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The Simao Basin is characterized by strong tectonic activity and frequent seismicity. This
study investigated the hydrochemical characteristics of 21 thermal springs in the Simao
Basin from 2018 to 2020. In this study period, the 2018 Mojiang M5.9 earthquake caused
several hydrochemical changes. The results indicate that the Simao Basin contained saline
spring waters, HCO3

−-rich spring waters, and SO4
2−-rich spring waters. In the study area,

the water chemistry types were controlled by stratum lithology. Saline springs flowed
through red beds and dissolved large amounts of halite, which is a rich source of Cl−and
Na+ ions. In the hot spring waters, Ca2+ (Mg2+) and HCO3

− were mainly derived from the
dissolution of carbonate minerals, gypsum, and anhydrite of Triassic rocks. The higher
SO4

2- content in the hot spring waters was caused by the pyrite present in Ailaoshan
metamorphic rocks. The reservoir temperatures (121–289 °C) in the Simao Basin were
estimated by the silica-enthalpy mixing model equation and the silica-enthalpy diagram.
The hot springs had higher reservoir temperatures (>250 °C) and weremainly located at the
edges of the basin. Metamorphic rocks exposed in the region had low permeabilities and
these springs was close to nearby deep faults that provided deep heat. In most springs,
the concentrations of Ca2+ and HCO3

− ions increased obviously before the 2018 Mojiang
M5.9 earthquake; however, the concentrations of these ions decreased after the
earthquake. The hydrogeochemical variations might be attributed to the vigorous
water-rock interactions and the mixing of secondary fluids. The entry of cold shallow
groundwater caused changes in the reservoir temperatures of some spring samples.
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INTRODUCTION

The Simao Basin (the southern half of the Lanping-Simao Basin) is located in the Yunnan-Tibet
Geothermal Belt. It is a typical red-bed basin that exhibits a strong tectonic activity (Figures 1A,B).
Various types of springs of different sizes exist in the basin. Hot spring is an important part of
subsurface fluid and is exposed along fault zone. Therefore, hot spring carries a lot of deep
information during migration. The hydrochemical characteristics of hot springs are used to
obtain information about geothermal reservoirs and thermal groundwater circulation and may
provide insight into potential geothermal resources. In addition, hydrochemical components of
spring water are effective indicators of earthquakes, because seismic activity can change the state of
underground stress and strain, affect the hydrodynamic conditions and the degree of water-rock
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reaction in the hot spring, and further change the fluid composition
and isotope characteristics of hot spring. Some studies on springs in
the Simao Basin have focused on potassium exploration through
salty and saline springs, the exploration and utilization of
geothermal resources, and the origin and evolution of the
springs were also examined (Zhang et al., 2013; Bo et al., 2015;
Zhang et al., 2018; Zhang L. et al., 2019). However few reports have
studied the earthquake-related composition of groundwater
characteristics and changes in the basin. The study area is
located in the Simao-Pu’er seismic zone, which is one of the
most important strong earthquake disaster areas in the Yunnan
province (Cheng, 2017). Examination of the hydrochemistry and
changes of springs is of great helpful for understanding the
breeding process of strong earthquakes in this district.

Earthquake-related groundwater chemical composition
changes have been widely used in the search for seismic
precursors. Tsunogai and Wakita, 1995 observed increased
Cl− and SO4

2- concentrations in groundwater prior to the Kobe
earthquake in Japan. Claesson et al. (2004) observed a rapid
increase in multicomponent constituents and a decrease in the
Na/Ca content of groundwater due to a seismic event (M � 5.8)
in northern Iceland. Changes in the concentrations of Ca2+

and HCO3
− were observed before and after the Wenchuan

earthquake (Ms � 8.0), the Lushan earthquake (Ms � 7.0), and
the Kangding earthquake (Ms � 6.3) in China (Chen et al., 2015;
Li et al., 2019). Seismic hydrochemical changes may be linked to
changes in the permeability structure, the mixture of deep and
shallow fluids, and/or fluid-rock interactions caused by tectonic
activity (Claesson et al., 2004; Zhang X. et al., 2019).

In this study, new hydrochemical data was obtained from the
hot springs of Simao Basin. We investigated the hydrochemical
characteristics of these thermal springs from 2018 to 2020. During
the study period, the 2018 Mojiang M5.9 earthquake occurred in
the study area and caused significant hydrochemical changes.
Earthquake-related hydrochemical changes were studied and the
possible mechanisms in the geothermal area were explained.

GEOLOGICAL SETTING

The Simao Basin is located in southwest Yunnan, China and
belongs to the southern section of the Sanjiang fold system, which
is narrow in the north and wide in the south in the shape of a
broom (Figures 1A,B; Yunnan Bureau of Geology and Mineral
Resources, 1986). Several huge NW–SE and nearly S–N trending
faults control the formation and tectonic evolution of the basin.
The Lancangjiang deep fault (F1) in a roughly S–N direction and
the Ailaoshan deep fault (F3) in a NW–SE direction are the
western and eastern margins of the basin, respectively. A series of
NW–SE trending faults are present in the basin, including the
Wuliangshan fault (F2) and the Mohei fault (F4) (Figure 1; Qu
et al., 1998). Most parts of the Simao Basin are underlain by thick
Mesozoic and Cenozoic red beds, which mainly contain
sandstones and mudstones. Proterozoic metamorphic rocks are
only exposed in the margin of the basin. The Upper and Middle
Paleozoic limestones outcrop in the central block uplifts and the
marginal belt uplifts in the basin (Yunnan Bureau of Geology and
Mineral Resources, 1990). According to seismic records, many

FIGURE 1 | Topographic map of the study area (A) and schematic tectonics and spring sites in the Simao Basin (B); modified from Zhang Y. et al., 2020).
Abbreviations: F1, Lancangjiang fault; F2, Wuliangshan fault; F3, Ailaoshan fault; F4, Mohei fault.
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moderate and strong crustal earthquakes have occurred in the
basin in recent years, including the 2007 Ning’er earthquake (Ms
6.4), the 2014 Jinggu earthquake (Ms 6.6, Ms 5.8, andMs 5.9), and
the 2018 Mojiang earthquake (Ms 5.9) (http://www.ceic.ac.cn/).
On September 8, 2018, an Ms 5.9 earthquake occurred at
Mojiang, with an epicenter location of 23.28°N, 101.53°E and a
focal depth of 11 km. The focal mechanism indicates that the
seismogenic, strike-slip fault strikes northeast and dips to the
southeast. The strike is between azimuths of 26° and 44°, the dip is
between 52° and 71°, and the rake is between 2° and –17° (Zhang
Y. et al., 2019). The Simao Basin is situated in the southern
Yunnan-Tibet geothermal zone, which shows strong geothermal
activity. The active crustal movement creates favourable
conditions for the formation of high-temperature geothermal
fields (Zhou et al., 2017), which have a terrestrial heat flow of 63.
2 MW/m2 (Xu et al., 1992). The area hosts more than 100 springs.
Several types of springs (including hot springs, saline springs and
salty springs) exist in the basin (Zhang L. et al., 2019). The
temperature and the flow of spring water vary in the dry season
and the rainy season, but the water chemistry of springs is stable.
Most of the springs emerge in carbonate rocks and water-rich red
beds. The distribution of the banded geothermal wells is
controlled by the tectonic activities that formed deeper
fracture zones, which can provide channels for the enrichment
and migration of geothermal fluids.

MATERIALS AND METHODS

Hot springs were geochemically investigated in the Simao Basin
from 2018 to 2020, and 38 hydrothermal water samples were
obtained (sampling locations shown in Figure 1B and
Supplementary Table S1). A lot of hydrochemical data was

collected from previous studies that investigated these thermal
spring samples in the 1980s and 2017 (Tong and Zhang, 1994;
Zhang X. et al., 2019). The field investigations include on-site
measurements of pH, temperature, electrical conductivity (EC),
which were measured with a portable multi-parameter water
quality analyzer (produced byWTW, Germany). The precision of
these factors were 0.01, 0.1°C, and 1 μS cm−1, respectively. Each
water sample was filtered on-site with 0.2 μm membranes and
was stored in two 250 ml polyethylene bottles. The concentration
of major cations (Na+, K+, Ca2+ and Mg2+) and anions (F−, Cl−,
NO2

−, Br−, NO3
−and SO4

2−) were determined by performing ion
chromatography (883 Basic IC plus, Metrohm, Switzerland;
detection limit: 0.01 mgL−1) at the Deep-earth fluids
Laboratory, Yunnan Earthquake Administration, China. Low
concentrations of Li+, Rb+, Cs+, Sr2+ were determined with a
Thermo Fisher X series II ICP-MS at the Institute of Crustal
Dynamics, China Earthquake Administration, Beijing, China.
SiO2 (aq), HCO3

−, and CO3
2− were detected according to the

China National Standard Examination Methods for Drinking
Natural Mineral Water (GB/T 8538-2008). SiO2 (aq) was
measured by a visible spectrophotometer, and HCO3

− and
CO3

2− was measured by the volumetric method (HCl titration).

RESULTS AND DISCUSSION

Hydrogeochemistry
The physicochemical parameters and the geochemical data of hot
springs in the Simao Basin have been listed in Supplementary
Table S1 and Supplementary Table S2. The 21 hot springs had
temperatures ranging from 30°C to 102°C. The pH values and
total dissolved solids (TDS) were 5.60–8.26 and 237–10,444 mg/
L, respectively. The saline spring samples (No. 3, 4, and 5) had

FIGURE 2 | Piper diagram (A) and Schoeller diagram (B) of the geothermal waters. Process (black circles) indicating the changes before and after the Mojiang
earthquake.
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relatively higher TDS values (5,351–10,444 mg/L) than others.
The data of ions (K+, Na+, Ca2+, Mg2+, Cl−, SO4

2− and HCO3
−)

was provided from previous studies that investigated the thermal

springs from the 1980s to 2020. As shown in Figure 2, Piper and
Schoeller’s diagrams illustrate the concentrations of major and
minor ions in springs. In the Piper diagram, the 21 water samples

FIGURE 3 |Relationship plots of major ions of the spring water in the Simao Basin. (A)HCO3
− vs. Na+; (B)Na+ vs. Cl−; (C) SO4

2− vs. Ca2+; (D)HCO3
2− vs. Ca2+; (E)

Ca2+ + Mg2+ vs. HCO3
− + SO4

2−; (F) SO4
2− vs. Cl−.
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have been roughly divided into three groups. Saline spring waters
are of Na–Cl type. Samples containing HCO3

− as the
predominant anion (HCO3

− > SO4
2− > Cl− or HCO3

− > Cl− >
SO4

2−) include Na-HCO3, Ca-HCO3, Ca-Na-HCO3, Na-Ca-
HCO3, Na-HCO3-SO4, Na-HCO3-Cl, Na-Ca-HCO3-SO4, and
Na-HCO3-Cl-SO4. Samples containing SO4

2− as the
predominant anion (SO4

2− > HCO3
− > Cl− or SO4

2− > Cl− >
HCO3

−) include Ca-SO4, Na-Ca-SO4, Ca-Na-SO4, Na-SO4-
HCO3, and Na-Ca-SO4-HCO3. Other ions (Li+, NH4

+, Rb+,
Cs+, Sr2+, F−, NO2

−, Br−, NO3
−) were present in relatively low

concentrations. In data points 14–21, the components F− and Sr2+

had relatively higher concentrations. This is because F− and Sr2+

were more easily enriched into weak alkaline water, with a pH
range of 7.0–8.5 (Cai et al., 2001; Xing et al., 2012).

To understand the origin and the evolution of major ions in
thermal groundwater, the relationships between major ions of the
spring water were analyzed, i.e. HCO3

− vs. Na+, Na+ vs. Cl−,
SO4

2− vs. Ca2+, HCO3
2− vs. Ca2+, (Ca2+ + Mg2+) vs. (HCO3

− +
SO4

2-) and SO4
2- vs. Cl−, (Figure 3). Except for the data points 3,

4, 5, 8, 9, and 12, most of the data points were plotted close to the
1:1 line in Figure 3A. This indicated that the quality of Na was
affected by the dissolution of Na-feldspar. Samples 8 and 9 are
present on the lower-right side of the 1:1 line, which implies that
HCO3

− has another source. Figure 3D illustrated that carbonate
minerals (calcite and dolomite) were also a source of HCO3

−. The
Triassic carbonate strata in the Simao Basin are located under the
Jurassic red bed. The spring water flows through carbonate
formations and can dissolve calcite and dolomite. Saline spring
waters of data points 3, 4, 5, and 12 have a higher concentration of
Na+ ions and a lower concentration of HCO3

− ions, with an
average molar Na+/HCO3

− ratio of 15. This indicates that the
dissolution of Na-feldspar is not the main source of these ions
(Figure 3A). Spring samples of data points 3, 4 and 5 are located
in Jinggu County, which is a region with large halite deposits
(Yunnan Bureau of Geology and Mineral Resources, 1986). As
shown in Figure 3B, saline spring samples of data points 3, 4, 5,
and 12 contained a high concentration of Cl− and Na+ ions, which
were present on the dissolution line of NaCl. This indicates that
halite is themain source of Na. Except for data points 6, 7, 8, and 9
in the Triassic carbonate rocks, most water falls near the 1:1 line
(gypsum dissolution line), suggesting that the dissolution of
gypsum and anhydrite is the main source of Ca2+ and SO4

2−

(Figure 3C). In Lanping- Simao Basin, anhydrite is distributed in
the thin interlayer of the salt series, and gypsum is distributed in
the mud conglomerate layer on the surface (Qu et al., 1998). The
ionic ratios of (Ca2+ + Mg2+) vs. (HCO3

− + SO4
2-) in Figure 3E

show that the dissolution of dolomite, calcite, gypsum, and
anhydrite is responsible for the production of Ca2+, Mg2+,
SO4

2-, and HCO3
−. A correlation between Cl− and SO4

2− can
be inferred from Figure 3F. The positive chloride-sulfate relation
probably reflects the mixing of geothermal water and cold water
(Arnórsson, 1985). Atmospheric oxygen in the cold water
oxidizes H2S to SO4

2- at shallow depths (Daniele et al., 2020),
which increases the SO4

2- concentration of the geothermal water,
(e.g., sampling points 10, 11, 18, 19, 20, and 21). In addition, the
lithology suggests that the dissolution of the pyrite-bearing
formation rocks near the Ailaoshan fault may increase the
SO4

2- content in the groundwater (Luo, 2007). Therefore, the
chemical characteristics of geothermal water in the Simao Basin
show that the main ions in the hot spring water mainly come
from the dissolution of minerals during the circulation of surface
water. The water chemistry types are controlled by stratum
lithology.

Earthquake-Induced Chemical Variations
As shown in the Piper diagram (Figure 2), the water chemistry in
No.7 and 13 changed during the study period. Anomalies of the
water chemistry types in No. 1 and 2 should not be considered,

FIGURE 4 | Hydrogeochemical changes of thermal springs from the
1980s to 2020.
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because the epicentral distance of these two anomalous sites is far
above the theoretical distance influenced by the quake with
magnitude (M) 5. No.7 is located in the near-field of the
Mojiang earthquake. The water chemistry in No.7 changed
from Na-HCO3-Cl to Na-Ca-HCO3 in June 2018 before the
Mojiang M5.9 earthquake on September 8 and from Na-Ca-
HCO3 back to Na-HCO3-Cl in 2020. Similarly, the water
chemistry in No.13 changed from Na-Ca-Cl-SO4-HCO3 to
Na-Ca-HCO3-Cl-SO4 before the Mojiang M5.9 earthquake and
from Na-Ca-HCO3-Cl-SO4 back to Na-Ca-Cl-SO4-HCO3 after
the earthquake; however, no significant changes were observed in
other spring samples (Supplementary Table S1). For these spring
samples, the time series of anion and cation ions for these springs
were plotted (Figure 4). Based on previous case studies
documenting hydrogeochemical response to seismicity, the
groundwater chemistry fluctuates due to rainfall and other
superficial phenomena. During the entire sampling period, most

of the cations and anions varied with the two sigma relative
standard deviation (2σ). Before the earthquake, ionic
concentration increased slightly (only 10–20% above the
background value) and was considered insignificant (Toutain
et al., 1997; Li et al., 2021). In the springs, Ca2+ and HCO3

−

ions exhibited significant changes before the Mojiang M5.9
earthquake; however, other ions stayed relatively stable in the
springs. In most springs (blue lines), the concentration of Ca2+

and HCO3
− ions increased obviously (about 28–77% above the

background value) before the Mojiang M5.9 earthquake; however,
it decreased after the earthquake (Figure 4). The data points 6, 8, 9,
18, 19, 20, and 21 (black lines) changed slightly before and after the
earthquake. The Na/Ca ratio appeared to be sensitive to changing
stresses, which were associated with M > 4 earthquakes (Claesson
et al., 2004). In Figure 4, the Na/Ca data decreased before the
Mojiang M5.9 earthquake. After the earthquake, the Na/Ca ratio
increased slightly and then recovered in 2020.

TABLE 1 | The estimated reservoir temperatures of hot springs in the Simao Basin.

Sample no Reservoir temperature (°C) Sample no Reservoir temperature (° C)

Quartz Na-K K-Mg Na-K-Ca Quartz Na-K K-Mg Na-K-Ca

1a 91 172 83 176 11a 87 139 52 74
1b 92 129 68 90 11b 85 120 42 48
1c 78 143 70 89 11c 62 119 42 49
1d 91 127 66 128 11d 55 120 41 51
2a 116 151 83 144 12a 102 108 73 121
2b 117 100 68 75 12aa 85 149 92 151
2c 111 115 74 83 12b 111 92 70 90
2d 116 101 68 83 12c 100 86 69 90
3b 85 84 77 105 12d 100 87 70 91
3c 83 78 79 101 13a 91 115 42 56
3d 81 78 79 102 13aa 74 114 40 55
4a 97 101 81 118 13b 85 86 33 33
4b 100 71 66 90 13c 77 86 32 36
4c 67 63 67 86 13d 82 84 31 38
4d 95 63 67 87 14a 117 202 106 197
5a 91 97 91 118 14c 111 180 102 164
5b 88 71 75 94 14d 103 170 97 162
5c 86 67 83 94 15c 138 166 97 153
5d 92 67 82 94 15d 124 166 96 153
6a 83 157 38 28 16a 134 224 96 200
6b 82 142 33 17 16c 128 201 89 170
6c 63 142 33 16 16d 124 204 89 171
6d 77 136 32 21 17c 134 186 98 163
7a 107 207 79 185 17d 125 187 99 165
7aa 99 194 79 164 18a 146 205 75 72
7b 111 193 73 91 18b 138 190 68 51
7c 91 248 83 87 18c 120 190 67 51
7d 104 195 72 163 18d 128 189 67 50
8a 69 191 12 109 19b 133 223 65 46
8b 62 258 14 131 19c 99 215 55 45
8c 51 260 14 131 19d 130 214 55 44
8d 79 255 13 130 20b 162 222 88 75
9a 57 94 - 59 20c 149 223 87 75
9b 48 195 15 107 20d 156 223 87 75
9c 32 198 15 107 21a 177 216 111 196
9d 67 200 16 111 21b 164 221 91 182
10a 102 168 70 149 21c 154 221 92 183
10b 100 139 66 67 21d 153 223 91 180
10c 74 139 58 69
10d 88 140 59 74
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Reservoir Temperature and Variations
Reservoir temperature is an important parameter, which is used for
classifying the genetic types of geothermal systems. Moreover, it is
also used for evaluating the geothermal potential of geothermal
fields, which can be estimated with geochemical geothermometers.
The concentration of solutes in geothermal fluids is a function of
the geothermal reservoir temperature. In theory, all chemical
reactions controlled by temperature can be used as geochemical
geothermometers (Ellis, 1970; Wang et al., 1993).

Traditionally, the cation ratio geothermometers such as Na-K,
Na-K-Ca, and K-Mg geothermometers and SiO2

geothermometers were used to estimate the geothermal
reservoir temperature (Fournier, 1981; Giggenbach, 1988;
Verma and Santoyo, 1997). As shown in Table 1, the reservoir
temperatures were calculated by using Eqs 1–4.

θquartz(°C) � 1309
5.19 − log (SiO2) − 273.15 (1)

θNaK(°C) � 1217

1.483 − log (Na)
K

− 273.15 (2)

θNaKCa(°C) � 1647

log (Na)
K + β (log( ���

Ca
√ /Na) + 2.06) + 2.47

− 273.15

(3)

θKMg(°C) � 4410

14.0 − log[K2

Mg]
− 273.15 (4)

As shown in Table 1, the reservoir temperatures calculated by
quartz geothermometers were in the range of 32–177°C, and those
calculated by cation geothermometers were as follows: 63–260°C
(Na-K), 12–91°C (Na-K) and 16-200 (Na-K-Ca), respectively. The
Na-K-Mg triangular diagram classified spring waters into three
types: fully-equilibrated waters, partially-equilibrated waters and

immature waters. These water types were used to determine
whether a fluid reached water-rock equilibrium (Giggenbach,
1988). Only fully-equilibrated waters could be used with cation
geothermometers. In Figure 5, most data points were in the area of
immature water, which was present in the hot springs plot. Sample
No. 2, 3, 4, 5, and 12 were located in the partially-equilibrated area
of the triangular diagram. This indicates that the wall rock have not
reached equilibrium due to the addition of a significant quantity of
cold water (shallow groundwater). This implies that cation
geothermometers are not suitable for calculating the reservoir
temperatures of the study area.

The reservoir temperature in the Simao Basin was calculated
by Zhang Y. et al., 2019. Their study indicates that compared to
cation geothermometers, quartz geothermometer provides more
reasonable estimations of the reservoir temperature of this area
(Zhang L. et al., 2019). As mentioned previously, the studied hot
spring waters are mixtures of thermal groundwater and shallow
cold waters, which cause a high dilution of silica concentration.
Therefore, the temperatures calculated with SiO2

geothermometers (Table 1) were lower than the most reliable
reservoir temperatures. The silica-enthalpy mixing model
equation and the silica-enthalpy diagram can be used to
estimate the proportion of thermal groundwater and cold
waters. Moreover, they can be used to measure the original
temperature of the thermal groundwater component, which
can be further considered as the reservoir temperature
(Fournier, 1977). The proportion of cold water during mixing
was calculated by the following silica-enthalpy Eqs 5, 6 (Fournier
et al., 1974).

Hc · X1 +Hh(1 − X1) � Hs (5)

Sic · X2 + Sih(1 − X2) � Sis (6)

FIGURE 5 | The Na-K-Mg trilinear equilibrium diagram of hydrothermal water of the Simao Basin.
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where Hc is the enthalpy of the near-surface cold water, Hh is the
initial enthalpy of deep hot water, andHs is the enthalpy of mixed hot
water.Moreover, Sic is the silica content of near-surface cold water, Sih
is the initial silica content of deep hot water, and Sis is the silica
content of mixed hot water. X1 and X2 are the calculated cold water
mixing ratios of enthalpy and the SiO2 concentration, respectively.
The solution of Eqs 5, 6 was calculated by using a diagrammatic
method (Figure 6, taking the example of samples 10a-d) because the
values of X1, X2, and Hs are unknown. The relationship between X
and temperature was plotted to obtain two curves, whose intersection
indicated the estimated proportion of cold water and the original
temperature of the thermal groundwater component. The silica-
enthalpy diagram is another way to estimate the temperature of
the deep thermal groundwater, by using a plot of silica concentration
vs. the enthalpy of water (Fournier, 1977). A line passed through the
characteristic points of cold (point A) and geothermal (point B)
waters; the intersection of the line is point C. The quartz solubility
curve illustrates the enthalpy of the deep thermal groundwater
(Figure 7, taking the example of samples 10a-d).

Except for the data points 4c, 5c, 7c, 10c, and 12c at abnormal
lower temperatures, the reservoir temperatures of the mixing

model of the silica-enthalpy equation and diagram were in the
range of 121°C and 289°C (Table 2). As shown in Table 2, these
values were significantly higher than those of reservoir
temperatures, which were determined by the SiO2

geothermometer. The proportions for cold water ranged from
69 to 98%. An intersection point was not obtained at the plots
of samples 1c-d, 6c, 8c, 9a-d, 11c, 14a-d, 16a-d, 18a-d, and 19a-d.
This indicates that heat was lost before mixing the hot and cold
waters. The existence of the low-velocity zones (LVZs) has been
revealed by seismic imaging beneath the Simao Basin within the
middle-lower crust at a depth of 15–30 km, and is considered to be
possible ductile crustal flow (Bai et al., 2010; Bao et al., 2015; Li
et al., 2016). The ductile crustal flow may be a dominant heat
source of hot springs in the Simao Basin. The hot springs had
higher reservoir temperatures (>250°C) and were mainly located at
the margin of the Simao basin, that is, sample sites 2, 13, 15, 17, 20,
and 21. At this location, the Lancangjiang and Ailaoshan deep
faults were well-developed. A fracture is the main channel for hot
water circulation, and the deep faults help provide deep heat for the
spring waters (Tang et al., 2017). In the study area, the fissures were
well-developed in carbonate rocks. However, the metamorphic

FIGURE 6 | A diagram of temperature relative to the proportion of cold water in hot spring sample 10 (X is the proportion of the cold water).
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strata were exposed in the margin of the basin, which seemed to
have low permeability. As a result, springs that emerged in the
Ailaoshan metamorphic rocks had higher reservoir temperatures.

The sampling points 4c, 5c, 7c, 10c, and 12c, which were
located at about 50–150 km away from the epicentre of the M5.9
Mojiang earthquake. After the earthquake, these reservoir
temperatures showed a massive decline (Figure 8). In

particular, the reservoir temperatures of the sample 10c
decreased by about 100°C after the M5.9 Mojiang earthquake;
however, the reservoir temperature of the sample 10c recovered
in the year 2020 (200–223°C). The variations in reservoir
temperature were similar to those observed after the M 8.0
Wenchuan earthquake (Li et al., 2019). The reservoir
temperature was approximately 340°C before the Wenchuan

FIGURE 7 | The silica-enthalpy diagram of hot spring sample 10.
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earthquake, and it decreased to a relatively stable level after the
earthquake (220–260°C).

THE ASSUMPTIONS OF
EARTHQUAKE-RELATED
HYDROGEOCHEMICAL VARIATION
Two assumptions have often been used to explain earthquake-
related hydrogeochemical changes (Claesson et al., 2007): 1)
hydrogeochemical shifts record accelerated water-rock
interactions resulting from an increased reactive surface area
caused by fracture of the sampled aquifer; or 2) hydrogeochemical
shifts record the mixing of (or switching between) chemically
distinct aquifers. This could occur in response to the fracture of a
hydrological barrier between aquifers or because of a change in
the relative pressures of connected aquifers.

Whenever an earthquake occurs, the pore pressure of rocks is
enhanced. Since a seismic wave propagates through the rocks, it
causes an extensive fracture of the wall rock (Du et al., 2013). This
increases the rock’s surface area, which is in contact with
groundwater. Thus, the water-rock interactions become more
intensive. In hydrogeochemistry, the saturation index (SI) is
commonly used to indicate the chemical states of the mineral
phases of groundwater. The saturation state of hot springs in the
Simao Basin was calculated based on the chemical compositions
and physicochemical parameters of the hydrothermal waters via
the PHREEQC program package (Parkhurst and Appelo, 1999).
All the samples were undersaturated with gypsum, anhydrite,
celestite and halite (SI < 0), showing no obvious changes before
and after the Mojiang earthquake. However, the SI values of
carbonate minerals (calcite and aragonite) exhibited significant
changes before and after the earthquake. Figure 9 illustrates the
saturation trends of calcite and aragonite. The SI values of calcite

TABLE 2 | Reservoir temperatures based on the silica-enthalpy mixing model and cold water mixing proportions of the hot springs in the Simao Basin.

Sample Reservoir temperature (° C) Cold water
mixing proportion

(%)

Sample Reservoir temperature (° C) Cold water
mixing proportion

(%)
Silica-enthalpy

graph
Silica-enthalpy

equation
Silica-enthalpy

graph
Silica-enthalpy

equation

1a 226 220 92.6 11a 231 234 94.6
1b 192 194 89 11b 231 228 94.7
1c — — — 11c
1d — — — 11d
2a 280 275 91.3 12a 225 218 88.9
2b — — — 12aa 225 219 94
2c 272 263 91.5 12b 227 225 87
2d — — — 12c 188↓ 192↓ 84.7
3b 241 258 96.2 12d 200 216 89.2
3c — — — 13a 256 247 94.7
3d — — — 13aa 146 154 90.6
4a 214 203 88.5 13b — — —-
4b 194 194 85.3 13c 279 263 97.6
4c 103↓ 107↓ 81.7 13d — — —

4d 193 193 87.2 14a — — —

5a 147 148 76.9 14c — — —

5b 142 140 74.7 14d — — —

5c 114↓ 129↓ 71.4 15c 252 246 80.9
5d 150 150 77.2 15d 208 206 76
6a 143 151 84 16a — — —

6b 140 149 83.8 16c — — —

6c — — — 16d — — —

6d 121 126 80.3 17c 268 267 85.6
7a 185 184 78.5 17d 239 233 82.7
7aa 154 150 69.2 18a — — —

7b 187 190 78.2 18b — — —

7c 122↓ 122↓ 59.3 18c — — —

7d 165 171 76.2 18d — — —

8a 225 256 98.4 19b — — —

8b 217 183 97.9 19c — — —

8c — — — 19d — — —

8d — — — 20b — — —

9a — — — 20c 289 271 81.2
9b — — — 20d — — —

9c — — — 21a — — —

9d — — — 21b 278 263 73.5
10a 190 200 85.9 21c 250 235 69.4
10b 197 208 87.9 21d 246 237 71.1
10c 105↓ 107↓ 71.3
10d 200 223 93.5
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and aragonite in almost all undersaturated sampling points
reached saturation before the Mojiang M5.9 earthquake,
indicating the enhanced dissolution of carbonate rocks. Thus,
the increases in the concentrations of Ca2+ and HCO3

− ions were
observed during the Mojiang earthquake. The water chemistry of
No.7 and No.13 sites changed from Na-HCO3-Cl to Na-Ca-
HCO3, and from Na-Ca-Cl-SO4-HCO3 to Na-Ca-HCO3-Cl-SO4,
respectively. This also indicates that the dissolution of Ca2+ and
HCO3

− ions were in progress. After the earthquake, the SI ratios
continued to increase and reached oversaturated levels. This
implies that precipitation occurred in the hot springs of the
Simao Basin, and the concentration of dissolved ions
decreased. The SI values decreased and recovered in 2020.
This progressive re-equilibration was possible due to water-
rock interactions, which explains why the concentration of
Ca2+ and HCO3

− ions decreased to their pre-seismic levels.
Moreover, the water chemistry of No.7 and No.13 sites also
recovered. Although the vigorous water-interaction model is

used to explain the changes in the chemical components
(i.e., major and trace elements) following an earthquake, the
model fails to explain the variables that indicate water mixing or
interactions with deep fluids (e.g., water isotopes, dissolved gases
and reservoir temperature; Binda et al., 2020).

The rupture of hydrological barriers or permeability changes
are probable causes of variations in ionic concentrations and
reservoir temperature. Seismic waves may enhance the
permeability of the affected aquifers through increasing
fracture porosity, changing pore pressure, and fracturing
aquitards. These seismic effects could result in the mixing of
fluids from different aquifers or the upwelling of deep fluids
(Binda et al., 2020). Before the occurrence of the Mojiang
earthquake (from April to July 2018), the compressive activity
was significantly greater around the Jingdong-Simao region
(Yang et al., 2019). A compressional setting favored an
increase in pore pressure induced in Moderate shocks (De
Gregorio et al., 2012). Under the N–S-trending tectonic
compression stresses, the local stress concentration may cause
a new fracture and inducemoderate to strong earthquakes like the
Mojiang M5.9 earthquake (Chang et al., 2019). New fractures
were created during the Mojiang earthquake, which caused the
permeability to increase greatly. The obvious increases in the
concentrations of Ca2+ and HCO3

− may be attributed to a
secondary fluid, which is rich in Ca2+ and HCO3

− ions and
originates from the underlying carbonate strata. In addition, the
variation in ionic concentrations may be correlated to the
contribution of deep fluids. Under the Simao-Pu’er seismic
zone, strong low-velocity zones are visible, suggesting the
existence of an upwelling asthenosphere in the uppermost
mantle (Li et al., 2016; Zhang Z. et al., 2020). Deep degassing
results indicate that high He isotopes signatures (3He/4He �
5.75–8.36 Ra; mantle-derived He >70%) are present in this
region (Zhao et al., 2018). An increased 3He/4He ratios were
observed in the hot springs before the occurrence of M > 4
earthquakes in the Simao-Pu’er seismic zone. This implies that
much deeper fluid was added to these springs. Moreover, a similar
phenomenon that caused changes in the reservoir temperature

FIGURE 8 | Reservoir temperature variations in some springs from the
1980s to 2020.

FIGURE 9 | Variations in the SIs of calcite and aragonite in the hot springs from the 1980s to 2020.
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was the M 8.0 Wenchuan earthquake (Li et al., 2019). Variations
in reservoir temperature after the Mojiang earthquake may have
been caused by the entrance of cold shallow groundwater into the
reservoir, which participated in deep circulation; however, the
clogging of fractures prevented the entry of shallow cold
groundwater, and the reservoir temperature increased. Thus,
we infer that the chemical changes that occurred after the
Mojiang earthquake were caused by the mixing of fluids and
water-rock interaction.

CONCLUSION

From 2018 to 2020, the hydrochemical characteristics of 21
thermal springs of the Simao Basin were determined. These
water samples were roughly divided into three groups: saline
spring waters, HCO3

−-rich spring waters, and SO4
2−-rich spring

waters. In the study area, the water chemistry types were
controlled by stratum lithology. Ca2+ (Mg2+) and HCO3

− in
the hot spring waters were mainly derived from the
dissolution of carbonate minerals, gypsum, and anhydrite in
Triassic rocks. The saline springs flowed in the red beds and
dissolved a large amount of halite with high Cl− and Na+ contents.
The Ailaoshan metamorphic rocks contain pyrite, which may
increase the SO4

2- content in the hot spring waters. The reservoir
temperatures (121–289°C) of the Simao Basin were determined. It
is speculated that the ductile crustal flow could be the dominant
heat source of the hot springs of Simao Basin. The hot springs had
higher reservoir temperatures (>250°C) and were mainly located
at the edges of the basin. Metamorphic rocks exposed in the
region had low permeabilities and these springs was close to
nearby deep faults that provided deep heat.

During the study period, the 2018 Mojiang M5.9 earthquake
occurred in the study area and caused significant hydrochemical
changes. The concentrations of Ca2+ and HCO3

− ions increased
obviously in most springs, just before the occurrence of the
Mojiang M5.9 earthquake; however, the concentrations of these
ions decreased after the earthquake. The hydrogeochemical
variation might be attributed to the vigorous water-rock

interactions and the mixing of a second fluid. The reservoir
temperature decreased after the earthquake. This may have been
caused by the entry of cold shallow groundwater.
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