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The sub-daily variability of aerosols affects the estimates of daily mean aerosol loading.
However, large spatial scale estimates of their climate effects are mostly based on
snapshots from low orbit satellites that may bias the mean estimate for daily, monthly,
or annual timescales. In this study, an attempt is made to estimate the magnitude of such
bias based on ground and satellite-based datasets. Using ground-based measurements,
we show an apparent asymmetry (of the order of 10–50%) in the sub-daily variability of
aerosol loading over the Indian region. For the first time, it is reported that this sub-daily
variability has a spatial pattern with an increasing amplitude toward the east of the
subcontinent. We also find this variability in aerosol loading is well-captured by the
satellites but with a lower amplitude. Our study shows that such differences could alter
the annual surface radiative forcing estimates by more than ∼15Wm−2 over this region.
We find that NASA’s Modern-Era Retrospective analysis for Research and Applications
version 2 (MERRA-2), a state-of-the-art model-based chemical reanalysis, is unable to
capture these sub-daily variabilities. This implies that both model and satellite-based
radiative forcing estimates for large spatial scales should improve aerosol sub-daily
information/variabilities for obtaining reliable radiative forcing estimates.
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INTRODUCTION

The importance of atmospheric aerosols and their influence on climate are well-known. Atmospheric
aerosols can influence climate directly by scattering or absorbing solar radiation (Atwater, 1970;
Ensor et al., 1971; Gao et al., 2018) and indirectly by affecting cloud droplet concentrations (Menon
et al., 2002; Rotstayn and Lohmann, 2002; Lohmann and Feichter, 2004; Takemura et al., 2005;
Panicker et al., 2010; Gu et al., 2012; Dipu et al., 2013; Ning et al., 2015). The presence of absorbing
aerosols like Black Carbon (BC) or dust under favorable conditions can change the top of the
atmosphere forcing from negative to positive (Babu et al., 2002; Chand et al., 2009; Liu et al., 2018).
Numerous studies have reported the change in radiative forcing due to enhanced aerosol
concentration over the Indian region (Jayaraman et al., 1998; Ramanathan et al., 2001; Rajeev
and Ramanathan, 2001; Babu et al., 2002; Babu andMoorthy, 2002; Vinoj et al., 2004b; Ganguly et al.,
2005; Ramachandran et al., 2006; Dey and Tripathi, 2008; Pathak et al., 2010; Vinoj et al., 2010;
Tiwari and Singh, 2013; Vinoj et al., 2014; Pathak et al., 2016; Biswas et al., 2017; Panicker et al.,
2018). It is shown that even rural and island locations are exposed to high BC concentrations (Vinoj
et al., 2010; Rehman et al., 2011; Ravi Kiran et al., 2018). Several studies have reported the rapid
increase of aerosol loading over the Indian region (Vinoj et al., 2004b; Sarkar et al., 2006; Kaskaoutis
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et al., 2012; Ramachandran et al., 2012; Kiran Kumar et al., 2013;
Krishna Moorthy et al., 2013; Sreekanth, 2016; Mukherjee et al.,
2018).

In addition to the long-term trends and spatial variabilities,
aerosols also exhibit diurnal variation. For example, fine-mode
aerosols like BC has a typical diurnal variation, depending on the
boundary layer characteristics (Babu and Moorthy, 2002; Pant
et al., 2006; Dey and Tripathi, 2008; Baxla et al., 2009; Vinoj et al.,
2010; Bhat et al., 2017; Ravi Kiran et al., 2018) at the surface.
Furthermore, large diurnal variability of column aerosol optical
properties (AOP) is reported throughout the world (Smirnov,
2002; Pandithurai et al., 2007; Rana et al., 2009; Mazzola et al.,
2010; Zhang et al., 2012; Guo et al., 2017; Zayakhanov et al., 2018)
using point observations.

Since the Earth Observation Satellite era, low orbit satellites
and their data have provided significant insights into large-scale
features of aerosol distribution, transport, and variability at
different timescales. However, due to their orbital
characteristics, most insights are also based on a few snapshots
available within a day. Thus, the daily aerosol loading is estimated
from single imagery rather than actual estimates of daily mean
through in situ measurement throughout the day. Despite this
uncertainty, most aerosol impact assessments on regional and
global scales use satellite observations to constrain model
simulations. Therefore, the sub-daily variations in aerosol
loading could alter the mean aerosol loading estimated from
these satellites, inducing significant bias in estimated radiative
effects of aerosols (Christopher, 2003; Kassianov et al., 2013;
Kuang et al., 2015; Wang et al., 2015; Xu et al., 2016). Insitu
observation-based studies have discussed the diurnal variation of
column aerosols (Devara et al., 1996; Moorthy et al., 2005;
Pandithurai et al., 2007; Rana et al., 2009; Gogoi et al., 2014;
Joshi et al., 2016; Mukherjee and Vinoj, 2019) over India.
However, the understanding of their spatial extent is limited.
Such insights from satellites require data from multiple satellites
orbiting at different times within a day or availability of high-
quality aerosol retrievals at a regular time interval from
geostationary satellites Such aerosols retrievals from the
geostationary satellites, like SEVERI (Bernard et al., 2011) and
INSAT 3D, offer the opportunity to observe the same area over a
long period. However, aerosol retrievals from these platforms
have considerable uncertainty (Mishra, 2018). Therefore, under
current circumstances, studying the sub-daily variability of
aerosols over large spatial scales requires a synergy between
the station and multiple satellite measurements. The MODIS
(Moderate Resolution Imaging Spectroradiometer) aerosol
optical depth (AOD) data are known for its high-quality and
long period of data availability (Vinoj et al., 2004b; Prasad et al.,
2004; Vinoj et al., 2010; Pandey et al., 2016). Multiple studies have
also validated (Vinoj et al., 2004b; Jethva et al., 2007; Dey and Di
Girolamo, 2011; Mhawish et al., 2017; Mukherjee and Vinoj,
2019) the aerosol products over this region.

This study attempts to elucidate the sub-daily variability of
aerosols using ground and satellite-based aerosol optical depth
measurements and their impact on the radiative effect over the
Indian region.

DATA AND METHODOLOGY

The aerosol optical depth (AOD) data at 500 nm were obtained
from Aerosol Robotic NETwork (AERONET) version 2 level 1.5
all points datasets for seven stations (Jaipur, Gual Pahari,
Nainital, New Delhi, Kanpur, Gandhi College, and Bhola)
across the Indo-Gangetic Plains for the period since 2001
depending on their availability (at least more than a year).
AERONET provides an extensive network of observatories
operating in a similar operating protocol (Holben et al., 1998).
The stations use the CIMEL electronique spectral radiometer to
generate the spectral data of direct Sun and sky radiances within
340–1,020 and 440–1,020 nm. The accuracy limit of the AOD
retrieval lies within ± 0.01 (for λ > 440 nm) to ± 0.02 (for λ <
440 nm) (Holben et al., 1998).

Along with the ground-based observation data, AOD at
550 nm was also obtained from two satellite platforms
(NASA’s Terra and Aqua satellites). The satellites use MODIS
as a common sensor and utilize a similar algorithm (Dark target
& deep blue combined, collection-6, MOD08_D3_v6.1, and
MYD_08_D3_v6.1) to retrieve the AOD data. However, the
overpass timing of these two satellites is different. Thus,
quality-assured level 3 AOD values with a spatial resolution of
1° from two satellites having different overpass times (MODIS
Terra at 10:30 IST (5 UTC) and MODIS Aqua at 13:30 IST (8
UTC)) are utilized in this study. The MODIS collection-6 level-2
AOD has a retrieval uncertainty of 0.05 ± 0.15 (Levy et al., 2013).
The level 3 data are derived by following strict quality control
measures, which substantially reduces the bias of the data.

The inter-satellite difference provides an opportunity to
estimate the sub-daily variability in aerosol loading. Therefore,
the AOD difference between 10:30 IST and 13:30 IST was
calculated (± 15 min averaging window) for ground-based
AERONET observations data and is termed AERONET AOD
Difference Range (ADR). Similarly, the AOD difference between
Terra and Aqua satellite AOD’s is called Satellite AODDifference
Range (SDR).

ADR � AERONET AOD500 at 10:30 IST

− AERONET AOD500 at 13:30 IST, (1)

SDR � Terra AOD550 − Aqua AOD550. (2)

The annual and seasonal variability of ADR and SDR is
computed to show the daytime (hereafter called sub-daily)
variation of aerosol loading spatially over the Indian region.
The variability of both ADR and SDR is then used to
understand their spatial distribution.

Besides the ground-based and satellite observations, model-
derived data are also used to understand the aerosol sub-daily
variability. For that, NASA’s Modern-Era Retrospective analysis
for Research and Applications version 2 (MERRA-2) (Bosilovich,
2015) generated Aerosol Total Extinction at 500 nm is used. The
model assimilates several meteorological parameters and NASA’s
Goddard Earth Observation System (GEOS-5) model data
(Gelaro et al., 2017). The aerosol reanalysis product assimilates
aerosol species from Goddard Chemistry Aerosol Radiation and
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Transport (GOCART) module along with space and ground-
based observations (Buchard et al., 2017). TheMERRA-2 data are
validated with observation (Buchard et al., 2017; Pandey et al.,
2017; McCoy et al., 2018; Navinya et al., 2020), and their biases
are well-understood.

The relative humidity (RH) data from ECMWF (four times
daily) (Dee et al., 2011) are also used in this study. The difference
between RH at 06 UTC and 09 UTC is calculated for the annual
and seasonal scales based on its temporal proximity to the satellite
overpass times.

In the final section, we have calculated the change in aerosol
radiative forcing (a lower estimate) due to the sub-daily
variability in aerosols. The Aerosol Radiative Forcing
Efficiency (ARFE) estimates from AERONET were utilized to
estimate the forcing difference. The ARFE or ΔFeff is defined as
the rate at which the atmosphere is forced per unit of aerosol
optical depth at 550 nm. As the influence of aerosol loading is
normalized, the magnitude of ARFE permits understanding the
direct radiative effect of different aerosol types characterized by
their size distribution and absorption property. The overall
uncertainty of ARFE is within 28 ± 30 Wm−2 (García et al.,
2008). Multiplying AOD with ARFE provides the aerosol
radiative forcing. Similarly, multiplying the daily, seasonal/
annual averaged ARFE with ADR (ΔAOD from observations)
SDR (ΔAOD form satellites) will provide ARF difference due to
sub-daily/diurnal variability. These expressions are provided
below:

ARF Diff stn � ARFE p |ADR|, (3)

ARF Diff spa � ARFE p |SDR| (4)

To generate the spatial ARF difference over the Indian region,
the lowest minimum ARFE value (by magnitude) among all the
stations is used and multiplied with SDR. Therefore, all the values
provided in this study are low estimates. A significant assumption
made here is that the ARFE is constant spatially. Though this
assumption is not entirely correct, this was made to explore the
radiative effect that may be attributed only to the aerosol loading
and not their composition and differing forcing efficiencies (that
vary both spatially and temporally). The ARFE was chosen based
on their actual estimates from AERONET seasonally.

The ARF difference calculated from the observed ARFE is the
ARF difference generated only because of the AOD differences.
For additional confidence, a similar exercise was also carried out
using Cloud and the Earth’s Radiant Energy System (CERES)
SYN1deg product, containing CERES geostationary (CG)
enhanced temporally interpolated short-wave fluxes. SYN1deg
data have a systematic bias in the short-wave models (∼15% for
daily and ∼6% for monthly data) for global clear-sky cases (Rutan
et al., 2015). However, the CG method reduces bias by 20%
(Doelling et al., 2013). Monthly 1° data of incoming and outgoing
shortwave fluxes are used to calculate the direct radiative forcing
map, further divided by the SDR to generate the ARF difference
map. CERES data are well-validated at the top of the atmosphere.
However, the derived surface data have biases due to noise
(Wielicki et al., 2001). Therefore, only the top of the
atmosphere (TOA) forcing estimates are used in this study to

elucidate forcing differences induced by sub-daily variability in
aerosol loading.

RESULT AND DISCUSSIONS

Figure 1 shows the diurnal variation of columnar AOD over
different AERONET stations over the Indian region. The AOD
values for the entire study period are utilized to calculate the
diurnal variability. The magnitude of AOD for different stations
varied widely. Therefore, for ease of comparison, each hourly
mean AOD between 9 AM and 5 PM. is subtracted by the hourly
mean AOD at 9 AM. This normalizes the values of AOD at all
stations and shows the diurnal variability clearly.

It is found that the AOD over Jaipur has low diurnal variability
compared to the other stations. Northern and high-altitude
stations like Nainital show an increase in AOD while other
stations show a decrease with time. Rana et al. (2009) reported
a higher evening time AOD over a northern station, Dehradun,
similar to our study. Ground-based observation over Pune has
also reported a high evening AOD during pre-monsoon
(Pandithurai et al., 2007). Bhaskar et al. (2015) reported low
morning and higher afternoon values of AOD over Jodhpur.
However, a study conducted over Bhubaneswar reported a fall of
20% in the afternoon AOD value indicating higher morning AOD
over the eastern part (Mukherjee and Vinoj, 2019). In terms of
actual AOD, the average diurnal variability w.r.to the daily mean
increases fromwest to east. In terms of percentages, Jaipur depicts
∼–20% (w.r.to daily mean) change diurnally while Gandhi
College shows ∼+49% change. It is also evident that the
morning time AOD becomes higher than the evening, with
the most significant differences observed for stations to the
east. To further explore the spatial pattern of SDR and ADR,
their annual mean from west to east is shown in Figure 2. It may
be mentioned that diurnal variability refers to whole-day change.
In contrast, sub-daily variability indicates the difference between
the 3 h (10:30 AM to 1:30 PM) for SDR and is similarly estimated
as ADR. The mean aerosol loading and location of AERONET
stations used in this study are shown in Figure 3.

It is observed that SDR is always positive, indicating the higher
value of Terra AOD (morning), while ADR is negative over the
western stations and becomes positive from west to east. Both
SDR and ADR show a gradient from west to east. It is not clear
why the ground-based stations and satellites show different sub-
daily variability in terms of their signs. However, satellites can
track spatial gradients reasonably well. The focus of this study was
to identify the spatial pattern of sub-daily variability and its
radiative effect, if any. Hence, the differences (in sign) between
ground and satellite measurements within the day are not
explored any further. The similarity in the gradient (west to
east) of SDR and ADR provides us the confidence that satellites
can track their spatial pattern. A previous study over Hyderabad
also indicated this difference (SDR) by comparing the MODIS
and Microtops II data (Kharol et al., 2011). Similar results were
also obtained over Nainital, Kanpur, and Gandhi College
(Choudhry et al., 2012) and Bhubaneswar (Mukherjee and
Vinoj, 2019). However, it is now essential to investigate

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7271693

Mukherjee and Vinoj Aerosol Sub-Daily Variability and Forcing

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


whether this west to east gradient exists on a large spatial domain.
Thus, the seasonal variation of SDR is further explored over the
Indian region (Figure 4).

The seasonal variation of SDR exhibits the same pattern from
west to east (more pronounced during winter and pre-monsoon).
Annually, the western desert region experiences higher AOD in
the afternoon while the eastern coastal parts are higher in the
morning, which declines by afternoon. The annual change in SDR
lies between ∼5% to the west and increasing to ∼20% in the east
(Figure 4E). Figure 4 shows the seasonal and annual variation of
SDR in terms of percentages over the Indian region. The
difference between the two satellites is significant throughout
the study region. SDR during winter (DJF) (Figure 4A) builds a
clear gradient from west to east. The gradient is well-pronounced
over Indo-Gangetic Plain (IGP). The SDR at the far western part
of IGP is ∼5% and increases to ∼20% to the east, similar to the
annual pattern. During pre-monsoon season (MAM)
(Figure 4B), the gradient still exists though there is a slight

shift toward the deserts in the west. There is a possibility that dust
activity speeds up with surface heating and convective activities in
the afternoon compared to morning over dry arid and desert
regions. This may partly explain the large gradient observed
around the northwest part of India (adjoining the Thar
desert). This gradient is not very clear during the monsoon
period (Figure 4C). The monsoon with heavy and uneven
rainfall both spatially and temporally may alter these
gradients. SON also depicts lower western and higher eastern
SDR (Figure 4D) of the magnitude of about 10%.

Besides the west-east gradient, a significant north-south
asymmetry can also be observed for the winter and monsoon
period (Figures 4A,C). During winter, the southern part of the
subcontinent experiences high morning AOD (∼+20% change in
SDR) while the northern territory does not showmuch difference.
However, the scenario reverses during monsoon when a negative
SDR is observed over southern India, and a weak positive SDR
can be observed in the north. The high winds coupled with the

FIGURE 1 | Normalized diurnal variation of Aerosol over different AERONET stations over India.

FIGURE 2 | Variation of (A) SDR and (B) ADR over different AERONET
stations.

FIGURE 3 | Locations of the AERONET stations taken for analysis. The
background shows the annual climatology of aerosol optical depth from 2002
to 2019 from MODIS Terra.
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presence of semi-arid regions in the rainshadow of the Western
Ghats may explain the lower SDR during JJA, an observation
similar to the arid deserts in the northwest. On the other hand,
DJF, due to the possibility of morning inversion, leads to a
significant accumulation of aerosols (east of the Western
Ghats) and hence high SDR in the rain shadow regions.
Unlike the IGP, these aspects are unexplored for this region
and require rigorous investigations.

It should be noted that irrespective of the season, the SDR
percentage is always negative or lower at the western part
indicating the higher Aqua AOD value in the west region. On
the other hand, positive values of SDR represent the high Terra
value over the eastern part. It is surprising to witness that two
different satellites with only 3 h of difference between their
overpass times can experience ∼20% of the change in the
AOD value over the eastern Indian region. Thus, the
difference may be much higher if the sub-daily variation can
be calculated over the east part considering the whole daytime (or
the diurnal variability). Therefore, the mean AOD value will be
much different from the satellite-derived value. So, viewing
satellite data as a daily mean can create a significant difference
in radiative forcing estimates.

From the above discussions, it is clear that the sub-daily
variation of AOD can be observed from both ground-based
and satellite observations with certain limitations.
Furthermore, it is explored whether any available model-
derived AOD can capture these diurnal variations. The
MERRA-2 hourly total extinction data at 550 nm are taken,

and the Model AOD Diurnal Range (MDR), similar to SDR
percentage, is calculated (Supplementary Figure S1). Our study
reveals that MERRA-2 is unable to capture the sub-daily change
over the Indian region. Though it captures some positive changes
during winter, the amount of change is negligible compared to
SDR. As the model cannot capture the diurnal variation of AOD,
it is difficult to account for the sub-daily variation to calculate the
forcing accurately by these systems.

Understanding the exact reason for this sub-daily variability of
aerosols is challenging as AOD depends on several (natural,
anthropogenic emissions, and prevailing meteorology) factors.
The researchers provided several explanations like long-range
transport of particles, sources of pollutants in the surroundings,
photochemical conversion of gas to the particles to interpret this
sub-daily variability (Devara et al., 1996; Kharol et al., 2011).
Based on the ground-based measurements over Pune,
Pandithurai et al. (2007) reported that high humidity, calm
winds, and low-level inversions could explain the high
morning AOD. Therefore, we have explored the relative
humidity (RH) changes over the Indian region. Several
researchers have already reported the near relation between
AOD and RH over different parts of the world (Yoon and
Kim, 2006; Altaratz et al., 2013; Brock et al., 2016; Zang et al.,
2019; Eck et al., 2020; Li et al., 2020). AOD shows an increase to
factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90,
and 95% (Yoon and Kim, 2006). The relationship between

FIGURE 4 | Variation of SDR in percentages (%) over the Indian region
for (A) Winter (DJF), (B) Pre-monsoon (MAM), (C) Monsoon (JJA), (D) Post-
monsoon (SON), and (E) Annual. The black dots denote statistical significance
at a 95% level.

FIGURE 5 | The difference in relative humidity (%) (06 UTC—09 UTC)
over the Indian region for (A) Winter (DJF), (B) Pre-monsoon (MAM), (C)
Monsoon (JJA), (D) Post-monsoon (SON), and (E) Annual. Black dots denote
95% significance level.
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relative humidity and aerosols over the Indian subcontinent is
also well-established (Pandithurai et al., 1997; Dey and Tripathi,
2007). A recent study reported that the change in mid-
tropospheric RH could alter the AOD values (Pandey and
Vinoj, 2021). Typically, AOD shows an increase with the rise
of relative humidity up to a critical barrier (∼70–80%). The AOD
is averaged in bins with each 5% rise of RH (Supplementary
Figure S2). As most of the observational stations were located
over the Indo-Gangetic Plain, the relation between AOD and RH
was studied over the IGP. It is seen that AOD increases with RH
of about 75–80% RH. Since the range of RH over the IGP is also
expected to be in this range, a similar analysis like SDR was also
estimated for RH (Figure 5).

It may be noted that the RH difference is primarily positive in
all the seasons, which indicates a higher RH percentage in the
morning. The pattern of the RH difference shows a clear spatial
pattern similar to SDR and ADR. These differences are highly
statistically significant. The high morning RH may favor the
formation of new particles and deliquescence growth of the
existing particles through aqueous chemistry, which can
increase morning time AOD values (Yoon and Kim, 2006;
Altaratz et al., 2013). For example, it is reported that globally,
the RH can explain 20% of the AOD variation (Altaratz et al.,
2013). Thus, the relative humidity difference can potentially cause
the AOD difference as the day advances. The ADR and SDR are
calculated using 10:30 AM IST and 1:30 PM IST data (closest to
AOD measurements) while the RH difference is computed using
11:30 AM IST and 2:30 PM IST data. It may be mentioned that
these temporal patterns over eastern India may not be possible
due to anthropogenic emissions as human activities are expected
to peak during the later part of the day.

As discussed, several factors can cause the sub-daily variability
of AOD. Detailed studies regarding all these factors can identify

the region-specific contributing factor for the ADR/SDR.
However, this is beyond the scope of this work and may be
subjected to more detailed research with reliable long-term
observational data. It may be reiterated that the primary focus
of this study is to explore the sub-daily variability of the aerosols
over a large spatial scale and its radiative effect. Therefore, the
causes of the sub-daily variability are not further explored.

Finally, an attempt is made to estimate the difference in
aerosol radiative forcing (both surface and top of the
atmosphere) because of the sub-daily variability of aerosols.
The intensity of forcing difference due to SDR is explored in
the next section.

The annual and seasonal variation of Aerosol Radiative
Forcing Efficiency (ARFE) at the bottom of the atmosphere
(BOA) for different AERONET stations is calculated to
estimate the ARF difference. Annual (Supplementary Figure
S3) and seasonal (Figure 6) variation of ARFE (BOA) shows a
clear decreasing trend from west to east. The northern stations
like New Delhi and Nanital exhibits higher ARFE than the
western stations. The monsoon period shows large fluctuation
with negligible west to east gradient, perhaps due to the rainfall
and subsequent changes to aerosol loading and optical properties
(Vinoj et al., 2004b). A recent study has also reported similar
seasonal ARFE gradients using four AERONET stations over IGP
(Bibi et al., 2017). Though the ARFE at the surface shows a
distinct west to east gradient, the ARFE at the top of the
atmosphere (Supplementary Figure S4) is not clear. In order
to obtain the ARF changes as a consequence of the diurnal or sub-
daily variability, the minimummagnitude of ARFE (BOA) within
all AERONET stations in India over IGP (Gandhi College) is
used. This is done to obtain a minimum estimate of ARF, which
these sub-daily variabilities may create. In the real world, the
estimates are expected to be much higher. This assumption is a

FIGURE 6 | Variation of ARFE over different AERONET Stations for (A)Winter, (B) Pre-monsoon, (C)Monsoon, and (D) Post-monsoon. The ARFE is defined as the
radiative forcing per unit of aerosol optical depth at 550 nm estimated using simple linear regression.
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very crude approximation of aerosol property and their
distribution across the Indian region. Therefore, CERES-based
fluxes are used to calculate ARF differences due to sub-daily
variability to obtain a more realistic distribution spatially. It may
be noted that the same spatial pattern of SDR is used in all
analyses for easy comparison.

Annually, the ARF difference due to sub-daily variation of
AOD over Jaipur is ∼1Wm−2 while at Gandhi College, it
increases to ∼5Wm−2. However, seasonally, the Gandhi
College site experiences a 16Wm−2 difference during the
post-monsoon period.

Annual and seasonal ARF difference (BOA) because of SDR is
computed for the Indian region (Figure 7). As we multiplied the
SDRwith the minimumARFE value, the ARF difference generated
is due to the AOD loading difference (Eq. 4) and not its actual
optical property. In this analysis, the annual and seasonal data
show a minimum ARF difference in the western part while
maximum at the east (primarily due to the high loading
difference). Spatially, the ARF difference at the west is
∼6Wm−2 while it increases to ∼20Wm−2 gradually toward the
east. For completeness, a similar analysis was carried out for the top
of the atmosphere (Supplementary Figure S5). It is surprising to
witness that even at the top of the atmosphere, the ARF difference
reaches more than 4Wm−2 during winter. Previous studies have
already reported that diurnal variation can induce substantial
errors in the aerosol radiative forcing calculations and
introduces a large bias in estimating direct radiative forcing on
regional scales (Christopher, 2003; Arola et al., 2013). Sreekanth
et al. (2007) reported that the wintertime ARF at the BOA over
Vishakhapattanam is ∼36Wm−2, while at the TOA, it is
∼8.4Wm−2. Several other studies have reported that the ARF

over the Bay of Bengal ranges from 15 to 24Wm−2 at the BOA and
2–10Wm−2 at the TOA (Vinoj et al., 2004a; Kedia et al., 2010).
Dey and Tripathi (2008) reported that the clear-sky ARF at BOA
ranges from −5.8 to −62.3W m−2 while the TOA forcing ranges
from −19.6 to +6.1Wm−2. Thus, though the ARF difference itself
appears to be low, they could substantially alter the TOA forcing
(up to 50%) with enormous implications for cooling/warming
regionally. Thus, we find that the most significant effects due to
sub-daily variability happen at the TOA, and in the eastern part of
India though, their ARFE is lower than western India. This implies
that aerosol loading differences dominate over the eastern Indian
region. These ARF differences between BOA and TOA can cause
significant changes in atmospheric absorption by more than
10Wm−2, with potential implications to atmospheric heating,
convection/circulation, and weather. A 10Wm−2 difference in
magnitude for atmospheric radiative effect is almost more than
50% of the overall warming reported for the winter period for the
INDOEX campaign (Ramanathan et al., 2001) and highly polluted
oceanic regions adjacent Indian sub-continent (Satheesh et al.,
2010) and hence a pretty substantial magnitude.

The gradient of the ARF difference (both BOA andTOA) ismore
pronounced over IGP. It is already recognized that instantaneous
forcing at the surface is linearly proportional to AOD (McComiskey
et al., 2008) and related to polluted areas (Li et al., 2010). As IGP is
one of the most polluted regions globally, the changes in forcing due
to AOD change are more predominant here. Furthermore, whether
the results remain the same if an actual ARFE spatial map is used to
generate the ARF difference is investigated.

To generate the ARFE map, the Direct Radiating Forcing
(DRF) at the top of the atmosphere (TOA) over the Indian region
is estimated using CERES short-wave flux. The Direct Radiative
Forcing Efficiency (DRFE) has been created by dividing the DRF

FIGURE 7 | Variation of ARF difference (BOA) over Indian region (W°m−2)
for (A) Winter (DJF), (B) Pre-monsoon (MAM), (C) Monsoon (JJA), and (D)
Post-monsoon (SON) using minimum ARFE.

FIGURE 8 | Variation of ARF (W°m−2) difference (TOA) calculated from
derived ARFE map over Indian region for (A) Winter (DJF), (B) Pre-monsoon
(MAM), (C) Monsoon (JJA), and (D) Post-monsoon (SON) from CERES SW-
Flux data.
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with satellite-derived AOD. The calculated DRFE is multiplied
with SDR to generate the sub-daily forcing difference (TOA)
seasonally. From Figure 8, it is clear that even in TOA, the
gradient of forcing difference exists, though the values are not
high. During winter periods, most of the eastern part experiences
more than 1.5 Wm−2 difference in forcing at the top of the
atmosphere because of aerosol sub-daily variation. In some
places, it reaches values up to 3Wm−2.

The aerosol radiative forcing depends on the nature of aerosols
and the overall aerosol loading. Besides, the radiative forcing
estimations primarily utilize observational data (either from
ground-based or satellite observations) of the aerosol loading.
The present study depicts that AOD can vary as much as 50%
from the daily mean over the eastern part. Satellites can also
capture this variability as the AOD difference within 3 h shows
more than 20% change in aerosol loading. As discussed earlier,
these changes can create significant ARF differences in BOA and
TOA (∼50%). The long-term change in aerosol radiative forcing
impacts the local climate by either warming or cooling the
atmosphere, altering the wind circulation and precipitation
pattern. Therefore, it is essential to estimate the spatial
patterns of forcing precisely. It may be mentioned that the
sub-daily variability of aerosols is a global phenomenon
(Smirnov, 2002; Mazzola et al., 2010; Zhang et al., 2012; Guo
et al., 2017; Zayakhanov et al., 2018). A recent study over South
Korea shows that AOD can vary up to 20–30% in the inland sites
and ± 20% in the coastal areas (Lennartson et al., 2018).

This study thus shows that ARF estimations without
incorporating proper diurnal variability can induce substantial
errors in the spatial distribution of forcing regionally and globally,
modifying their climate effects.

SUMMARY AND CONCLUSION

The study reveals a distinct sub-daily variability and gradient of
AOD from the west to the east of the Indian subcontinent,
reaching up to ∼50% using ground-based measurements.
Similar analysis using satellite datasets reveals spatially such
estimates could be ∼20% (even within a short period of 3 h).
These differences appear to be driven in part by the gradient in
relative humidity. This high sub-daily variability over eastern
India creates a significant forcing difference of ∼15Wm−2 at the
surface while over 1.5 Wm−2 at the TOA. Thus, the non-

accountability of aerosol sub-daily variations can lead to
substantial error in diurnally averaged or daily, seasonal, or
annual forcing estimates. Interestingly, even the state-of-the-
art model MERRA-2 is unable to capture this sub-daily
variation of AOD. In a region like the Indian subcontinent,
where the aerosol loading is very high, such a difference can
substantially alter daily and, hence, long-term forcing estimates,
thereby biasing the aerosol climate effects.
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