n-C5 1.417
C2 1.035 C6 2.318
C3 0.809 C7+ 63.178
i-C4 0.122
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CO2 introduction: open the pump and push the piston back to the
top of the piston container to vent the gas in the container; inject the
displacing gas CO2 into the piston container and close the valve.

Vacuumize the long slim tube, then fill the sand filling slim
tube with formation water, and calculate the porosity.

Clean the formation water in the sand filling slim tube with
toluene, and dry it in a thermostat to evaporate the toluene.

Fill the sand filling slim tube with simulated oil, inject the
simulated oil into the slim tube model with the ISCO pump,
and stop injection when 1.5 PV simulated oil was injected.
Then, the injection and output of simulated oil were
calculated, and the saturated oil injected into the tube was
determined according to the volume difference, which is the
end of the preparation process. Get ready for a displacement
experiment.

2) Start the ISCO constant-pressure and constant-speed pump
and increase the pressure of gas in the piston container to be
1∼3 MPa lower than the displacement pressure.

3) Raise the back pressure to the predetermined displacement
pressure with a manual pump.

4) Open the pump at constant speed to inject CO2 for
displacement, open the slim tube outlet valve, and adjust

the gas pressure to make it equal to or slightly higher than
the displacement pressure.

5) In the process of displacement, determine oil production, gas
volume, and pump reading regularly as required and check oil
sample saturation. When the cumulative volume injected into
the pump is greater than 1.2 PV, stop the displacement and
calculate the recovery ratio at this pressure.

6) At the end of the displacement process, start the cleaning
process, inject the petroleum ether directly injected into the
slim tube model, and keep the appropriate back pressure.
Control the flow rate of petroleum ether in the slim tube
properly, so as not to affect the cleaning effect. Close the outlet
for 1–2 h, allow petroleum ether to fully contact with residual
oil under high pressure dissolve residual oil in petroleum
ether, and release it from the outlet. Repeat several times and
discharge the mixture of petroleum ether and residual oil.
When the components of the mixture and pure petroleum
ether were basically the same, the residual oil in the model was
determined to have been completely removed and fully
saturated by petroleum ether. Then, high-pressure air was
injected from the inlet to blow the remaining petroleum ether
in the slim tube into the oil–gas separator, and dry the tube for
next experiment.

7) Follow the abovementioned steps for displacement at the next
pressure point.

In general, theMMP of a gas can be analyzed bymeasuring the
recovery ratio at more than five pressure points. The
experimental back pressures in experiment were 20, 25, 30, 35,
40, and 45 MPa. Then, the MMP was calculated according to the
relationship between the recovery ratio and the experimental
displacement pressure.

Experimental Result
Through the above experimental process, the data and relation
curve of recovery ratio and CO2 injection amount at different
experimental pressures are shown in Table 3 and Figure 2.

FIGURE 1 | The sketch of long-slim-tube displacement experimental apparatus.

TABLE 2 | Basic parameters of the long-slim-tube displacement
experimental model.

Main parameters Numerical values

Length (cm) 2000
Maximum temperature (°C) 200
Maximum pressure (MPa) 70
Inner diameter (cm) 0.387
Outer diameter (cm) 0.637
Porosity (%) 43.26
Permeability measured with gas (mD) 5,970
Filler (pure quartz sand) (mesh) 185–230
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As seen from Table 3 and Figure 2, the recovery ratio
increased with the increase of CO2 injection amount at
different experimental pressures. When the experimental
pressure was 20 and 25 MPa, the recovery ratio increased
slightly after the CO2 injection amount was greater than
1.0 PV. When the experimental pressure was 30, 35, 35, and
40 MPa, the recovery ratio increased insignificantly after the CO2

injection amount was greater than 0.9 PV.

According to the experimental results, the recovery ratio by
CO2 flooding under different experimental pressures can be
obtained (Table 4).

The generally accepted criterion for miscible flooding in
slim tube displacement experiment is that the recovery ratio
is greater than 90% when the injection volume is 1.2 times the
pore volume, and the displacement efficiency does not
increase significantly with the increase of displacement
pressure (Choubineh et al., 2016; KarimanMoghaddam and
SaeediDehaghani, 2017; Ma et al., 2018; Ghorbani et al., 2019;
Li et al., 2019; Yu et al., 2020). In Table 4, when the injected
CO2 volume was 1.2 PV, the recovery ratio increased with
increasing experimental pressure. When the experimental
pressure was 20 and 25 MPa, the corresponding recovery
ratio was lower than 90%, indicating that the CO2 flooding
under these pressures was immiscible; when the experimental
pressure was above 30 MPa, the corresponding recovery ratio
was above 90%, indicating that the miscible flooding can be
formed by CO2 flooding under the pressure of more than
30 MPa. According to the experimental results in Table 4, the
relation curve between crude oil recovery ratio and
experimental pressure when CO2 of 1.2 PV was injected
was plotted (Figure 3). It can be seen from Figure 3 that
the immiscible flooding stage and miscible flooding stage
intersected at 29.6 MPa. When the experimental pressure was
higher than 29.6 MPa, the recovery ratio did not increase
significantly, which indicates that the interfacial tension
between crude oil and CO2 disappeared under this
pressure and they reached a miscible state. Therefore, the
MMP between crude oil and CO2 system in the study area

predicted by the long slim tube displacement experiment
method was 29.6 MPa.

CONCLUSION

The crude oil used in the experiment was the simulated crude
oil prepared with the ground crude oil and natural gas in the
study area according to the formation conditions and fluid
characteristics. The experiment was carried out in accordance
with the petroleum and natural gas industry standard of the
People’s Republic of China “Measurement Method for
Minimum Miscible Pressure by Slim Tube Test” (SY/T
6573-2016). The experimental results show the recovery
ratio increased with the increase of CO2 injection amount
at different experimental pressures. When the experimental
pressure was 20 and 25 MPa, the recovery ratio increased
slightly after the CO2 injection amount was greater than
1.0 PV. When the experimental pressure was 30, 35, 35,
and 40 MPa, the recovery ratio increased insignificantly
after the CO2 injection amount was greater than 0.9 PV.
When the experimental pressure was 20 and 25 MPa, the
corresponding recovery ratio was lower than 90%,
indicating that the CO2 flooding under these pressures was
immiscible; when the experimental pressure was above
30 MPa, the corresponding recovery ratio was above 90%,
indicating that the miscible flooding can be formed by CO2

flooding under the pressure of more than 30 MPa. The relation
curve between recovery ratio and experimental pressure was
plotted, and it shows that the oil recovery at CO2 injection of
1.2 PV increased with the increase of experimental pressure,
and the immiscible flooding stage and miscible flooding stage
intersected at 29.6 MPa. When the experimental pressure was
higher than 29.6 MPa, the oil recovery did not increase
significantly. Therefore, the MMP between crude oil and
CO2 system in the study area determined by the long-slim-
tube displacement experiment was 29.6 MPa. The results show
that miscible flooding can be formed in the study area when
the reservoir pressure is greater than 29.6 MPa; otherwise, it is

TABLE 3 | The long-slim-tube displacement experimental data under different pressures.

CO2 injection
amount (PV)

Recovery (%)

20 MPa 25 MPa 30 MPa 35 MPa 40 MPa 45 MPa

0 0 0 0 0 0 0
0.13 6.33 7.22 8.90 7.89 8.02 9.30
0.25 15.11 17.23 19.10 20.58 20.91 21.50
0.39 24.51 27.96 30.92 32.93 33.50 35.00
0.51 33.68 38.42 43.10 46.00 47.60 51.20
0.64 42.92 48.95 59.30 61.80 63.00 66.70
0.77 52.19 59.53 73.20 79.20 80.50 80.50
0.9 61.26 69.88 83.70 86.00 88.20 89.00
1.04 66.74 76.50 88.00 89.40 90.20 91.20
1.14 69.30 79.00 89.40 90.30 91.10 91.70
1.2 69.90 80.35 90.15 90.50 91.22 91.90
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FIGURE 2 | Relationship diagram between recovery ratio and CO2 injection amount under different pressures.

TABLE 4 | The long-slim-tube displacement experiment results of crude oil for injecting CO2.

Experimental temperature (°C) Experimental pressure (MPa) Recovery ratio at 1.2 PV
(%)

Miscible evaluation

108.5 20 69.90 Immiscible
108.5 25 80.35 Immiscible
108.5 30 90.15 Miscible
108.5 35 90.50 Miscible
108.5 40 91.22 Miscible
108.5 45 91.90 Miscible
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impossible to achieve miscible flooding. The research results
are applicable to oilfields with similar crude oil properties and
CO2 properties.
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