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Specific users play a key role in interactive forecast systems through user-oriented
information (UOI). For hydrological users, a key component of the user-oriented
forecast system (UOFS) is to determine the threshold of flood-leading precipitation
(TFLP) as a target of the forecast by considering the decision-making information at
the user end. This study demonstrates a novel way of simulating TFLP via the inverse
simulation of a hydrological model, combined with the flood hazard assessment in the
upper reaches of the Huai River Basin controlled by the Wang Jiaba (WJB) hydrological
station. The flood hazard, defined as the probability of precipitation beyond the daily
evolving TFLP for the next day, was evaluated by using the THORPEX Interactive Global
Grand Ensemble (TIGGE) datasets, including 162 members retrieved from 5 TIGGE
archive centers. Having integrated the real-time monitored water level (as the UOI) into
the UOFS, we applied it to the flood season of 2008 as a case study to evaluate the flood
hazard generated by the UOFS for the WJB sub-basin. The simulated TFLP corresponded
well with the gap between the monitored and warning water level. The predicted flood
hazard probability showed good agreement with the first two flood peaks at 100%
accuracy, while exceeding 60% accuracy for the third flood event in that season.
Thus, the flood hazard could be better quantified via integration of the forecasted
flood-leading precipitation. Overall, this study highlights the usefulness of a UOFS
coupled with interactive UOI of real-time water level to determine the dynamical TFLP
for flood hazard evaluation with ensemble precipitation forecast. The early flood warning
which resulted from such integrated UOFS is directly applicable to operational flood
prevention and mitigation.
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1 INTRODUCTION

Themain purpose of weather forecast is to help people in decision-
making under the uncertainty and risk of possible upcoming
weather and climate events. With ever-deepening understanding
of the atmospheric physics and rapid development of numerical
modeling techniques, the performance of weather forecast has
well been improved over the past decades. However, further
improvement in traditional deterministic forecast tends to be
limited due to inherent uncertainty of the chaotic system,
especially for local extreme events such as flood-leading rains
(Thorpe, 2004; Yan et al., 2012; Sagar et al., 2017; Ye et al.,
2017). Obviously, there is no perfect, 100% accurate forecasting
provision for users in need of predicting extreme events, and thus
most decisions should be made in the context of making the best
use of forecast information. Due to the inherent uncertainties, the
forecast products are often useless if without consideration of the
user-end information. In particular cases, the lack of user-end
context could cause underestimating or even missing the early
warning of disastrous rain and flood, leading to catastrophic
consequences (Piekle, 1999; Demuth et al., 2007). The demands
of specific users vary widely across different industries and hence
should be integrated into specific operational weather forecast
systems in order to provide useful products for decision-making
in the context of disaster prevention and mitigation.

From a different perspective, users are an important
component of the whole forecasting system, rather than
simply being individual, passive receivers of forecasting
information (Morss et al., 2005; Morgan et al., 2007; Argyle
et al., 2017). Stewart et al. (2003) indicated the importance of
specific user demands by highlighting that they can effectively
improve the forecast skill from another perspective by closing the
gap between the forecast information and the needs of various
users, something that has not yet been considered in depth in
terms of forecast systems. Therefore, an “excellent forecast
product” not only requires an accurate and robust
performance but must be available and serviceable to users in
order to satisfy their demands when it comes to the forecast of
extreme weather and climate events (Murphy, 1993; Yan et al.,
2012). Ye et al. (2006) proposed a conceptual framework of user-
oriented forecast system (UOFS) by coupling the forecast system
and specific users to integrate user-oriented information (UOI)
dynamically during the forecast process, within which the user-
end information should be an interactive component that can
adjust the forecasting process and ultimately improve the forecast
(Ye et al., 2006). Once the forecast system and users have been
integrated, the UOI can also enhance the forecast performance
through optimization from user-end feedback. These ideas have
greatly enriched the applicability of the UOFS in previous studies
(Thorpe, 2004; Golding et al., 2017; Bett et al., 2020).

The value of the weather forecast products will increase if the
uncertain information is properly utilized by the specific users,
especially in hazard and risk assessment. The ensemble forecast
approach, which has been developed and improved rapidly in
recent years, is now applied routinely in operational precipitation
and hydrological forecast, as well as ocean prediction and flood
warning systems (Cloke and Pappenberger, 2009; Bougeault et al.,

2010; Yuan et al., 2012;Weerts et al., 2014; Zheng and Zhu, 2016).
The recently implemented TIGGE [THORPEX (The Observing
System Research and Predictability Experiment) Interactive
Grand Global Ensemble] project collected ensemble forecasting
products from all major operational weather prediction agencies
worldwide and included a full range of uncertainties in weather
forecasts in order to help improve the accuracy of 1-day to 2-week
high-impact weather forecasts (Pappenberger et al., 2008;
Bougeault et al., 2010; Swinbank et al., 2016). TIGGE is aimed
to provide a collaborative platform for improving the
development and understanding of ensemble weather
predictions (Cloke and Pappenberger, 2009; Sagar et al., 2017).
Currently, the TIGGE network covers large parts of the world in
real time in databases operated by three archive centers (CMA:
China Meteorological Administration; ECMWF: European
Centre for Medium-Range Weather Forecasts; and NCEP:
National Centers for Environmental Prediction) and supports
a wide range of investigations and products for forecasting severe
weather and climate events (Bougeault et al., 2010; Swinbank
et al., 2016). Numerous studies have demonstrated a strong
performance of the TIGGE datasets in forecasting torrential
rainfall and streamflow (Liu et al., 2013; Louvet et al., 2016;
Sagar et al., 2017; Aminyavari et al., 2018), forecasting and
providing early flood warnings (He et al., 2010; Bao and Zhao,
2012a; Xu et al., 2012a; Liu S. et al., 2018), predicting tropical
cyclones (Qi et al., 2014), forecasting polar weather (Jung and
Matsueda, 2016), and monitoring drought (Zhao et al., 2016).

In fact, the parameter calibration for traditional hydrological
modeling based upon user-end observed streamflow has also been
another kind of interactive approach in a broader sense but is
lacking in terms of real-time updates and interaction within the
dynamic forecast system. In recent years, the construction and
establishment of the UOFS concept and framework has driven
advances in many aspects, especially in flood prediction and
warnings (Morgan et al., 2007; Rabier et al., 2008; Casati et al.,
2010; Yan et al., 2012; Shi et al., 2015). For example, Zhang,
(2002) developed a comprehensive flood forecast system by
combining forecast models, an interactive software framework,
experienced forecaster analysis modules, and reported improved
flood forecast performance in several basins in China. However,
experience of UOFS in developing regions is still limited, and the
flashflood early-warning system has still not been fully
established and verified due to the insufficient knowledge and
data input (Liu C. et al., 2018). Fully coupled numerical models
were also used for flood warning system construction. With the
help of refined initialization from user-end involvement, Yuan
et al. (2011) developed a forecast system based on a fully coupled
model for seasonal hydrological forecast and reported an
increased predictive skill for monthly air temperature and
precipitation at the global scale. Bao and Zhao (2012b)
developed an atmospheric–hydrological–hydraulic model
system based on the Xin’anjiang hydrological model for flood
forecasting. This model system integrated with the fixed split ratio
of the channel streamflow discharge from the user end was driven
by TIGGE ensemble forecasts and showed potential for
improving the forecast lead time in the Huaihe River Basin for
flood management and preparedness. As a fully coupled
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atmosphere-hydrology platform, the widely used Weather
Research and Forecasting (WRF) model was used to produce
streamflow forecast and flood warning in typical case studies
combined with the ensemble experimental design to provide the
uncertainty range, and the results allowed for estimation of both
the predictability of the flood event and the uncertainty for risk
assessment (Rogelis and Micha, 2018; Ferretti et al., 2020).

However, the previous studies above were mainly focused on
the forecast accuracy, and the UOI were static or without
feedback and update during the forecasting process. To
overcome this limitation, Han et al. (2010) and Yan et al.
(2012) developed a self-improving forecast system by taking
advantage of incorporating the hydrological user into a
conceptual model with reservoir managers in a sub-basin of
the Huaihe River Basin (Han, 2010). The user feedback
module changed the threshold for flood-leading rainfall
depending on previous weather and hydrological conditions.
Shi et al. (2015) proposed a framework of a service-oriented
technique for ensemble flood forecast based on numerical
weather prediction, by which users could acquire information
of the clients and make decisions for possible flood prevention.
These works emphasized the identification of flood warning for
reservoir managers, which was optimized by a clear feedback
chain from the user end to the forecast system.

Although the UOFS has developed and progressed well based
on the findings of previous studies, there are still several crucial
issues that need to improve. First, Yan et al. (2012) pointed out
that it is still unclear as to what kind of information from users
should be incorporated into the system and how concrete
feedback from the user end should be established. The
selection, determination, and interaction of UOI remain as
challenges in the UOFS development and improvement
(Weerts et al., 2014; Adams and Pagano, 2016). Indeed, the
UOI and dynamical numerical model system were not
integrated comprehensively in the previous studies, while the
dynamic real-time feedback between users and forecast systems
remains a big challenge in operational meteorological and flood
forecast. Secondly, in extreme precipitation and flood events, the
skill of numerical model configurations is largely unknown (Lin
et al., 2018). Therefore, the response to flood hazard will not be
timely and clear if we focus only on the forecast accuracy without
the context of specific users.

The present study is to provide a direct and intuitive
indicator to the specific users for flood response and
prevention actions by establishing a UOFS. We specifically
address two questions: (1) Which variable can provide the
reasonable and suitable UOI to realize the real-time feedback
and effective interaction between forecast system and users?
(2) How can UOI be effectively coupled with the forecast
system? To answer the questions, we developed a UOFS by
using a hydrological model via an inverse simulation structure.
The threshold of flood-leading precipitation (TFLP) was taken
as the forecast target for flood-prevention users, and the UOI
was the daily real-time-monitored water level in the river
channel. We incorporated the UOI into the UOFS to
simulate the daily TFLP of the upper Huaihe River Basin in
summer 2008. Then, the precipitation forecast products

derived from the TIGGE datasets were applied to calculate
the flood hazard in the study basin for hydrological users.
Section 2 describes the framework, data, model, and
experimental design. Section 3, 4 present the results and
discussion, respectively. Section 5 summarizes the key
findings and conclusions with further prospect.

2 STUDY BASIN, DATA, AND METHODS

2.1 Study Basin and Study Case
The study basin is located in the upper Huaihe River Basin,
controlled by the Wang Jiaba (WJB) hydrological station situated
on the mainstream of Huai River (Figure 1) (WJB sub-basin
hereafter). The WJB sub-basin has a slope of 0.49% and covers a
catchment area of 30,672 km2. Influenced by the monsoon
climate, flashflood occurs frequently in the flood season (1
May to 31 September in official) in the WJB sub-basin,
especially in summer. According to the topography in the basin,
rainfall can be rapidly routed from upstream to downstream
through the WJB station to low-lying flood plains toward the
northeast (Supplementary Figure S1). Therefore, as the first key
flood control gate of the Huaihe River Basin, the WJB station
makes great sense in flood and disaster prevention in the Huaihe
River Basin, and the water level at theWJB station is a key indicator
known to locals as the Huaihe “barometer” (He et al., 2010).

Thus, the WJB sub-basin is a typical area for summer
precipitation and flood investigation. However, flood forecast
and warnings in theWJB sub-basin are challenging because of the
complex weather–climate–hydrology conditions and the urgent
needs of specific users like the flood prevention department and
decision-making department.

The study period is the flood season of 2008 from June to
September. In the summer of 2008, there were 3 main flood events
in the WJB sub-basin, which made threats to the operational flood
prevention and challenges in early flood warning. During the study
period, according to the observation, the water level showed a
good consistency, thus helpful for us to establish “water
level–streamflow” regression. The well-validated streamflow data
and effective UOI were provided by the local hydrological
department of the WJB sub-basin. These facilitated us to choose
such a case for the construction, modeling, and application test of
the UOFS in this study.

2.2 Dataset Description
The daily observational precipitation data used as the input for
the hydrological calibration were collected from 19
meteorological stations in the WJB sub-basin (Figure 1).
The daily monitored water level and observed streamflow at
the WJB hydrological station during the study period were
provided by the China Institute of Water Resources and
Hydropower Research and Meteorological Center of Huai
River Basin. Generally, the water level and streamflow are
monitored by the “Walking Acoustic Doppler Current Profiler
(ADCP) Automatic Flow Measurement,” which is the latest
measurement technology used in the current hydrological
station. The ADCP equipment is installed on a motor boat,
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and the sensors can transfer the real-time monitored
information to the hydrological data system when the boat
sails on the river.

The TIGGE datasets used in this study were retrieved from
five centers: CMA, ECMWF, NCEP, Japanese Meteorological
Agency (JMA), and the United Kingdom Met Office (UKMO).
In total, we collected 162 members (including one control
member for each center) for the probability calculation and
flood risk evaluation (Table 1). We used the 24-h-lead daily
precipitation, relative humidity, wind speed, and air
temperature at 2-m forecasts at a horizontal resolution of
0.5° in the WJB sub-basin. These four variables selected in
the TIGGE datasets represent the outputs of the physical
prediction of the meteorological component for this study.
The daily precipitation from TIGGE 24-h forecast products
agrees well with the daily observational precipitation at the
scale of the WJB sub-basin from 2007 to 2010 in summer
(Supplementary Figure S2).

2.3 Method Description
2.3.1 Useroriented Forecast System Framework
The general conceptual framework of the UOFS is shown in
Figure 2. In this study, the UOFS has five major components: the
user-end information module; the meteorological prediction
module; the professional module; the forecast target; and the
user-oriented assessment module. There are two components in
which specific users can give real-time feedback to forecasters,
resulting in a forecast system with real-time updated UOI.

2.3.2 Forecast Target
The forecast target in this study is the TFLP, which is dynamically
calculated by the UOFS. Because of its great indicating
significance, the TFLP makes great sense to flood prevention
managers as well as subsequent decision-makers and has widely
been used in operational flood warnings (Zhang et al., 2020; Filho
et al., 2021). Generally, the process of flood is highly nonlinear
and influenced by numerous factors (the weather, topography,

FIGURE 1 | Spatial distributions of altitude, WJB hydrological station, and meteorological stations in the WJB sub-basin.

TABLE 1 | Basic information on the TIGGE datasets used in this study.

Country Data center Members Dataset’s link

P.R. China CMA (China Meteorological Administration) 14 + 1 wisportal.cma.gov.cn/tigge
European Union ECMWF (European Centre for Medium-Range Weather Forecasts) 50 + 1
United Kingdom UKMO (United Kingdom Meteorological Office) 23 + 1 apps.ecmwf.int/datasets/data/tigge/levtype � sfc/type � cf/
USA NCEP (National Centers for Environmental Prediction) 20 + 1
Japan JMA (Japan Meteorological Agency) 50 + 1 gpvjma.ccs.hpcc.jp/TIGGE/index.html
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land-use conditions, etc.). As the dominant factor in summertime
flashflood, precipitation should be paid most attention in weather
and hydrological forecasts. In operational flood prevention,
managers are concerned not only with the typical precipitation
forecast from meteorological services but also with the possibility
of precipitation that can lead to a flood event. Finally, the TFLP
can provide the probability of flood hazard assessment
information by combining ensemble precipitation forecast
products derived from the TIGGE dataset.

In this study, the TFLP is not traditionally defined by the
statistical method based on historical data, but combined with the
real hydrological components derived from the real-time updated
UOI and hydrological model. Details of the TFLP calculation
scheme are listed in section 2.3.5.

2.3.3 Hydrological Model
We used a semi-distributed hydrological model in this study that
was developed based on two classical hydrological models (the
Xin’anjiang model and TOPMODEL) by optimizing the
formulation of the soil moisture storage capacity curve. This
hydrological model has been well calibrated in basins throughout
China with different climates and has been shown to perform well
in both offline and coupled online simulations. A detailed
description of the model and its numerical results can be
found in previous publications (Xu et al., 2012b; Zheng et al.,
2012) and supplementary file.

2.3.4 User-Oriented Information
Because the water level atWJB is a key flood warning indicator, in
this study, the real-time daily monitored water level at GMT + 8
in the Huai River channel was chosen as the UOI in the UOFS. As
a key flood indicator for the entire basin, the water level is highly
correlated with the streamflow, which can be directly simulated
by the hydrological model. According to the Meteorological
Center of the Huaihe River Basin, the warning water level at
the WJB station is 27.5 m, and there will be a flood in the WJB
sub-basin if the water level exceeds this warning value.

2.3.5 Experimental Design
In this study, we used the hydrological model with an inverse
simulation to calculate the minimum quantity of precipitation to
cause a flood event. This critical precipitation amount is the
TFLP, and any tiny increase in the TFLP will bring a threat to the
reservoir and downstream area. The TFLP can be divided into
three components—evapotranspiration (ET), change in soil water
content (SMC), and runoff (R):

TFLP � ET + SMC + R (1).

Here, the ET was calculated by the Penman Formula, and the
SMC was calculated by subtracting the soil water deficit of the
previous time from the current time through the hydrological
model. The R was calculated by the “water level–streamflow”
regression equation based on the gap between the real-time
monitored water level (UOI) and the warning water level.
Thus, in this study, the TFLP is dynamically linked with the
UOI and would update every time step during the simulation
process of UOFS.

Before the hydrological simulation started, the hydrological
model was calibrated based on the observed daily precipitation,
temperature, and streamflow. A random number algorithm was
used in the calibration, and the target function was the
Nash–Sutcliffe efficiency coefficient (NSE), and we also
evaluated the calibrated results by the Pearson’s correlation
coefficient (Pearson’s r), the Spearman’s correlation coefficient
(rho), and the root mean square error (RMSE).

After completing the TFLP calculation, the flood hazard in the
next 24 h can be derived from the TIGGE precipitation forecast
products as follows:

FloodHazard � ExceededMembers
TotalMembers

× 100% (2)

where “Exceeded Members” denotes the number of TIGGE
members whose precipitation forecast exceeds the TFLP, and
“Total Members” refers to the total 162 TIGGE members used in
this study.

FIGURE 2 | Schematic framework of the UOFS.
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3 RESULTS

3.1 Model Calibration and Validation
Figure 3 shows the observed and calibrated daily streamflow in
the WJB sub-basin from June to September 2008. This physics-
based hydrological model has seven parameters (Xu et al., 2012a,
b). After calibration, Figure 3 shows a good agreement between
the calibrated streamflow and the observed streamflow of the
WJB station during the flood season in 2008. The relative errors of
the three flood peaks were generally within 15%, and the NSE was
as high as 0.91. This indicates that the simulated streamflow was
basically identical to the observational series, with a Pearson’s r of
0.97, a rho of 0.88, and a RMSE of 190.67 m3/ s. Thus, we were
able to obtain reasonable model parameters of the WJB sub-basin
for further simulation in this study. In the model validation based
upon the TIGGE 24-h ensemble precipitation forecast, 78
members got reasonable streamflow simulation with NSE over

0.5 (Supplementary Figure S3). The grand ensemble streamflow
can generally capture the main flood peaks in the study period
with lower peak values, and the uncertainty interval can cover the
observed flood peaks (Supplementary Figure S4). This can
provide useful information to the flood prediction and risk
assessment.

3.2 Water Level–Streamflow Relationship
The water level in the channel and the streamflow are two
important and highly correlated variables in both hydrological
research and operations. In the present case, there was a
significant correlation between the daily water level and
streamflow (Figure 4A), with the Pearson’s r and rho being
0.95 and 0.98 at the significance level of p � 0.01, respectively.

Based on the significant correlation between the monitored
water level and the observed streamflow at the WJB hydrological
station, the water level–streamflow regression equation in the

FIGURE 3 | Comparison of the observed and calibrated streamflow in the WJB sub-basin from June to September 2008.

FIGURE 4 |Observed daily water level and streamflow (A) and the exponential fitting betweenwater level and streamflow (B) in the flood season of 2008 in theWJB
sub-basin.
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WJB sub-basin could be generated through exponential fitting
with the ordinary least-square method (Figure 4B), wherein the
R2 was 0.97. The regression equation can be written as

y � 0.41 × exp( x

3.23
) − 15.66 (3)

where x is the water level and y is the river streamflow.

3.3 TFLP
After generating the UOFS, we applied it to a case study in the
WJB sub-basin from June to September 2008. First, we collected
the real-time monitored water level at 08:00 GMT+8 on the daily
time scale as the UOI to obtain the gap between the monitored
and warning water level. Then, the runoff component of TFLP R
in Eq. 1 could be calculated through the water level gap based on
Eq. 3. After simulating the SMC and ET via hydrological
simulation, the TFLP during the study period in the WJB sub-
basin could be calculated by Eq. 1 (Figure 5).

Figure 5 shows the daily simulated TFLP andmonitored water
level gap in the WJB sub-basin. We can see that the temporal
evolution of the two variables agrees well with each other with
significant correlation (Pearson’s r � 0.79 and rho � 0.73 at 0.01
significance level). The smaller the water level gap, the closer the
monitored water level to the warning value, which leads to a lower
TFLP and greater possibility of flooding. When the TFLP is close
to zero, the current water level is high, and the previous water
storage is large enough to cause serious floods if there is even only
a slight amount of additional precipitation. A negative TFLP
corresponds to a negative water level gap, which means that the
monitored water level has already exceeded the warning value
(27.5 m in this study), and a flood has occurred already.

In the flood season of 2008 in the WJB sub-basin, there were
three major flood events in July, August, and September,
respectively (Figure 3). The three flood peaks also matched
the lowest TFLP and water level gap well with a certain time
lag, and the largest flood event in August is clearly reflected by the

lowest TFLP in Figure 5. This means that the TFLP has strong
significance of instructions and warnings of flood events. In other
words, the TFLP itself can be regarded as the probability and
hazard of the occurrence of future flood.

3.4 Flood Hazard Evaluation
Based on the calculated daily TFLP, we used the TIGGE 24-h-
lead precipitation forecast products to evaluate the flood
hazard in the WJB sub-basin. Time series of the calculated
flood hazard are shown in Figure 6 (the purple histogram),
together with the observed streamflow. Among the
precipitation forecast products of the 162 members from
the TIGGE datasets, we mainly focused on those members
whose precipitation amount exceeded the TFLP on the forecast
day. According to Eq. 2, as the extent of the precipitation
forecast, the flood risk can effectively and timely predict the
occurrence of the three major flood events in this study. As
shown in Figure 6, before or on the day of the flood, the
predicted flood hazard for several consecutive days exceeded
80%, or even reached 100%, especially during the flood events
in July and August. These results also serve as a robust
validation of the suggestion that most TIGGE forecast
members have a reliable precipitation forecast ability in the
WJB sub-basin.

To further explore the flood hazard information
comprehensively, we integrated the extreme precipitation
information predicted by the TIGGE member with the largest
precipitation amount on the forecast day with the flood hazard
evaluated above and generated a 3D diagram (Figure 7). In
addition to the calculated flood hazard information, we added
the extreme precipitation forecast on the vertical z-axis. Each
point indicates the flood hazard and extreme precipitation on a
particular day. In operational flood hazard assessment and
management, the points in the red rectangle should most
likely correspond to high-hazard and high-intensity flood

FIGURE 5 | Simulated daily TFLP and monitored water level gap in the WJB sub-basin during June to September 2008.
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disasters, which requires the most attention when generating and
issuing flood warnings.

4 DISCUSSION

By introducing the real-time monitored water level as UOI, we
took the flood season of 2008 in the WJB sub-basin as a case

study, combined with the ensemble precipitation forecast
products, to preliminarily verify the feasibility and applicability
of the established UOFS in operational flood warning through the
key variable of TFLP. The results are encouraging with good
application and promotion prospects.

Different from the traditional flood warning which mainly
focused on the streamflow process and flood peak prediction, this
study connects the forecast system and hydrological users by

FIGURE 6 | Predicted flood hazard based on TFLP and TIGGE products in the WJB sub-basin during the study period.

FIGURE 7 | Combination of the flood hazard and extreme precipitation information (the points in the red rectangle indicate the days with high precipitation amount
and flood hazard).
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coupling the UOI to the UOFS and finds an efficient indicator for
early flood warning. As the main driver of summer flood in the
Huaihe River Basin, the precipitation can be closely integrated
with the new indicator TFLP. At the same time, the real-time
status at the hydrological user end is effectively considered and
updated in the UOFS. Thus, the occurrence of future flood could
be reflected by the TFLP value which negatively correlated with
streamflow. Moreover, the flood hazard can be obtained by
combining the TFLP with the ensemble precipitation products.
Users can make further decisions of response measurement for
flood prevention based on the information of flood occurrence
probability from the calculated flood hazard. The results of this
case study have shown us the good agreement between the
warning information and real flood processes. Compared with
the traditional quantitative precipitation and streamflow
prediction, this probabilistic early flood warning framework
can provide more useful and targeted information for
specific users.

However, this preliminary investigation still has some
limitation. For example, three small flood peaks at the 20th,
40th, and 120th days of the study period were missed by the
UOFS. We considered the following three aspects. First, there are
biases in the physical processes and parameters of the
hydrological model in comparison with the real hydrological
processes, as already reflected in the model calibration result in
Figure 3. Second, TIGGE products also have a bias in the forecast
of precipitation leading to minor flood peaks. Finally, several
reservoirs, dams, and flood retention zones (e.g., Mengwa flood
retention zone: 181 km2 with a design capacity of 750 million m3

and the design maximum discharge up to 1,626 m3/ s) in the
basin affect small flood peaks by regulation and storage processes,
which are not effectively considered in the current version
of UOFS.

Moreover, the historical hydrological observed data (e.g.,
streamflow, water level, groundwater table depth) are very
difficult to obtain. For the WJB station, the lack of historical
water-level monitoring data is serious, thus making limitation for
in-depth research. The observed water-level and streamflow data
for the summer of 2008 are the most complete quarterly we have
now; this is why we chose this season as the study period. One
seasonal case is not sufficient for testing the performance of the
UOFS. The “water level–streamflow” relationship differs in
different regions and even in different years in the same basin,
and the parameters of hydrological model also need to be
calibrated in different basins. Nevertheless, the calibrated
UOFS in this study should be applicable to other sub-basins in
the Huaihe River Basin or with similar climatic and hydrological
conditions by updating the “water level–streamflow” relationship.

According to the limited simulation ability of the hydrological
model for semiarid regions, it is difficult to apply this UOFS to the
transition zones. We assume that the hydrological model can
reproduce the true flood process at the daily scale in WJB sub-
basin (Supplementary Figures S3–S4), and the optimized
parameters can reflect the spatial characteristics of the WJB
sub-basin in the study case based on the consistency of
calibrated streamflow results. Generally, the model
performance and parameter uncertainties would be larger in

the transition zones. In the next step, as the compilation of
the hydrological model and data quality are improved rapidly
in recent years, the verification and application of the UOFS could
be carried out on long periods and large-scale basins in different
climatic zones, in order to develop its potential of applicability.

5 CONCLUSIONS AND SUMMARY

To improve the hydrometeorological forecast for specific users
and make full use of the available forecast information, this study
developed a UOFS based upon a hydrological model with its
inverse simulation module and incorporated real-time daily
monitored water level data as the UOI. Then, the UOFS was
used to predict the TFLP to assess the flood hazard by combining
the 24-h meteorological forecast products from TIGGE datasets.
We took the flood season in 2008 in the WJB sub-basin as a case
study for applying the UOFS in an operational flood warning
setting. The conclusions can be summarized as follows:

1) The real-time monitored water level was effective as the UOI
incorporated into the UOFS in this study. Based on an inverse
hydrological simulation and the real-time updated UOI, the
UOFS was able to forecast the TFLP as a dynamical target
during the study period. The TFLP corresponded well with the
water level gap between the monitored and warning values
and made great sense for assessment of the flood hazard. From
a specific user’s perspective, the TFLP can be used as an
important basis for detecting the flooding threat caused by
additional precipitation.

2) The flood hazard calculated based on the TFLP and 24-h
TIGGE forecast products could quantify the possibility of
flooding in the next 24 h in the WJB basin. The results gave
timely and accurate early warning information of the three
main flood events during the summer of 2008, which showed
reliable applicability and good prospect of the UOFS. Taking
the forecasted extreme precipitation into consideration, the
UOFS was able to provide more detailed and comprehensive
flood hazard information. The feedbacks of the UOI to the
forecast system provides an effective way to produce high-
quality and practical forecast products, reduces the
uncertainty brought in by meteorological forecast, and
helps toward flood prevention decision-making throughout
the summer flood season.

The advantages of the UOFS in an operational early warning
system stretch far beyond what we have seen just in this study;
i.e., the system is not limited to satisfying specific users’ need. For
hydrological modeling and forecast, an accurate UOI can reduce
the uncertainties involved in routine parameter calibration. The
flood hazard and risk can also be evaluated as detailed
spatiotemporal images if we construct a fully distributed
UOFS rather than carrying out a hydrological simulation as a
lumped model scheme. The UOI can also help improve the
hydrological simulation via optimizing the initial model
conditions. For early flood warnings, the previous precipitation
and soil water content are extremely important factors but are
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generally difficult for a physically based model to
parameterization. However, these factors can be easily reflected
and obtained from the UOI, which has great significance for
model optimization and for reducing uncertainty.

Although the UOFS established in this study exhibits
reliable applicability and good prospect in the study case,
the result for only one flood season is insufficient for
general conclusions. For application in other basins, the
accurate model parameters, informative observational data,
and effective UOI are extremely important. Thus, it will be
beneficial to continue to validate and optimize the UOFS
framework, improve the physical modules, and make the
interactive scheme of the UOI and UOFS effective to
different users in order to improve forecasts from multiple
perspectives and ultimately toward practical applications in
hydrometeorology and beyond.
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