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Blue Maps aims to exploit the versatility of an ensemble data assimilation system to deliver
gridded estimates of ocean temperature, salinity, and sea-level with the accuracy of an
observation-based product. Weekly maps of ocean properties are produced on a 1/10°,
near-global grid by combining Argo profiles and satellite observations using ensemble
optimal interpolation (EnOI). EnOI is traditionally applied to ocean models for ocean
forecasting or reanalysis, and usually uses an ensemble comprised of anomalies for
only one spatiotemporal scale (e.g., mesoscale). Here, we implement EnOI using an
ensemble that includes anomalies for multiple space- and time-scales: mesoscale,
intraseasonal, seasonal, and interannual. The system produces high-quality analyses
that produce mis-fits to observations that compare well to other observation-based
products and ocean reanalyses. The accuracy of Blue Maps analyses is assessed by
comparing background fields and analyses to observations, before and after each analysis
is calculated. Blue Maps produces analyses of sea-level with accuracy of about 4 cm; and
analyses of upper-ocean (deep) temperature and salinity with accuracy of about 0.45
(0.15) degrees and 0.1 (0.015) practical salinity units, respectively. We show that the
system benefits from a diversity of ensemble members with multiple scales, with different
types of ensemble members weighted accordingly in different dynamical regions.

Keywords: ocean observations, Argo, satellite observations, ensemble data assimilation, ocean properties, ocean
reanalysis

1 INTRODUCTION

There are many gridded products that use Argo and other data to produce global estimates of
temperature and salinity at different depths1. These products can be grouped under two broad
categories: observation-based and model-based. Most observation-based products are coarse-
resolution (e.g., Ridgway et al., 2002; Roemmich and Gilson, 2009; Guinehut et al., 2012;
Locarnini et al., 2013; Schmidtko et al., 2013; Zweng et al., 2013, with horizontal grid spacing of
0.5–1°). Model-based products, here restricted to ocean reanalyses that assimilate observations into
an ocean general circulation model, include systems with coarse-resolution (e.g., Kohl and Stammer,
2007; Yin et al., 2011; Balmaseda et al., 2012; Köhl, 2015), some that are eddy-permitting (e.g., Carton
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and Giese, 2006; Carton and Giese, 2008; Ferry et al., 2007), and
others that can be regarded as eddy-resolving (e.g., Oke et al.,
2005; Oke et al., 2013c; Artana et al., 2019).

An important difference between all of the observation-based
products is their assumptions about the background error
covariance. All systems use some variant of objective analysis,
and they all represent the influence of topography and land on the
background error covariance in different ways. Some
observation-based products are climatologies, including a
mean state and seasonal cycle (e.g., Ridgway et al., 2002;
Locarnini et al., 2013; Zweng et al., 2013), and others include
monthly (or weekly) fields and span many years (e.g., Roemmich
and Gilson, 2009; Guinehut et al., 2012; Good et al., 2013;
Schmidtko et al., 2013; Ishii et al., 2017). Most observation-
based products perform calculations on pressure surfaces (e.g.,
Roemmich and Gilson, 2009), but a few operate on isopycnal
surfaces (e.g., Schmidtko et al., 2013). Most observation-based
products use only Argo data (e.g., Roemmich and Gilson, 2009),
or Argo data plus other in situ data (e.g., Ridgway et al., 2002).
Systems that use both in situ and satellite data are less
common—Guinehut et al. (2012) is a notable exception. A
compelling feature of observation-based products is that they
usually “fit” observations quite well. But a possible limitation of
this group of products is that most are coarse-resolution, and
most don’t exploit all of the available observations (most don’t use
satellite data; though again Guinehut et al. (2012), is an
exception).

Like observation-based products, perhaps the most
important difference between the model-based products is
also how each system estimates the background error
covariance. Some systems use objective analysis (e.g.,
Carton and Giese, 2008), some use variational data
assimilation (e.g., Kohl and Stammer, 2007; Köhl, 2015),
and some use ensemble data assimilation (e.g., Oke et al.,
2013c; Artana et al., 2019). A compelling feature of model-
based products is that virtually all systems combine Argo data
with other in situ data and satellite data, and all produce
gridded estimates of all variables—even variables that are not
systematically observed, such as velocity. Moreover, model-
based products yield estimates that are somewhat dynamically-
consistent, including the influence of topography, land, surface
forcing, and ocean dynamics. Most systems are not precisely
dynamically-consistent, since most do not conserve properties
during the assimilation step, when the model fields are
adjusted to better match observations. However, on the
down-side, model-based products often “fit” observations
relatively poorly (Oke et al., 2012; Balmaseda et al., 2015;
Ryan et al., 2015; Shi et al., 2017), and many systems are
hampered by model-bias (e.g., Oke et al., 2013c).

Blue Maps version 1.0, presented here, is intended to exploit
the strengths of both groups of systems, delivering a product with
the accuracy of an observation-based product, with the
comprehensive ocean representation of a model-based system.
We show here that Blue Maps produces gridded estimates with
greater accuracy than model-based products, and with more
versatility than observation-based products.

This paper is organised with details of the analysis system
presented in Section 2, results in Section 3, an analysis and
discussion in Section 4, and conclusions in Section 5.

2 ANALYSIS SYSTEM

The name, Blue Maps, is intended to acknowledge the origin of
the data assimilation system used here—developed under the
Bluelink Partnership (Schiller et al., 2020); acknowledge the
statistical category for the method—a Best Linear Unbiased
Estimate (BLUE); and acknowledge that the tool is intended
for deep-water applications (Blue water). The method used to
produce analyses for Blue Maps is Ensemble Optimal
Interpolation (EnOI; Oke, 2002; Evensen, 2003), and the code-
base is EnKF-C (Sakov, 2014), implemented with the EnOI
option. Variants of EnOI are widely used to perform ocean
reanalyses and forecasts on global scales (e.g., Oke et al., 2005;
Brassington et al., 2007; Oke et al., 2013c; Lellouche et al., 2013;
Lellouche et al., 2018; Artana et al., 2019) and regional scales (e.g.,
Counillon and Bertino, 2009; Xie and Zhu, 2010; Oke et al., 2013a;
Sakov and Sandery, 2015). Arguably the most important elements
of any configuration of EnOI, or an Ensemble Kalman Filter (the
“optimal,” but more expensive, “parent” of EnOI) are the
ensemble construction, the ensemble size, and the localisation
length-scales. To understand this, consider the simplified analysis
equation:

wa � wb + winc (1)

� wb +∑
i�1

n

ci(x, y).Ai(x, y, z), (2)

where w is the state vector (here, this is temperature, salinity, and
sea-level on a 1/10° grid), A is the ensemble of model anomalies, c
is the weights of the ensemble members, superscripts a, b, and inc
denote analysis, background, and increment fields; subscripts i
denote the ith ensemble member; n is the ensemble size; and x, y,
and z are dimensions in space (z is the vertical dimension).

To understand the importance of the ensemble construction,
recognise that the increments of the state winc, are constructed by
projecting the background innovations (the differences between
the observations and the background field) onto the ensemble.
Projections are made for each horizontal grid point, using only
observations that fall within the localisation radius. These
projections yield two-dimensional maps of ensemble weights c,
for each ensemble member (note that these are two-dimensional
because the system uses horizontal localisation, and not vertical
localisation). From Eq. 2 it is clear that the ensemble is
important—determining the features that can be represented
in the increment field. If some feature is absent in the
ensemble—say, for example, there are no ensemble members
with anomalies associated with an eddy in some particular region,
increments resembling anomalies associated with an eddy cannot
be sensibly constructed with a linear combination of those
members for that region. The ensemble should include
anomalies that reflect the adjustments needed to bring the
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background field into closer agreement with the assimilated
observations.

To understand the importance of the localisation radius, note
again that for the projections at each horizontal grid point, only
observations that fall within the localisation radius are used, and
that the influence of an observation on that projection is reduced
with distance from that grid point. If the localisation radius is too
short—perhaps shorter than the typical distance between
observations—then there may be insufficient observations to
reliably perform the projection for a given grid point. This can
result in increments with spatial scales that are not resolved by the
observing system, effectively introducing noise to the analyses.
Conversely, if the localisation length-scale is too long, then there
may be too few degrees of freedom (depending on ensemble
size—see below) for each projection to “fit” the observations (e.g.,
Oke et al., 2007). For ensemble-based applications, the
localisation function is effectively an upper-bound on the
assumed background error covariance. The effective length-
scales in the ensemble-based covariance can be shorter, but
not longer, than the localisation function.

To further understand the importance of the ensemble size,
considering Eq. 2. If the ensemble is too small to “fit” the
background innovations, then the quality of the analyses will
be poor, yielding analysis innovations (differences between the
observations and analysis fields) that are large. The assimilation
process is somewhat analogous to the deconstruction of a time-
series into Fourier components; or the approximation of some
field by projecting onto a set of basis functions, using a least-
square fit. Extending the analogy of the Fourier transformation, if
the full spectrum is permitted, then all the details of an unbiased
time-series can be represented. But if only a few Fourier
components are permitted, then the deconstruction will deliver
an approximation. If the Fourier components are chosen
unwisely, excluding some dominant frequencies for example,
then the deconstructed signal may be a very poor
approximation of the original time-series. In the same way, to
allow for an accurate assimilation, the ensemble must have a
sufficient number and diversity of anomaly fields to permit an
accurate projection of the background innovations.

Guided by the understanding outlined above, for any
application, it is preferable to use the largest possible ensemble
size. This is usually limited by available computational resources
(e.g., Keppenne and Rienecker, 2003). If the ensemble is too small,
then a shorter localisation radius is needed, to eliminate the
impacts of spurious ensemble-based covariances that will degrade
the analyses (e.g., Oke et al., 2007). If the localisation radius is too
large, then there may be insufficient degrees of freedom for each
projection, and the analyses will not “fit” the observations with
“appropriate accuracy.” By “appropriate accuracy,” we mean that
analyses “fit” the observations according to their assumed errors
(i.e., not a perfect fit, but a fit that is consistent with the assumed
observation and background field errors—the target for any Best
Linear Unbiased Estimate; e.g., Henderson, 1975). These factors
require a trade-off, and some tuning.

What’s the status-quo for the ocean data assimilation
community? It’s typical for EnOI- or EnKF-applications for
ocean reanalyses or forecasts to use an ensemble size of

100–200 (e.g., Xie and Zhu, 2010; Fu et al., 2011; Sakov et al.,
2012; Oke et al., 2013c; Sakov and Sandery, 2015). By some
reports, an ensemble of greater than 100 is regarded as a large
ensemble (e.g., Ngodock et al., 2006, 2020). Moreover, such
applications typically use localisation length-scales of
100–300 km (e.g., Fu et al., 2011; Sakov et al., 2012; Oke et al.,
2013c; Sakov and Sandery, 2015; Lellouche et al., 2018; Artana
et al., 2019). Importantly, most of the quoted-localisation length-
scales use a quasi-Gaussian function with compact support
(Gaspari and Cohn, 1999). This function reduces to zero over
the quoted length-scale; and so the e-folding scale for these
applications is typically about one third of the stated length-
scale. These systems all assimilate in situ data and satellite data. In
situ data are dominated by Argo, with nominally 300 km between
profiles, and satellite data includes along-track altimeter data,
with typically 100 km between tracks. For most cases, the
e-folding length-scale of the localisation length-scales—and
hence the background error covariance—is shorter than the
nominal resolution of these key components of the global
ocean observing system. This seems to be a feature of ocean
reanalysis and forecasts systems that has long been over-looked
by the ocean data assimilation community.

For contrast to the typical configuration for ocean reanalyses,
summarised above, consider the key elements of a widely-used
observation-based product. Roemmich and Gilson (2009)
describe an analysis system that maps Argo data to construct
gridded temperature and salinity on a 1°-resolution grid. They
perform objective analysis on different pressure levels
independently, and estimate the background error covariance
using a correlation function that is the sum of two Gaussian
functions—one with an e-folding length-scale of 140 km, and one
with an e-folding scale of 1,111 km. Furthermore, Roemmich and
Gilson (2009) elongate the zonal length-scales at low latitudes.
Their choice of background error correlation was reportedly
guided by characteristics of altimetric measurements (Zang
and Wunsch, 2001). This set-up uses much longer length-
scales than most model-based products, and projects
observations onto a coarser grid.

For Blue Maps, we calculate weekly analyses of temperature,
salinity, and sea-level anomaly (SLA) by assimilating
observations into a background field that is updated using
damped persistence. The horizontal grid is 1/10°-resolution,
and the vertical grid increases with depth, from 5 m spacing at
the surface to 150 m at 1,500 m depth. Starting with climatology,
using the 2013 version of the World Ocean Atlas (WOA13;
Zweng et al., 2013; Locarnini et al., 2013), consecutive analyses
are calculated:

wa
j � wb

j + K(y −Hwb
j ), (3)

where

wb
j � 0.8wa

j−1 + 0.2wc
j , (4)

where K is the gain; y is a vector of observations;H is an operator
that interpolates from state-space to observation-space; the
superscript c denotes climatology (for time of year), and the
subscript j denotes the time index. The gain matrix K depends on
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the assumed ensemble-based background error covariance and
the assumed observation error covariance (here assumed to be
diagonal, with diagonal elements given the values of assumed
observation error variance). EnKF-C calculates analyses using a
localisation method called local analysis (Evensen, 2003; Sakov
and Bertino, 2011; Sakov, 2014), using a localisation function that
is quasi-Gaussian (Gaspari and Cohn, 1999). The weighted sum
of the analysis field and climatology, in Eq. 4, is equivalent to
damped persistence, with an e-folding timescale of approximately
14 days.

Observations assimilated into Blue Maps include profiles of
temperature and salinity, satellite Sea-Surface Temperature
(SST), and along-track SLA. The only in situ data used here is
Argo data (Roemmich et al., 2019), sourced from the Argo Global
Data Acquisition Centres, and include only data with Quality
Control flags of one and two (meaning data are good, or probably
good; Wong et al., 2020). The assumed standard deviation of the
observation error for Argo data is 0.05°C for temperature and 0.05
practical salinity units (psu) for salinity. The instrument error of
Argo temperature data is 0.002°C and for salinity is 0.01°psu
(Wong et al., 2020), so the larger errors assumed here include a
modest estimate for the representation error (e.g., Oke and Sakov,
2008). SLA data are sourced from the Radar Altimeter Database
System (RADS Ver. 2, Scharroo et al., 2013), and include
corrections for astronomical tides and inverse barometer
effects. The assumed standard deviation of the observation
error for SLA is 3 cm for Jason-2 and Jason-3, 4 cm for Saral,
5 cm for Cryosat2, and 10 cm for Sentinal-3A. SST data includes
only 9 km AVHRR data (May et al., 1998), sourced from the
Australian Bureau of Meteorology (Dataset accessed 2015-01-01
to 2018-12-31 from: Naval Oceanographic Office, 2014a; Naval
Oceanographic Office, 2014b; Naval Oceanographic Office,
2014c; Naval Oceanographic Office, 2014d). The assumed
standard deviation of the observation error for AVHRR SST is
0.37–0.47°C (Cayula et al., 2004). These observation error
estimates are used to construct the diagonal elements of the
observation error covariance matrix, used in Eq. 3 to construct
the gain matrix.

For any given application of EnOI, it is not always clear how to
best construct the ensemble. But given the importance of this
element of the data assimilation system, careful thought is
warranted. If it is obvious that the errors of the background
field will most likely align with a certain spatial- and temporal-
scale, then this is likely to be a good starting point. For example,
for an eddy-resolving ocean reanalysis, wemight expect the errors
of the background field to be mostly associated with eddies—and
specifically the formation, evolution, properties, and locations of
eddies. These elements of an eddy-resolving ocean model are
mostly chaotic, and so particular events are not well predicted by
a model without data assimilation. For an ocean reanalysis, we
might also expect that the model is likely to realistically reproduce
variability on longer time-scales, without requiring much
constrain from observations. For example, the seasonal cycle
in a free-running model is usually realistic, as are anomalies
associated with interannual variability (e.g., Oke et al., 2013b; Kiss
et al., 2019). Perhaps anomalies on these scales needn’t be
included in an ensemble for an ocean reanalysis. For the series

of Bluelink ReANalysis (BRAN) experiments, we were guided by
this principle, and used an ensemble that represented anomalies
associated with the mesoscale (e.g., Oke et al., 2008; Oke et al.,
2013c). In the most recent version of BRAN, Chamberlain et al.
(2021a; 2021b) demonstrated significant improvements using a
two-step, multiscale assimilation approach. They found that by
using an ensemble of interannual anomalies, they eliminated the
model bias that plagued early versions of BRAN (e.g., Oke et al.,
2013c). Chamberlain et al. (2021a; 2021b) also showed the
benefits of using longer localisation length-scales and a larger
ensemble. The configuration of EnOI for Blue Maps has
benefitted from lessons learned by Chamberlain et al. (2021a;
2021b).

Unlike an ocean reanalysis, for Blue Maps, there is no
underpinning model to represent a seasonal cycle, or
interannual variability in response to surface forcing. In this
case, there are only two ways that a seasonal cycle can be
reproduced in the analyses: by the damping to climatology
(Eq. 4), or by the assimilation of observations (Eqs. 1–3).
Similarly for intraseasonal and interannual variability, these
signals can only be introduced into the analyses by the
assimilation of observations. We have therefore taken a
different approach to the ensemble for Blue Maps (compared
to BRAN), and we explore the performance of the system with
several different ensembles. Specifically, we compare the
performance of Blue Maps for six different configurations
(Table 1). Each ensemble is constructed from a 35 years run
(1979–2014) of the version three of the Ocean Forecasting
Australian Model (OFAM3, Oke et al., 2013b) forced with
surface fluxes from ERA-Interim (Dee and Uppala, 2009). One
configuration is similar to early versions of BRAN (e.g., Oke et al.,
2008; Oke et al., 2013c; Oke et al., 2018), using a 120-member
ensemble that includes anomalies that reflect high-frequency and
short-scale (i.e., the short mesoscale) anomalies—hereafter
experiment HFSS (High Frequency, Short Scale). Three
configurations use a 120-member ensemble, with anomalies
that include High-Frequency Long-Scales (HFLS; including the
large mesoscale, intraseasonal, and seasonal scales), Low-
Frequency Short-Scales (LFSS; including the large mesoscale
and interannual scales), and Low-Frequency Long-Scales
(LFLS; including large mesoscale, seasonal, and interannual
scales) anomalies. Members in each ensemble are constructed
by calculating anomalies for different spatiotemporal scales. The
specific details are summarised in Table 1. Ensemble members
for HFLS, for example, are calculated by differencing 3 month
averages from 13-month averages (Table 1), with four members
generated from each year for the last 30 years of a 35-year free
model run, with no data assimilation. One configuration that
combines all three ensembles with the longer time- and space-
scales (LFSS, HFLS, LFLS—child ensembles)—yielding a 360-
member multi-scale ensemble, hereafter MS360 (parent
ensemble). To help determine the relative impacts of ensemble
size (360 vs 120) and multi-scales, we also include an experiment
with 40 members from the HFLS, LFSS, and LFLS
ensembles—yielding a 120-member multi-scale ensemble
(MS120). This approach of including multiple space- and
time-scales for an EnOI system is similar to the configuration
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described by Yu et al. (2019), and is similar to the multi-model
EnOI approach described by Cheng and Zhu (2016), Cheng et al.
(2017). We consider some characteristics of these
ensembles below.

The standard deviation of the salinity anomalies at 250 m
depth are shown for each 120-member ensemble in Figure 1. This
field quantifies the assumed background field error for the EnOI
system. The most salient aspect of this comparison is the
difference in amplitude of the standard deviations, with much
larger values for LFSS and LFLS, compared to HFSS and HFLS.
Both HFSS and HFLS also include vast regions of very small
values. In those regions of very small assumed background field

errors, the assimilation of salinity observations may have only a
small impact. In the limit that we assume the background field
error is zero—assimilation of data will have no impact at all
(because we assume the background field is perfect). The
average value for the HFSS, LFSS, HFLS, and LFLS ensemble
for salinity at 250 m depth is 0.02, 0.06, 0.03, and 0.06 psu
respectively. Because LFSS and LFLS assume a larger
background field error, using the same observation error
estimates, the experiments with these ensembles should (in
theory) “fit” the observations more closely than the
experiments using the HFSS and HFLS ensemble. In practice,
as discussed above, this also depends on whether the anomalies

TABLE 1 | Summary of experiments, including the name of each experiment/ensemble, descriptors of the dominant spatiotemporal scales represented, details of the
ensemble construction, ensemble size (n)m and localosation radius (LOCRAD, in km). Under ensemble construction, d, m, and y refer to days, months, and years; and
Seas is seasonal climatology; and describe how ensemble members are constructed. For example, 1 d–2 m, means 1-day minus 2 month centered-averages; 3–13 m,
means 3 month centered-average minus a 13-month centered-average. For each 120-member ensemble, four members are calculated for each year, using fields from
30 years of a 35-year model run. For MS120, 40 members from each of the child ensembles (HFLS, LFSS, and LFLS) are used. The localisation radius refers to the
distance over which the localising function reaches zero.

Experiment/Ensemble Dominant Scales Ensemble construction n Locrad (km)

HFSS Short mesoscale 1 d–2 m 120 300
LFSS Mesoscale + interannual 1 m–seas 120 900
HFLS Mesoscale + intraseasonal + seasonal 3–13 m 120 900
LFLS Mesoscale + interannual + seasonal 3 m–25 y 120 900
MS120 Multi-scale [HFLS40 LFSS40 LFLS40] 120 900
MS360 Multi-scale [HFLS LFSS LFLS] 360 900

FIGURE 1 | Standard deviation of the anomalies (ensemble spread) of salinity at 250 m depth for the (A) HFSS, (B) LFSS, (C) HFLS, and (D) LFLS ensemble. The
white numbers overlaying the coloured fields report the 10 × 10° average for the standard deviation for each area.
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in each ensemble are well-suited to “fit” the background
innovations (from Eq. 2).

Examples of the anomalies for temperature at 250 m depth,
showing the first three ensemble members for each ensemble, are
presented in Figure 2. Several differences between the ensembles
are immediately evident. Like the standard deviations for salinity
at 250 m depth, the amplitudes of anomalies for temperature at
250 m depth are much smaller in the HFSS and HFLS ensembles
compared to the LFSS and LFLS ensembles. This is because the
HFSS and HFLS do not include anomalies associated with
interannual variability. All of the ensembles include
anomalies that we might associate with eddies—showing
many positive and negative anomalies on eddy-scales in
eddy-rich regions. Close inspection shows that the mesoscale
features are smallest in the HFSS ensemble, compared to the
other ensembles. The LFSS and LFLS ensembles include zonal
bands of significant anomalies, between 20–30°S and 40–50°S,
and broad regions of non-zero anomalies at low latitudes. We
associate these bands of anomalies with interannual variability.
The HFLS ensemble includes some zonal bands of anomalies,

with smaller amplitude, between about 40 and 10°S, that we
interpret as seasonal anomalies.

Based on the salient characteristics evident in Figures 1, 2, we
might expect quite different results using HFSS compared to
LFSS, HFLS, and LFLS; and we equally might expect many
differences between LFSS compared to HFLS and LFLS.

The length-scales evident in the ensemble fields are also used to
guide the localisation length-scales (Table 1). For HFSS, the length-
scales are short, and so we only test the system using a length-scale of
300 km (with an effective e-folding length-scale of about 100 km). For
LFSS, HFLS, LFLS, M120, and MS360, the anomalies in the ensemble
include broader-scale features. These ensembles may warrant length-
scales exceeding 1,000 or even 2000 kms. Here, we’re constrained by
computational resource, and we settle for experiments with a
localisation length-scale of 900 km (with an effective e-folding
length-scale of about 300 km). Additionally, Figure 2 also shows
that the length-scales inHFLS and significantly shorter than LFSS and
LFSS. This suggests that there may be some benefit in using different
length-scales for different ensemble members in the MS120 and
MS360 experiments. Unfortunately, this is option is not available

FIGURE 2 | Examples of anomalies from the first three ensemble members for the (A–C) HFSS ensemble, (D–F) LFSS ensemble, (G–I) HFLS ensemble, and the
(J–L) LFLS ensemble.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6969856

Oke et al. Blue Maps

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


in EnKF-C (Sakov, 2014), but we note that scale-dependent
localisation has been used in the context of four-dimensional
ensemble-variational data assimilation for Numerical Weather
Prediction (e.g., Buehner and Shlyaeva, 2015; Caron and Buehner,
2018).

3 RESULTS

3.1 Comparisons with Assimilated Data
Blue Maps has been run for six different experiments (Table 1) to
produce weekly analyses over a 4-year period (1/2015–12/2018).

Time series of the mean absolute difference (MAD) between
observations and analyses (analysis innovations) and
observations and background fields (background innovations)
for each experiment are presented in Figure 3. This shows the
global average for each variable using data within 3 days of each
analysis. The averages in both time and space are shown in
Table 2 for background and analysis innovations.

The results in Figure 3 show that the system’s performance for
all experiments is relatively stable. There are a few points in time
with unusually large innovations. For SLA, there appears to be
one of two times when there is large background innovations
(e.g., mid-2015, and mid-2016); and for salinity below 500 m

FIGURE 3 | Time-series of MAD between observations and analyses (dashed lines) and background fields (solid lines) for different experiments, for observations
within 3 days of each analysis. Results are shown for (A) SLA, (B) SST, and (C, E, G) temperature and (D, F, H) salinity for different depth ranges, as labeled on the
vertical axes. The legend for different experiments is shown in panel (H).
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depth, there are three times when the innovations spike (mid-
2015, late-2016, and early-2017). We expect that these anomalies
are caused by assimilation of bad data.

For SLA and upper-ocean fields, Figure 3 shows that there is a
seasonal cycle in the performance, with analysis and background
innovations slightly larger in austral winter. For deep temperature
and salinity, the innovations also show a small, quasi-linear
reduction in time.

For SLA, smallest analysis innovations are found in HFSS and
MS360, indicating that analyses fit the observed SLA equally well
for both experiments. But the background innovations are
notably larger for HFSS compared to MS360. This indicates
that although the analyses in HFSS fit the observations with
similar accuracy to MS360, it seems that HFSS includes some
unrealistic features that result in larger differences with the next
background field. We interpret this as a case of over-fitting in
HFSS, and attribute this to the small length-scales in the HFSS
ensemble (Figure 2) and the short localisation length-scale used
for the HFSS experiment (Table 1). This result for SLA, is
similar to other variables, where HFSS analysis innovations are
most similar to MS360 of all the experiments, but with HFSS
consistently producing the largest background innovations.
This is most clear for temperature and salinity in the depth
ranges of 0–50 m and 50–500 m (Figure 3). For these metrics,
the HFSS analysis innovations are the smallest of all
experiments - providing analyses with the best fit to
observations—but the HFSS background fields are the largest
of all experiments—providing analyses with the worst fit to
observation of the experiments presented here. These metrics

TABLE 2 | Time-average of the global MAD between observations and
background fields (top group; titled background innovations)) and between
observations and analysis fields (bottom group, titled analysis innovations), for
observations within 3 days of each analysis (a 6 days time-window) for SLA (m),
SST (°C), temperature (T, °C) and salinity (S, psu). Metrics for T and S are
shown for all depths shallower than 2000 m, for 0–50 m, 50–500 m, and
500–2000 m.

Background innovations

HFSS HFLS LFSS LFLS MS360 MS120

SLA 0.050 0.053 0.050 0.051 0.046 0.050
SST 0.361 0.361 0.360 0.353 0.340 0.349
T (<2,000 m) 0.461 0.407 0.424 0.414 0.407 0.406
T (<50 m) 0.525 0.484 0.487 0.478 0.465 0.470
T (50–500 m) 0.583 0.524 0.532 0.520 0.515 0.507
T (>500 m) 0.168 0.165 0.163 0.154 0.147 0.156
S (<2,000 m) 0.0719 0.0637 0.0656 0.0639 0.0637 0.0625
S (<50 m) 0.123 0.110 0.114 0.111 0.112 0.109
S (50–500 m) 0.0825 0.0722 0.0741 0.0723 0.0721 0.0705
S (>500 m) 0.017 0.016 0.017 0.016 0.015 0.016

Analysis innovations

HFSS HFLS LFSS LFLS MS360 MS120

SLA 0.032 0.045 0.040 0.040 0.031 0.040
SST 0.146 0.185 0.179 0.163 0.118 0.152
T (<2,000 m) 0.115 0.130 0.183 0.168 0.130 0.157
T (<50 m) 0.108 0.228 0.221 0.203 0.150 0.189
T (50–500 m) 0.134 0.220 0.210 0.192 0.150 0.180
T (>500 m) 0.082 0.111 0.103 0.093 0.076 0.089
S (<2000 m) 0.012 0.014 0.021 0.019 0.014 0.018
S (<50 m) 0.012 0.029 0.027 0.025 0.017 0.023
S (50–500 m) 0.014 0.025 0.024 0.022 0.016 0.021
S (>500 m) 0.009 0.011 0.011 0.010 0.008 0.009

FIGURE 4 | Profiles of MAD between observations and analyses (dashed lines) and observations and background fields (solid lines) for (A) temperature and (B)
salinity. Profiles are shown for different regions (coloured lines) and for the global average (black). The inset in panel (B) shows the regional partitioning. Results are for the
MS360 experiment. Only observations made within 2 days of each analysis time are included in these calculations.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6969858

Oke et al. Blue Maps

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


are quantified in Table 2, where the HFSS analyses show the
smallest analysis innovations, but the largest background
innovations for most variables.

Weighing up both the analysis and background innovations
reported in Figure 3 and in Table 2, we conclude that the best
performing experiment is clearly MS360. It’s interesting that
MS360 outperforms the child ensembles of LFSS, HFLS, and
LFLS for every metric. It is also worth noting that for most
metrics, MS120 outperformed LFSS, HFLS, and LFLS, leading us
to conclude that the diversity of anomalies in the multi-scale

ensemble experiments is beneficial. Furthermore, we find that
MS360 outperformed MS120 on all metrics, demonstrating the
benefit of increased ensemble size. We will explore why this is the
case below, in Section 4.

Profiles of MAD for temperature and salinity innovations are
presented in Figure 4, showing averages over the entire globe, and
for each basin for the MS360 experiment only. Figure 4 includes
both profiles for MAD for analysis and background innovations.
For both temperature and salinity, the analysis innovations for
MS360 are small, showing mis-fits to gridded observations of less

FIGURE 5 | Map of the MAD between (A,C) observations and background fields (BG; 7 days after each analysis), and between (B,D) observations and analyses
(AN) for (A,B) SLA and (C,D) SST. Results are for the MS360 experiment. Only observations made within 2 days of each analysis time are included in these calculations.
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than 0.1°C for temperature for most depths, and less than 0.01 psu
for salinity for most depths. For context, recall that the assumed
observation errors for in situ temperature and salinity are 0.05°C
and 0.05 psu, respectively. For the background innovations for
temperature (Figure 4A), the MAD is largest at around 100 m
depth, the average depth of the thermocline. The largest
background innovations in the upper ocean are in the Indian
Ocean and the equatorial and South Atlantic Ocean. Below about
200 m depth, the largest background innovations are in the North
Atlantic Ocean. For salinity profiles (Figure 4B), the MAD is
largest at the surface for most regions, with the largest mis-fits in
the Atlantic and Indian Oceans. Like temperature, the largest
background innovations below about 300 m depth are in the
North Atlantic Ocean. The smallest background innovations for
salinity are in the upper ocean are in the Southern Ocean.

Maps of the MAD of background and analysis innovations for
SLA and SST are presented in Figure 5 for MS360. As expected,
the largest innovations for SLA are in the eddy-rich regions,
namely the western boundary current (WBC) extensions and

along the path of the Antarctic Circumpolar Current (ACC). SLA
innovations are also larger off Antarctica, where there are fewer
SLA observations. For SST, there are also local maxima of
innovations in each WBC region; and there are larger values
north of about 30°S, with the largest values at the northern-most
latitudes of the grid.

Maps of the MAD of background and analysis innovations for
temperature and salinity at depths of 10, 100, 200, and 1,000 m
depth are presented in Figures 6 and 7, respectively for MS360.
The maps for temperature and salinity at corresponding depths
show similar structures, with local maxima and minima in
approximately the same regions. At 10 m depth, the largest
innovations are in the WBC regions and in the eastern
Tropical Pacific. At 100 m depth, in addition to larger values
in WBCs, there are also larger values for all longitudes in the
tropical bands for each basin. This is where the pycnocline has the
strongest vertical gradient, and so any mis-placement of analysed
isopycnal depths has a large penalty for MAD of temperature and
salinity. At 200 m depth, there is evidence of a band of higher

FIGURE 6 | Map of the MAD between (A,C,E,G) observations and background fields (7 days after each analysis), and between (B,D,F,H) observations and
analysis fields, for temperature at (A,B) 10 m, T10; (C,D) 100 m, T100; (E,F) 200 m, T200; and (G,H) 1,000 m depth, T1000. Results are for the MS360 experiment.
Only observations made within 2 days of each analysis time are included in these calculations.
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innovations nearer the center of each ocean basin at mid-
latitudes. For the South Pacific, this band of higher
innovations may relate to the decadal variability identified by
O’Kane et al. (2014). At 1,000 m depth, the innovations are small
everywhere, with modest local maxima in WBC regions.

3.2 Comparisons with Independent Data
For the comparisons presented above, the analyses of the
background innovations can be considered as independent
validation, since this involves comparisons between Blue Maps
analyses and observations that have not been used to construct an
analysis. However, for the comparisons of in situ temperature and
salinity, the observations are mostly from Argo floats. Because
Argo floats drift slowly, this means that the “independent”
comparisons (based on the background innovations) almost
always involves comparisons between background fields with
observations in locations where data was recently assimilated.
As a result, we might suspect that these comparisons provide
an optimistic assessment of the accuracy of the analysis system.
We therefore seek an additional, truly independent
assessment here.

For an independent assessment, we compare analyses of
temperature and salinity with non-Argo data from eXpendable
BathyThermographs (XBTs; temperature only), Conductivity-
Temperature-Depth (CTD) measurements from ship-borne
surveys, moorings (mostly the tropical mooring arrays), and
from sensors mounted on marine mammals (mostly in the
Southern Ocean, near the Kerguelen Plateau). We source these
data from the Coriolis Ocean Dataset for ReAnalysis CORA
(CORA, versions 5.0 and 5.1; Cabanes et al., 2013). The
global-averaged profiles of the MAD for 1/2015–12/2017
(CORA data are not currently available post-2017) are
presented in Figure 8. For temperature, this mostly includes
data from sensors mounted on marine mammals in the Indian
Ocean section of the Southern Ocean, the tropical mooring
arrays, and a small number of XBT transects and CTD
surveys (Figure 8A). For salinity, this is mostly marine
mammals and the tropical moorings. The coverage of non-
Argo data for this comparison is not truly global, with vast
amounts of the ocean without any non-Argo data available.
Despite the poor coverage, this comparison provides some
assessment against truly independent observations. This

FIGURE 7 | As for Figure 6, except for salinity.
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comparison indicates that the differences between Blue Maps
analyses and non-Argo (independent) observations are about the
same amplitude as the background innovations, presented in
Figure 4—slightly higher for salinity. This indicates that misfits
with independent data for temperature are largest at about 100 m
depth, with values of about 0.8°C; and for salinity are largest at the
surface, with value of about 0.3 psu.

Considering the analysis innovations reported in Table 2 and
presented in Figures 3–8, we conclude that the gridded estimates
of ocean temperature, salinity, and sea-level in Blue Maps have
comparable accuracy to observation-based products. Here, we
summarise the estimated errors and data-misfits reported
elsewhere in the literature for a widely-used gridded SLA
product (Pujol et al., 2016), SST product (Good et al., 2020),
and temperature and salinity product (Roemmich and Gilson,
2009). For SLA, Pujol et al. (2016) report that the standard
deviation of error of a 1/3°-resolution gridded SLA product
(DUACS DT2014) ranges from 2.2 cm in low-variability
regions, to 5.7 cm in high-variability regions (their Table 2).
For SST, Good et al. (2020) show that the misfits between
gridded SST and Argo match-ups to range from about 0.3
and 0.5°C between 2015–2018 (their Figure 11). For sub-
surface temperature, Li et al. (2017) report that misfits
between gridded temperature (for Roemmich and Gilson,
2009) and independent in situ data from tropical moorings
average about 0.5°C, with largest misfits of about 0.8°C at 100 m
depth (the surface) and about 0.2°C at 500 m depth (their
Figure 9). For salinity, Li et al. (2017) report that misfits

between gridded salinity (for Roemmich and Gilson, 2009)
and independent in situ data from tropical moorings average
about 0.1 psu, with largest misfits of about 0.2 psu at the surface
and about 0.02 psu at 500 m depth (their Figure 10). For each
gridded variable, the reported accuracy of these observational
products are comparable to the accuracy of Blue Maps analysis
fields. We therefore maintain that the accuracy of Blue Maps
analyses is comparable to other widely-used observation-based
products.

3.3 Example Analyses
To demonstrate the scales represented by Blue Maps analyses, we
show some examples of anomalies of sea-level, temperature, and
salinity in Figures 9, 10. These examples demonstrate the
abundance and amplitude of mesoscale variability in the maps.
Anomalies that are obviously associated with eddies are evident in
the SLA fields (Figures 9A, 10A) throughout most of the regions
displayed. Signals of these eddies are also clearly evident in the
anomalies at 250 m depth, and in some regions (e.g., along the
path of the ACC—particularly near the Kerguelen Plateau,
Figures 9D,E; and in the eddy-rich parts of the Tasman Sea,
Figures 10D,E). Regions of broad-scale anomalies are also
evident, including high sea-level, and cold and fresh anomalies
in the western, equatorial Pacific (Figures 9A–C). The maps also
show deep salinity anomalies at 1,000 m depth between 20 and
30°S in the Indian Ocean, and along the path of the ACC
(Figure 9). Of course, the anomalies displayed here are on
depth levels, and so the relative contributions from heaving of

FIGURE 8 | Profiles of global-averaged MAD between analyses (fromMS360) and non-Argo with-held observations (black), analyses and assimilated observations
(red), and background fields and assimilated observations (blue), for (C) temperature and (D) salinity, from 1/2015–12/2017. The top panels show the locations of non-
Argo (A) temperature and (B) salinity observations; and the numbers in the title are the number of respective observations. The non-Argo data includes XBT (temperature
only) and CTD; plus sensors on marine mammals (MAM) and moorings (MOR).
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the water column and changes in ocean properties from
climatology are unclear. Assessment of this aspect of the
analyses is important and interesting, but is not addressed in
this study.

4 ANALYSIS AND DISCUSSION

4.1 Understanding the Performance of the
MS360 Ensemble
An exciting and intriguing result reported in Section 3 is the
superior performance of MS360 compared to LFSS, HFLS, and
LFLS—the child ensembles. In this case, the performance of the
larger parent ensemble (MS360) is not just marginally better than

each of the child ensembles—the difference is quite
significant—particularly for the analysis innovations. For many
metrics, the MAD for the analysis innovations are up to 30–35%
smaller in MS360, the child ensemble experiments (22–36%
smaller for salinity at 50–500 m depth, for example, Table 2).
Here, we seek to understand why the experiment with the MS360
ensemble performs so much better. Based on comparisons
between the innovations reported in Figure 3 and in Table 2,
we suggested above that both the ensemble size and the diversity
of anomalies in the multi-scale analyses are important. We aim to
explore this further below.

To understand how the MS360 experiment uses ensemble
members from each of the child ensembles, we analyse the
ensemble weights (from Eq. 2) for 52 analyses—one for each

FIGURE 9 | Examples of gridded fields from MS360, showing anomalies of (A) sea-level, (B) temperature at 250 m depth, (C) salinity at 250 m depth, (D)
temperature at 1,000 mdepth, and (E) salinity at 1,000 mdepth. Fields are shown for March 16, 2015. The title of each panel reports theminimum,maximum, andmean
of the field displayed. Anomalies are with respect to seasonal climatology from WOA13 (Locarnini et al., 2013; Zweng et al., 2013) and the mean sea-level field from
OFAM3 (Oke et al., 2013b).
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week—during 2015. We then calculate the fraction of the
increment that can be attributed to each child ensemble by
calculating a partial sum of the weighted ensemble members
(from Eq. 2), using only the members for each child ensemble.
We show a map of the average fraction of increment explained by
each child ensemble for temperature at 250 m depth, and also
present the zonally-averaged profiles, in Figure 11. The results
show that in different regions, each child ensemble is given a
different relative weight. For all examples in Figure 11, anomalies
in LFLS are combined to produce the largest fraction (about 60%)
of the increments for almost all latitudes.We show that anomalies
from LFSS are dominant in each WBC region, where there is
correspondingly low weight assigned to anomalies from LFLS.
This provides a clear indication that different types of ensembles
are warranted in different dynamical regimes. Another example
of this is in the South Pacific, where there is a band of high values

for LFLS extending from the southern tip of South America and
extending towards central eastern Australia. Although not
perfectly aligned, this is reminiscent of the path of quasi-
decadal anomalies identified by O’Kane et al. (2014). There
are also different bands where HFLS has relatively higher
weight—particularly at low latitudes in the Pacific and Atlantic
Oceans, and along the path of the ACC south of Australia. This
analysis provides a detailed and complex picture of the relative
weights assigned by the EnOI system to each child ensemble. The
key message we take away from this analysis, is that different
types of anomalies are assigned different weights in different
regions.

The analysis of the relative fraction of increment explained by
each child ensemble in MS360 (Figure 11), confirms that the
relative weights of the anomalies in the different child ensembles
varies for different dynamical regimes. This result has a number

FIGURE 10 | As for Figure 9, except for the tasman sea.
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of implications. Recall that EnOI requires an explicit assumption
about the background field errors. Specifically, the construction of
the stationary ensemble for EnOI requires the ensemble to be
generated by constructing anomalies for some space- and time-
scales—here summarised in Table 1 (column three therein).
Almost all applications of EnOI in the literature invoke a
single assumption about the background error covariance to
construct the ensemble. The only exceptions that we are aware
of are presented by Cheng and Zhu (2016), Cheng et al. (2017),
and Yu et al. (2019). Here, we show that we achieve a much better
result when several different assumptions are made together, and
a diversity of ensemble members are combined to construct
analyses. Moreover, the results presented here indicate that a
different assumption about the background field errors is
warranted for different regions.

Another element of Blue Maps that differs from most other
applications of EnOI is the use of longer localisation length-
scales. For five of the experiments presented here, a 900 km
localisation length-scale is used (Table 1). To demonstrate the
impact of this aspect of the configuration, we present examples of
ensemble-based correlations between temperature at a reference

location and nearby temperature, in Figure 12. To understand
the impact of localisation, consider the profiles in Figure 12A, for
example. For this case, the un-localised ensemble-based
correlation (red) closely matches the localised ensemble-based
correlation profile using a 900 km localisation function (green),
but is significantly different from the localised ensemble-based
correlation profile using a 250 km localisation function (blue). If
the localisation function with the shorter length-scale is used,
then the ensemble-based correlations are heavily modified. By
contrast, if a localisation function with the longer length-scale is
used, then the ensemble-based correlations are virtually un-
modified within several hundred kilometres of the reference
location. As a result, using the longer length-scales permits
more of the structures—such as the anisotropy—of the
ensemble-based correlations to be used for the data
assimilation. Whereas, using the short length-scale
localisation function, more of the details are eliminated, and
the correlation used degrades towards a quasi-Gaussian
function (like most objective analysis systems). In this way,
some of the benefits of EnOI are lost when a shorter length-
scale is used. The other examples presented in Figure 12
demonstrate the same relationships. We have looked at
equivalent fields to these for many other regions. The
results in Figure 12 are similar to many regions poleward
of about 15°N and S. In the equatorial region, the unlocalised
correlations are much longer (several thousand kilometres in
some cases). For those tropical regions, a longer localisation
length-scale is warranted—but we cannot afford to implement
this computationally, due to memory requirements, to assess
the performance.

4.2 Development Experiments
The development of Blue Maps has involved a large number of
trial experiments that produced mixed results. Not all of the
results from this series of experiments can be reported here in
detail. But some of the findings from those experiments will be
summarised here, since they may be of interest to the community.
The first configuration of Blue Maps used the same configuration
as the 2016 version of BRAN (Oke et al., 2018). This was similar
to the HFSS experiment reported here. However the HFSS
experiment includes a few modifications. Early results used
persistence for the background field—not damped persistence
(Eq. 4). The quality of the analyses degraded in time, with noisy
fields emerging and growing in amplitude. It appears that there
are insufficient observations to constrain a series of analyses
without damped persistence and without an under-pinning
model. Damped persistence was adopted thereafter. Many
experiments were performed with damping to climatology
using an e-folding time-scale in the range of 7–90 days. The
best overall performance—based on the analysis and background
innovations—was found using damping with an e-folding time-
scale of 14-days. This time-scale is used in all experiments
described in this paper. Damped persistence is commonly used
for SST analyses. For example, the Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA), produced by the
UKMet Office, uses damped persistence with an e-folding
timescale of 30 days for ice-free regions (Donlon et al., 2012;

FIGURE 11 | Average fraction of increment explained for temperature at
250 m depth, for each child ensemble, including (A) LFSS, (B) HFLS, and (C)
LFLS, in the MS360 experiment. The zonal averages for LFSS (blue), HFLS
(red), and LFLS (green) are shown in panels (D–F). Averages are
calculated from 52 analyses during 2015.
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Fiedler et al., 2019; Good et al., 2020). Similarly, the operational
SST analysis produced by the Canadian Meteorological Centre
(CMC) uses damped persistence with an e-folding timescale of
58 days (Brasnett, 2008; Brasnett and Colan, 2016).

Even using damped persistence, small-scale noise still
appeared in analyses in some regions. Close examination of
the ensemble fields showed that there were noisy fields in
most ensemble members. As a consequence, these noisy
features appear in the analyses, according to Eq. 2. We
eliminated these small-scale features by spatially smoothing of
the ensemble fields. This was implemented here (for all
ensembles) using a simple horizontal diffusion operator (that
applies a spatial smoothing with a footprint of 1x1°). We now
understand that a similar approach to smooth the ensemble has
long be used for the French ocean reanalysis, as reported by
Artana et al. (2019), for GLORYS (the GLobal Ocean ReanalYses
and Simulations).

Other experiments explored the sensitivity to localisation
length-scale. The results with longer length-scales generally
performed better, with fewer fictitious features that are not
resolved by the observations. Computational limitations
prohibited us from testing the system with longer length-scales.

Some of the lessons learnt during the development of Blue
Maps may be of interest to the ocean data assimilation
community. Apparently many of the features identified in the
early experiments during this development are present in BRAN

experiments (e.g., small-scale noise in analyses). But it appears
that when fields with these artefacts are initialised in a model, the
model efficiently disperses many of the artificial features, and they
are not clearly evident in the resulting reanalysis fields (which are
often daily-means). Surely, inclusion of these fictitious features -
albeit small in amplitude—will degrade the quality of ocean
reanalyses. For Blue Maps, these features were easily identified,
because there is no model to “cover” over the unwanted features.
We plan to apply the learnings from the development described
here, to future versions of BRAN.

5 CONCLUSION

A new observation-based product that adapts a data assimilation
system that has traditionally been used for ocean forecasting and
ocean reanalysis is presented here. The new product is called Blue
maps. BlueMaps is tested here by producing weekly analysis over a 4-
year period (1/2015–12/2018). We compare the performance of Blue
Maps for six different configurations, using different ensembles. The
best performance is achieved using a 360-member multi-scale
ensemble (MS360) that includes anomalies from several different
spatiotemporal scales. For that configuration, analyses of sea-level that
are within about 4 cm of observations; and analyses of upper-ocean
(deep) temperature and salinity that are within about 0.45 (0.15)
degrees and 0.1 (0.015) psu respectively. These misfits are comparable

FIGURE 12 | Ensemble-based correlations between temperature at 250 m depth at 32°S and 157°E in the Tasman Sea, and temperature and salinity at the same
depth and longitude, but at nearby longitudes using different ensembles: (A,F) MS360, (B,G) LFLS, (C,H) HFLS, (D,I) LFSS, and (E,J) HFSS. Each panel includes the
un-localised ensemble-based correlation (in red), the localised ensemble-based correlation, multiplied by the 250 km localisation function (blue) and multiplied by the
900 km localisation function (green). Also shown in panels (A) and (F) are the correlations functions with a 250 km (blue-dashed) and 900 km (green-dashed) using
the formulation used here and defined by Gaspari and Cohn (1999). The location of the reference point is also shown in panels (A) and (F) with a vertical grey line.
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to ocean reanalysis systems that are underpinned by an ocean model.
For example, the 2020 version of the Bluelink ReANalysis (BRAN
2020, Chamberlain et al., 2021a), fits data to within about 0.17–0.45°C
and 0.036–0.082 psu (smallest values are for misfits of observations
and analysis; largest values are misfits of observations and 3 days
“forecasts”). GLORYS12V1 (Lellouche et al., 2019, see their Figure 5B),
version 2020, fits the data to within about 0.41°C and 0.061 psu. For
equivalent metrics, Blue Maps fits data to within 0.17–0.41°C and
0.014–0.064 psu (smallest values are for misfits of observations and
analysis; largest values are misfits of observations and 7 days “damped
persistence”). Compared to observation-based products, Blue Maps
also compares well. Li et al. (2017) present results from a 1°-resolution
product and includes an inter-comparison with other observation-
based products. They show that their system performs comparably to
analyses produced by Roemmich and Gilson (2009), and a number of
other coarse-resolution products. The profiles of analysis-observation
misfits in Figure 4, for Blue Maps, show much smaller mis-fits than
observational products presented by (Li et al., 2017, e.g., their Figure 4).

We show that the superior performance of the Blue Maps
configuration using the ensemble with multiple spatiotemporal
scales is because of the larger ensemble size (120 compared to
3,670), longer length-scales (compared to most other EnOI
applications), and the diversity of ensemble anomalies. We
conclude that different assumptions about the system’s background
error covariance are warranted for different regions.We recognise that
the ensemble with 360 members—although larger than most other
global applications of EnOI—is still not large. Indeed, the most
extreme demonstration of the benefits of a truly large ensemble is
presented by Miyoshi et al. (2015), who presented some very
impressive results using a 10,240-member ensemble for numerical
weather prediction. We suspect further improvements may be
achieved if a larger, more diverse ensemble is used. This suggestion
will be explored in future experiments with Blue Maps and with
BRAN. Future developments of Blue Maps will also likely include
explicit analyses of mixed layer depths, biogeochemical parameters
(e.g., backscatter), and will include a calculation of weekly fields for a
longer period (probably from 2000 to present).
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