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The global navigation satellite system reflectometer (GNSS-R) can improve the observation
and inversion of mesoscale by increasing the spatial coverage of ocean surface
observations. The traditional retracking method is an empirical model with lower
accuracy and condenses the Delay-Doppler Map information to a single scalar metric
cannot completely represent the sea surface height (SSH) information. Firstly, to use multi-
dimensional inputs for SSH retrieval, this paper constructs a new machine learning
weighted average fusion feature extraction method based on the machine learning
fusion model and feature extraction, which takes airborne delay waveform (DW) data
as input and SSH as output. R2-Ranking method is used for weighted fusion, and the
weights are distributed by the coefficient of determination of cross validation on the training
set. Moreover, based on the airborne delay waveform data set, three features that are
sensitive to the height of the sea surface are constructed, including the delay of the 70%
peak correlation power (PCP70), the waveform leading edge peak first derivative (PFD),
and the leading edge slope (LES). The effect of feature sets with varying levels of
information details are analyzed as well. Secondly, the global average sea surface
DTU15, which has been corrected by tides, is used to verify the reliability of the new
machine learning weighted average fusion feature extraction method. The results show
that the best retrieval performance can be obtained by using DW, PCP70 and PFD
features. Compared with the DTU15 model, the root mean square error is about 0.23 m,
and the correlation coefficient is about 0.75. Thirdly, the retrieval performance of the new
machine learning weighted average fusion feature extraction method and the traditional
single-point re-tracking method are compared and analyzed. The results show that the
new machine learning weighted average fusion feature extraction method can effectively
improve the precision of SSH retrieval, in which the mean absolute error is reduced by 63.1
and 59.2% respectively, and the root mean square error is reduced by 63.3 and 61.8%
respectively; The correlation coefficient increased by 31.6 and 44.2% respectively. This
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method will provide the theoretical method support for the future GNSS-R SSH altimetry
verification satellite.

Keywords: GNSS-r altimetry, machine learning, wave retracking, sea surface height inversion, feature engineering,
model fusion

INTRODUCTION

Sea Surface Height (SSH), as an important ocean parameter, plays
an important role in establishing global ocean tide models,
observing large-scale ocean circulation, and monitoring global
sea level changes (Zhang et al., 2020). Traditional spaceborne
mono-static radar altimeters obtain marine physical parameter
information by continuously transmitting radar pulses to the earth
and receiving sea surface echoes, which have the disadvantages of
low coverage, long repetition period, and high cost (Bosch et al.,
2014; Zawadzki and Ablain 2016; Wang et al., 2021b). GNSS-R
technology is an emerging remote sensing technology in sea surface
altimetry in recent years. It is used to retrieve the sea surface height
by measuring the time delay between the reflected signal and the
direct signal. In 1993, the concept of Passive reflectometry and
interferometry system was initially proposed by Martin-Neira,
proving the capability of GNSS-R to ocean altimetry (Martin-
Neira 1993). GNSS-R offers several advantages over mono-static
radar systems including multiple measurements over a large area,
reduced cost, reduced power consumption, all-weather and highly
real-time (Mashburn et al., 2020). At present, this technology has
been used for the detection of sea surface height (Mashburn et al.,
2016;Mashburn et al. 2018;Mashburn et al. 2020), sea surface wind
speed (Ruf et al., 2015; Li et al., 2021), sea ice (Alonso-Arroyo et al.,
2017; Li et al., 2017), soil moisture (Yan et al., 2019) and other
parameters.

In recent years, the successful launch of TechDemoSat-1
(TDS-1) (Mashburn et al., 2018; Xu et al., 2019), cyclone
global navigation satellite system (CYGNSS) (Mashburn et al.,
2020) and BuFeng-1(BF-1) A/B twin satellites (Jing et al., 2019)
means that GNSS-R technology has stepped into a new stage of
detecting global surface parameters. As a passive remote sensing
satellite-borne, GNSS-R has great prospects in the field of sea
surface altimetry. However, the spaceborne GNSS-R receivers
launched in the world have not dedicated for altimetry measuring
purpose, which limits its high-precision research. The airborne
altimetry technology is considered as a pre-research technology of
spaceborne altimetry, which is being widely studied (Bai et al.,
2015). According to different antenna devices, GNSS-R height
measurement can be divided into a single-antenna-based auto-
correlation mode and a dual-antenna-based cross-correlation
interference mode. Compared with the auto-correlation mode,
the interference mode does not have strict requirements on the
height of the observation platform and has a wider range of
application scenarios (Wang et al., 2021a). Cardellach et al.
(2014) analyzed the GNSS-R airborne experimental data of
CSIC-IEEC over the Finnish Baltic Sea in 2011. Both
theoretical and experimental results show that the
measurement accuracy of the cross-correlation interference
mode is higher than that of the CA code auto-correlation

mode. Based on the airborne experimental data of Monterey
Bay, Mashburn et al. (2016) analyzed the measurement accuracy
of three retracing methods: HALF, DER and PARA3. The results
show that the HALF method produces the most precise
measurements, and the biases is 1–4 m compared with the
DTU13. Wang et al. (2021a) used the airborne altimetry data
collected by CSIC-IEEC in the Baltic Sea on December 3, 2015 to
retrieve the sea surface height. Compared to the high
computational complexity of Z-V model fitting, the 7-β model
is proposed to compute the delay between direct and reflected
GNSS signal (Wang et al., 2021a). In previous studies, retracking
methods such as HALF, DER, and FIT are usually used for GNSS-
R altimetry. By analyzing the various errors involved in the
inversion model, the corresponding error model is established
to improve accuracy (Mashburn et al., 2016). The traditional
retracking method is an empirical model for long-term
observation of the sea surface, which often relies on limited
scalar delay Doppler (DDM) observations. Only a part of
DDM information can be used to retrieve SSH (D’Addio et al.,
2014), which affects the accuracy of height estimation. Moreover,
the establishment of various error models makes the inversion
model more complex and difficult to realize (Mashburn et al.,
2018).

Compared with the previous inversionmodel, the algorithm of
machine learning model is easy to build, which can establish the
mapping relationship between multiple observations and sea
surface height. Meanwhile, the machine learning can make full
use of the physical quantities related to SSH, which partly
compensating the deficiency of traditional inversion methods.
Machine Learning (ML) is one of the fastest growing scientific
fields today, which integrates many disciplines such as computer
science and statistics, is used to solve the problem of how to
automatically build a calculation model through experience
(Lary et al., 2016). Now machine learning algorithms have
been gradually integrated into GNSS-R field and achieved
excellent results. Luo et al. used the tree model algorithm in
machine learning to establish a mapping model from the TDS-
1 (TechDemoSat-1) observation data to the European Centre
for Medium-Range Weather Foresting (ECMWF) analysis
field data. The results obtained are significantly better than
that of traditional GNSS-R wind speed retrieval methods (Luo
et al., 2020). Liu et al. (2019) proposed the multi-hidden layer
neural network (MHL-NN) for GNSS-R wind speed retrieval.
The effect of DDM average, leading edge slope and incident
angle features are analyzed by using simulated data and real
data (Liu et al., 2019). Jia et al. (2019) used XGBoost algorithm
and GNSS-R technology to retrieve soil moisture and
evaluated the importance of input features such as altitude
angle, signal-to-noise ratio, and receiver gain for soil moisture
retrieval models.
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Different from previous studies, this paper introduces the
machine learning fusion model to assist GNSS-R for SSH
retrieval. And the accuracy of sea surface altimetry can be
improved by increasing the available information of DDM.
The essence of SSH retrieval based on machine learning is a
nonlinear regression problem of supervised learning. This paper
first evaluates the SSH retrieval performance of regression
methods commonly used in machine learning, such as linear
regression model {Lasso regression (Zou 2006), Ridge regression
(Hoerl and Kennard 2000), Support Vector Machine regression
(Keerthi et al., 2014) (SVR) and ensembled tree regression model
[XGBoost (Luo et al., 2020), LightGBM (Luo et al., 2020),
Random Forests (Liu et al., 2020)]}. On this basis, Random
Forests, XGBoost and Ridge models with better SSH retrieval
performance and lower correlation are used for model fusion,
which further improve the SSH retrieval accuracy. The fusion
method adopts the R2-Ranking method for weighted fusion, and
the weights are distributed by the coefficient of determination of
cross validation on the training set. In addition, to obtain a feature
set that is more suitable for the SSH retrieval model, the feature
construction method is used to construct three features, namely
PFD, PCP70, and LES, which are sensitive to SSH changes. The
effect of feature sets with varying levels of information details are
analyzed as well. Two conventional single-point retracking
algorithms, HALF and DER, are also implemented and their
retrieval results are compared with the proposed new machine
learning weighted average fusion and feature extraction method.

CONSTRUCTION OF A NEW MACHINE
LEARNING WEIGHTED AVERAGE FUSION
FEATURE EXTRACTION METHOD
Using machine learning algorithm to build sea surface height
prediction model is a supervised learning regression problem
essentially, that is, using the labeled altimetry data set as the
training set to train the model, observing the performance of the

trained model on the test set to optimize the model, and finally
realizing the prediction of unknown data. As shown in Figure 1,
the new machine learning weighted average fusion feature
extraction method is mainly composed of feature optimization,
model fusion and accuracy verification. Feature optimization
refers to the use of feature engineering methods to filter and
construct features related to mean sea surface (DTU) from the
original airborne delay waveform (DW) data set. Model fusion
mainly includes two parts, the optimization of the learner and
the model fusion. First, the main machine learning regression
algorithms such as Lasso, Ridge, SVR, XGB, LGB, and RF are
used to invert the sea surface height. On this basis, to further
improve the high inversion accuracy of the model, a single
model with higher accuracy and lower correlation is selected
for model fusion using three model fusion methods:
Averaging, R2-Ranking, and Stacking. Precision validation
is to evaluate the effectiveness of the model through Mean
Absolute Difference (MAD), Root Mean Square Error (RMSE)
and Pearson Correlation Coefficient (CC).

Feature Optimization
Feature optimization refers to the process of extracting features
from the raw data, which can describe the data better and the
performance of the model built with this feature on the unknown
data can reach the best (Kim et al., 2019). In numerical data tasks,
the importance of feature engineering is particularly prominent.
The better the features, the greater the flexibility, and the simpler
the model is, the better the performance is. Feature missing or
feature redundancy will seriously affect the accuracy of the model.
Due to the problems of large feature dimension, high redundancy,
strong correlation between adjacent features, the poor correlation
between features and the DTU15 model value, in airborne DW
data. In this paper the features of airborne DWdata are optimized
by themethods of feature selection, feature extraction, and feature
construction.

1) Feature selection: By eliminating irrelevant or redundant
features, the model training time can be reduced, and the
accuracy of the model can be improved. The airborne DW
data is a set of high-dimensional data. It contains a lot of
redundant data and unrelated features for the DTU15 model.
Therefore, use the Pearson correlation coefficientmethod to filter
the data set, and the features with correlation coefficient less than
0.1 of DTU15 are removed (Rodgers and Nicewander 1988).

2) Feature extraction: According to the high-dimensional
characteristics of airborne data, principal component
analysis (PCA) method is used to extract the main feature
components of airborne data. PCA is a commonly used data
analysis method, which transforms the original data into a
group of linear independent representations of each
dimension by linear transformation. It can best integrate
and simplify the high-dimensional variable system based
on retaining the original data information to the maximum
extent, and more centrally and typically reflects the
characteristics of the research object. The feature values
with a cumulative contribution rate of 98% are extracted
from the airborne data as training data for machine learning.

FIGURE 1 | Framework of airborne GNSS-R sea surface height retrieval.
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3) Feature construction: Feature construction refers to the
artificial creation of new feature methods that are beneficial
to model training and have certain engineering significance by
analyzing raw data samples, combining practical experience of
machine learning and professional knowledge in related fields.
Therefore, to extract features that contain enough
information, three features sensitive to SSH changes,
PCP70, PFD, and LES, are constructed on the basis of the
raw airborne DW data to improve the accuracy of the
altimetry model. The PCP70 and PFD features are
calculated from two retracking methods commonly used in
GNSS-R SSH retrieval (Park et al., 2013; Clarizia et al., 2016),
which can effectively reflect the changes in SSH. Leading Edge
Slope (LES) is a feature that has a high correlation with sea
surface roughness (Liu et al., 2019). The corresponding
definition is as follows:

1) PCP70: This feature has been derived from traditional
retracking methods taking the specular reflection delay at
70% of the peak correlation power. The peak correlation
power is defined as (Mashburn et al., 2016):

τspec � argmax
τ

{W(τ)} (1)

where, τis the time delay; W(τ)is the power delay waveform
related to the reflected signal.

2) PFD This feature also has been derived from traditional
retracking methods taking the specular reflection delay
from the maximum first derivative on the waveform
leading edge. The waveform leading edge peak first
derivative is defined as (Mashburn et al., 2016):

τspec � argmax
τ

{dW(τ)
dτ

} (2)

3) LES is often used to retrieve the effective wave height changes
of ocean surface. Use the best fitted linear function slope as the
leading-edge slope of the time-delayed waveform (Liu et al.,
2019):

LES � argmin
ac

⎧⎨⎩∑2
k�1

[I(τk) − (ατk + c)]2⎫⎬⎭ (3)

4) Division of feature set: to select features that are sensitive to
the sea surface height, a total of six sets of feature sets with
different information details are used for model training, and
their accuracy is verified on the test set, namely: Feature Set1:
Use DW data only. Feature Set2: Use DW data and PCP70
features. Feature Set3: Use DWdata and PFD features. Feature
Set4: Use DW data and LES features. Feature Set5: Use DW
data and PCP70 and PFD features. Feature Set6: Use DW data
and PCP70,PFD, LES features.

Model Fusion
Model fusion is mainly divided into three parts: a single model
selection and training, model hyperparameter optimization and
model fusion. Single model training is mainly used for model

screening and hyperparameter optimization. Model fusion refers
to the use of different model fusion methods to integrate the
advantages of individual learners which can achieve the goal of
reducing prediction errors and optimizing overall model
performance. Training process uses the five-fold cross-
validation method and optimizes hyper-parameters through
grid search.

Selection and Training of a Single Model
The SSH retrieval mainly uses the supervised learning regression
method in machine learning, and the learners in the regression
method can be divided into non-integrated learners and
integrated learners. This paper mainly selected Lasso
Regression, Ridge Regression, ElasticNet Regression (Zeng
2020), Support Vector Regression (SVR), as the non-
integrated learner, and selected Gradient Boosting Decision
Tree (GBDT) (Friedman 2001), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM) and
Random Forests (RF) ensembled tree model based on bagging
integration thoughts (Breiman, 1996) as ensembled learner to
retrieve SSH.

Model Hyper-Parameter Optimization
Hyper-parameter optimization is the key to model training. The
performance of the trained model mainly depends on the
algorithm of the model and the selection of hyper-parameters.
A set of optimal hyper-parameters can make the trained model
obtain better performance based on the inherent algorithm. In
this paper, Grid search (GS) and K-fold cross validation are used
to optimize the hyperparameters of each model.

K-Fold Cross Validation (CV) (Zeng 2020) is a method to
continuously verify the performance of models. The basic idea is
to divide the original data into K groups randomly, and make a
validation set for each subset. The rest of K-1 subset as training
set. K models will be obtained in this way. The final prediction
performance in the validation set is averaged as the performance
index of the K-fold cross-validation classifier. In this paper, we
choose K � 5 (Jung 2018), that is, we use five-fold cross-validation
cross to verify the model.

TABLE 1 | Summary table of learner optimization parameters.

Learner Optimal parameters

Lasso L1Regularization coefficient: req_alpha
Ridge L2Regularization coefficient: req_lambda
ElasticNet L1Regularization coefficient: req_alpha

L2Regularization coefficient: req_lambda
SVR Penalty parameter: C
GBDT Maximum depth of decision tree: max_depth、

Optimal number of learners: n_estimators
Minimum number of samples: min_samples_split

XGBoost Maximum depth of decision tree: max_depth、
Optimal number of learners: n_estimators

LightGBM Optimal number of learners: n_estimators
Maximum depth of decision tree: max_depth

RF Maximum feature number of decision tree: max_features
Optimal number of learners: n_estimators
Minimum number of samples: min_samples_split
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Grid search (GS) (Lavalle et al., 2004) is an exhaustive search
method for tuning parameters. In the selection of all candidate
parameters, every possibility is tried through loop traversal. The
set of hyper-parameters with the highest model score is the
optimal hyper-parameter. The optimization parameters of each
model are shown in Table 1 (Zeng 2020):

Model Fusion
Each machine learning algorithm has its own advantages and
disadvantages, so it is difficult to fully mine the information in
DW data using a single model. Model fusion refers to obtain a
new model by combining the results of multiple independent
learners. The purpose of model fusion is to break through the
limitations of the single machine learning algorithm. Through
fusion, the effect of “complementing each other’s weaknesses” can
be achieved. Combining the advantages of individual learners can
reduce prediction errors and optimize integrated model
performance. At the same time, the higher the accuracy and
diversity of individual learners, the better the effect of model
fusion. This paper uses three model fusion methods: Averaging,
R2-Ranking and Stacking for comparative experiments.
Averaging and R2-Ranking only merge the results of multiple
models, while Stacking needs to use the sub-learner to learn the
results of multiple models.

1) Averaging

The output of Average model fusion method is the simple
average result of each learner (Liu et al., 2020).

2) R2-Ranking

R2-Ranking is a weighted average model fusion method based
on the cross-validation error improvement of the learner on the
training set, which is proposed in this paper. The weight is
assigned by the coefficient of determination (R2) on the
training set. R2 is a commonly used performance evaluation
index in machine learning regression models, which reflects
the fitting degree of the model to the input data. The closer R2

is to 1, the better the fitting degree is. R2-Ranking believes that
under the premise of no fitting, the greater the coefficient of
determination of cross-validation on the training set, the better
the effect of the learner, so more weight is given. The specific
calculation formula is as follows:

Wi � R2
i∑N

i�1R
2
i

(4)

H(x) � ∑N

i�1WiML modeli(Feateure set) (5)

Here, H(x)is the output result of the fusion model,ML modeli
is the different machine learning models, Feateure set is the
feature set divided in Feature Optimization Section, Wi is the
weight of different machine learning models, R2

i is the coefficient
of determination of each model on the training set, defined as
(Zeng 2020):

R2 � 1 − (Tpredict − Tmean)2(A − Tpredict)2 (6)

where T is the prediction sequence of the model, Tmean is the
sample mean, A is the SSH value verification sequence provided
by the corresponding DTU15 model.

3) Stacking

Stacking is a hierarchical model integration framework. Take
two layers as an example: the first layer is composed of multiple
base learners whose input is the original training set; the second
layer model is trained with the output of the first level basic
learner as the training set, so as to obtain a complete Stacking
model (Liu et al., 2020). All the training data are used in the two-
layer stacking model. This paper uses the stacking model fusion
method of five-fold cross-validation, and the construction process
is shown in Figure 2:

1) Firstly, the data is divided into training set and test set, and the
training set is divided into five parts: train1 ∼5

2) Select the base model: selecting Model1, Model2, and Model3
as the base learners. In Model 1, train1, train2, train3, train4,
and train5 are used as the verification set in turn, and the
remaining four are used as the training set. Then the model is
trained by 5-fold cross-validation, and the prediction is made
on the test set. In this way, 5 predictions trained by the
XGBoost model on the training set and 1 prediction B1 on
the test set will be obtained, and then the 5 predictions will be
vertically overlapped and merged to obtain A1. The Model 2
model and the Model 3 model are partially the same.

3) Select the sub-learner: after the training of the three basic
models, the predicted values of the three models in the
training set are taken as three “features” A1, A2 and A3
respectively, and then use the sub-learner model to train and
build the model.

4) Using the trained sub-learner model predict the “feature”
values (B1, B2, and B3) obtained on the test sets of the three
base models, and the final prediction category or probability is
obtained.

Precision Evaluation
The prediction result is compared with the sea surface height SSH
provided by the DTU15 validation model, using Mean Absolute
Difference (MAD), Root Mean Square Error (RMSE) and
Pearson Correlation Coefficient (CC) (Garrison, 2016) evaluate
the effectiveness of the model. It shows: the smaller the MAD and
RMSE values are, the better the fitting degree between the
predicted value and the real value is, and the smaller the error
is; The closer CC is to 1, the better correlation between inversion
results and DTU15 model is. The corresponding definition is (Liu
et al., 2020; Zeng 2020):

MAD � 1
n
∑n
i�1

|Ti − Ai| (7)
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RMSE �
��������������
1
n
×∑n

i�1
(Ti − Ai)2

√
(8)

CC � Cov(T ,A)
σTσA

(9)

Where T is the prediction sequence of the model, where A is the
SSH value verification sequence provided by the corresponding
DTU15 model. Here Ti is the predicted value of the model;
Ai represents the validation of the corresponding DTU15 model;
n is the number of predicted values. HereCov(T ,A)is the
covariance between the predicted value and the verified value;
σT and σA represent the variance of the predicted and true values,
respectively.

VERIFICATION OF NEW MACHINE
LEARNING WEIGHTED AVERAGE FUSION
FEATURE EXTRACTION METHOD
Data Sets
Delay Waveform Data
The airborne time delay waveform data which from the airborne
experiment was carried out by the IEEC of Spain on December 3,
2015 in the Baltic Sea. As the Baltic Sea is surrounded by land, it is
not affected by the strong North sea tide. Under the condition of
no strong wind, the sea surface is relatively stable (Wang et al.,
2021a). During the experiment, there was no strong wind in the
experimental area, and the sea surface was relatively stable. The
direct and reflected GNSS signals were received by the 8-element
antenna of RHCP (Right Handled Circular Polarization) on the

top and LHCP (Left HCP) on the abdomen of the aircraft
respectively, and then down converted to IF signal in
19.42 MHz by RF module for 1-bit quantization and storage.
The Delay waveform (DW) data was obtained by cross-
correlation interference between GPS direct signals and sea
surface reflection signals (Serni et al., 2017).

As shown in Figure 3, the flight consisted in a set of passes
between two pairs of waypoints (AD and EF). Their location
was selected to have two straight flight trajectory intervals:
parallel (AD) and perpendicular (EF) to the ellipsoidal height
gradient of the sea surface. The flight path consisted in two
perpendicular trajectories, which were travelled in both senses
(A-to-D, D-to-A, E-to-F, and F-to-E). During all of them, the
nominal height of the receiver was around 3 km. Table 2
provides the most relevant information about the different
flight segments and the time reference system is GPS second of
the day (SoD).

In this study, 20 min of GPS L1 band observation data from 10:
52:42 to 11:21:41 on December 3, 2015 were used. To avoid the
influence of aircraft steering, the data of aircraft steering is
removed. Only the data of aircraft flying along a straight line
is selected as the experimental analysis. Since the E-F segment is
too short to be suitable for machine learningmodel modeling, this
paper uses the D-A segment and B-C segment data as
experimental data.

Validation Model
To verify the precision of airborne GNSS-R SSH retrieval, it needs
to be compared with the measured sea surface data. Due to the
lack of measured data, the verification model is used to verify the
precision of SSH retrieval. In this paper, DTU15 (DTU mean sea

FIGURE 2 | Schematic diagram of five fold cross-validation stacking model fusion.
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surface 15) (Mashburn et al., 2018) model developed by Danish
University of technology and TPXO8 (Egbert and Erofeeva 2002)
global ocean tide model provided by Oregon State University

(OSU) are used as the validation model. The sea surface height
SSH obtained from the validation model is as follows:

SSH � DTU15 + TPXOtide (10)

Data Set Matching and Partition
The DW is a continuous time-varying data set, while the DTU15
is a grid data whose longitude and latitude are both 1′. Therefore,
it is necessary to match the airborne DWdata set with the DTU15
average sea surface model in time and space first, also extract the
average sea surface value of DTU15 corresponding to the DW
data, and then tide correction for the same time, latitude and
longitude of the airborne time-delay waveform was calculated by
the TPXO8 global ocean tide model. Finally superimpose it on the
DTU15 to get the SSH value of the DTU15 verification model.
The airborne delay waveform (DW) data set and the
corresponding SSH value constitute the raw data set. Divide
the raw data set into three parts: training set, validation set
and test set, and use 80% of the second time period (GPST:
385542–386501 s) data as training data for model training; the
remaining 20% of the second time period data is used as

FIGURE 3 | Flight trajectory and sea surface height.

TABLE 2 | Training results of different models.

Segment label Start time [GPS SoD] End time [GPS SoD] Distance [m] Mean speed [m/s]

B-C 39,102 39,521 40.3 96.0
D-A 39,942 40,781 52.3 54.5
E-F 41,220 41,419 16.1 80.7
F-E 41,630 41,919 18.3 63.1

TABLE 3 | Training results of different models.

Learner Optimal parameters Optimal R2

Lasso req_alpha � 5.75 0.72
Ridge req_lambda � 0.0001 0.78
Elastic req_alpha � 0.1 0.70

req_lambda � 0.0009 —

SVR C � 0.3 0.77
GBDT max_depth � 3 0.91

n_estimators � 350 —

min_sample_split � 5 —

XGBoost max_depth � 1 0.95
n_estimators � 300 —

LightGBM max_depth � 2 0.92
n_estimators � 500 —

num_leaves � 16 —

RF max_features � 24 0.93
min_samples_split � 4 —

n_estimators � 150 —
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verification data for the optimization of model hyperparameters
and preliminary evaluation of model performance. The
experimental data in the first time period (GPST:
384702–385121 s) is used as the test data to evaluate the
generalization ability of the model.

Analysis of Height Measurement Accuracy
of Different Machine Learning Models
Analysis of Training Results of Different Models
In this paper, a variety of machine learning regression algorithms
are used to establish the mapping relationship between the
airborne DW data and the DTU15 verification model. The
hyperparameters are optimized and the performance of the
model is initially evaluated through the R2 of each machine
learning model on the verification set. Table 3 shows the
training results of each machine learning model after 5-fold
cross-validation training. It can be seen that the R2 of the
ensembled tree model is significantly higher than that of the
non-ensembled learner, and the XGBoost model has the R2 of
0.95, which shows that after XGBoost regression training, and the
model can discover the explanatory information that explains
95% of the target factor change from the input factors. But in the
non-ensembled learner, the Ridge regression model obtained the
highest R2 of 0.78, indicating that after linear regression training,
the model can discover the explanatory information that explains
78% of the target factor change from the input factors.

Analysis of Generalization Ability of Different Models
Using the data in the test set to evaluate the generalization ability
of the trained model in (1) to verify the final performance of the
model. As is shown in Figure 4, the error fitted curve are obtained
by making the difference between the results of each machine
learning model and the SSH value provided by the DTU15
verification model.

As illustrated in Figure 4 the overall prediction error of the
ensembled tree model is relatively small, and the XGB model
based on Boosting’s ensembled method has the best prediction
results. In the linear regression model, the Ridge model has the
best estimate results. At the same time, we can see that retrieval

errors of different types of models have great differences. The
forecast errors of decision tree models have a significant
downward bulge between 360 and 410 s on the time axis,
while the linear regression errors have an obvious upward
bulge. The data step is mainly due to the loss of a part of
the training data (SoD: 40,781–40,842). Because the model
with missing training data did not consider the information of
the missing data during training, the inversion results of the
model on the test set were biased. At the same time, due to the
different algorithm rules of the decision tree model and the
linear regression model, the two types of models have different
emphasis on data information mining, which makes the
prediction results different. The data step is mainly caused
by the loss of some data in the training data (SOD:
40,781–40,842). Due to the lack of training data, the model
does not consider the information of missing data during
training, resulting in errors in the inversion results of the
model on the test set. At the same time, due to the different
algorithm rules of decision tree model and linear regression
model, the two types of models have different emphasis on
data information mining, resulting in great differences in
prediction results.

Height Measurement Accuracy Analysis of
Machine Learning Fusion Model
Comparative Analysis of Accuracy Between Single
Model and Fusion Model
XGB, RF and ridge models with high accuracy and low
correlation are used in the fusion model. Three model fusion
methods are compared: Averaging, Stacking and R2-Ranking;
among them. Averaging and R2-Ranking only combine the
results of multiple models, while Stacking R2-Ranking needs to
specify sub-learner. In this paper, the base learner of the Stacking
fusion model uses XGB and random forest, and the sub-learner
uses Ridge, which has the best retrieval result in the linear model.

Figure 5 illustrates the retrieval results and correlation scatter
of XGB, RF and ridge models. Figure 6 illustrates the retrieval
results and correlation scatter of Averaging, Stacking and R2-
Ranking fusion methods.

FIGURE 4 | Curves chart of forecast errors from different models.
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It can be seen from Figure 5 and Figure 6 that the three fusion
models show better predictions compared to single models. The
predictions of R2-Ranking and Stacking are closer to the DTU15
model, with smaller errors. The retrieval results of the R2-Ranking
and Averaging models have strong correlations with the DTU15
model, which are 0.74 and 0.75, respectively. In summary, in this
paper, the R2-Ranking fusion model has the best retrieval
performance.

The number of seeds for the 5-fold cross-validation was
changed three times and the experiment was repeated to verify
the robustness of the fusion model. Changing the number of
random seeds is equivalent to re-slicing the original data set
and training the base learner again on the new data set. Finally,
the performance of the three fusion methods are compared
through the retrieval results still on the test set. The
performance indices of different models are shown in
Table 4. As can be seen from Table 4 that the robustness of

the three fusion models is superior. There is no obvious change
in the MAD, RMSE, and CC of each model, and the results of
the three experiments are basically consistent. The retrieval
performance of Averaging, R2-Ranking, and Stacking fusion
models is almost better than that of the single model,
indicating that fusion model has further improved the
model performance.

The Impact of Different Features on Model
Accuracy
In the field of data mining and machine learning, it is generally
believed that the upper limit of machine learning is determined
data and features, and the model can only approach the upper
limit indefinitely. Therefore, in order to select features that are
sensitive to the SSH, a total of six sets of feature sets with varying
levels of information details in Feature Optimization are used

FIGURE 5 | Forecast results and correlation scatterers of single model.
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FIGURE 6 | Forecast results and correlation scatterers of fusion model.

TABLE 4 | Comparison of experimental results of different models.

Model First Second Third

MAD RMSE CC MAD RMSE CC MAD RMSE CC

Ridge 0.53 0.57 0.63 0.56 0.59 0.64 0.55 0.55 0.64
Lasso 0.81 0.85 0.42 0.79 0.79 0.45 0.82 0.82 0.43
Elastic 0.74 0.79 0.48 0.72 0.82 0.47 0.76 0.77 0.48
SVR 0.59 0.63 0.64 0.60 0.65 0.64 0.60 0.61 0.63
KNN 0.44 0.47 0.57 0.46 0.45 0.58 0.44 0.46 0.60
GBT 0.42 0.48 0.65 0.41 0.46 0.65 0.45 0.45 0.63
XGB 0.31 0.36 0.66 0.29 0.33 0.64 0.33 0.35 0.64
LGB 0.36 0.47 0.65 0.40 0.45 0.65 0.38 0.46 0.63
RF 0.37 0.48 0.59 0.41 0.51 0.60 0.39 0.47 0.59
Ave 0.39 0.43 0.77 0.38 0.44 0.76 0.36 0.42 0.75
R2-Ranking 0.25 0.29 0.75 0.24 0.30 0.75 0.24 0.28 0.76
Stacking 0.22 0.27 0.66 0.26 0.31 0.68 0.23 0.31 0.68
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for model training, and their performance is verified on the
test set.

Figure 7A–C present the comparison of the retrieval results
(after fitting) of Averaging, R2-Ranking and Stacking fusion
models in six different feature sets.

It can be seen from Figure 7 that the three fusion models do
not achieve the best inversion effect in feature set 6 which
contains the most feature information. But the feature set 5,
which is composed of DW data, PCP70 and PFD features, shows
the best. in other words, the machine learning fusion model with
feature set 5 can learn the complex relationship better among the
input features, so as to accurately retrieve the SSH.

As the six data sets shown in Table 5 that both the MAD and
the RMSE of the feature set 5 are the smallest in all the data sets,

that is, the inversion results of the three fusion models on data set
5 are the most accurate. At the same time, the correlation between
the retrieval result of data set 5 and the DTU15 model is also the
best among the six data sets.

To compare the inversion accuracy of the three models more
Visually on each data set, the polar coordinate system is used to
visualize the experimental results, as shown in Figure 8.

APPLICATION OF NEW MACHINE
LEARNING WEIGHTED AVERAGE FUSION
FEATURE EXTRACTION METHOD
The new GNSS-R SSH retrieval model based on machine learning
fusion model and feature optimization used the information of
the entire delay waveform for height inversion. The traditional
single-point retracking method estimate the time delay by
determining the position of the characteristic points of the
reflected waveform within the time delay window. The
characteristic points of the waveform that have been used for
sea surface altimetry include the waveform leading edge peak first
derivative (DER) (Mashburn et al., 2016) and the delay of the 70%

FIGURE 7 | Forecast results of three fusion model in different data sets.

TABLE 5 | Comparison of experimental results of different models at different Feature Set.

Set Averaging R2-Ranking Stacking

MAD RMSE CC MAD RMSE CC MAD RMSE CC

Set1 0.36 0.42 0.75 0.24 0.28 0.76 0.23 0.31 0.68
Set2 0.34 0.38 0.81 0.23 0.29 0.69 0.24 0.29 0.66
Set3 0.31 0.34 0.83 0.28 0.33 0.72 0.24 0.30 0.65
Set4 0.47 0.51 0.70 0.27 0.34 0.69 0.23 0.28 0.67
Set5 0.29 0.32 0.85 0.19 0.23 0.75 0.18 0.22 0.72
Set6 0.46 0.50 0.75 0.25 0.31 0.69 0.22 0.27 0.66

FIGURE 8 | Polar chart of prediction performance of fusion mode.
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peak correlation power (HALF) (Mashburn et al., 2016). In order
to verify the superiority of the new machine learning weighted
average fusion feature extraction method, this paper compared
their retrieval performance. The traditional single-point tracking
method uses DER and HALF methods to estimate the time-delay
of the reflected signal relative to the direct signal. The SSH
retrieval algorithms in literature (Mashburn et al., 2016) is
used to correct the tropospheric delay and distance error
between the antennas. Figure 9 presents the SSH estimates by
the HALF, DER retracking method and the newmachine learning
weighted average fusion feature extraction method. It can be seen
from Figure 9 that the retrieval results of the machine learning
fusion model are significantly better than the HALF and DER
single-point re-tracking methods. Compared with the traditional
retracking method, the prediction result of the R2-Ranking fusion
model is more stable and closer to the SSH value. Moreover, the
machine learning fusion model does not need to consider various
error corrections in the time-delay retrieval algorithms, which
partly simplifies the complexity of retrieval model.

Table 6 presents the precision index of the three models,
which shows that the machine learning fusion model is obviously
superior to the retracking method of HALF and DER on MAD,
RMSE and CC. The application of the new machine learning
weighted average fusion feature extraction method effectively
improves the accuracy of SSH retrieval, in which the mean
absolute error (MAD) is reduced by 63.1 and 59.2%
respectively, and the root mean square error (RMSE) is
reduced by 63.3 and 61.8% respectively; The correlation
coefficient (CC) increased by 31.6 and 44.2% respectively.

CONCLUSION AND PROSPECT

The traditional single-point retracking method is an empirical
model, which can only use a small amount of DDM information.
This method will cause information waste and loss of certain
inversion accuracy. In order to improve the accuracy of SSH
retrieval, this paper proposed a new type of machine learning
weighted average fusion feature extraction method and analyze the
inversion accuracy of different models and the influence of different
feature sets on the model. The specific conclusion are as follows:

1) This paper first evaluates the SSH retrieval performance of
regression methods commonly used in machine learning,
such as linear regression model (Lasso, Ridge) SVR and
ensembled tree regression model (XGBoost, LightGBM and
RF). The experimental results show that the ensembled tree
regression model have an overall outstanding performance
on the test set, and the effects of other models are
slightly worse.

2) RF, XGBoost and Ridge models with better SSH retrieval
performance and lower correlation are used for model fusion,
which further improves the SSH retrieval accuracy. Three
model fusion methods: Averaging, R2-Ranking and Stacking
are used for model fusion. The experimental results show that
the retrieval accuracy and correlation of the SSH value fusion
model compared with the DTU15 validation model are better
than a single model, and the fusion further improves the effect
of the model. At the same time, the R2-Ranking fusion method
proposed in this paper achieved the most accurate retrieval
results, with a mean absolute error of about 0.25, a root mean
square error RMSE of about 0.29, and a correlation CC of
about 0.75.

3) In order to obtain a better feature set, feature engineering
methods are used to screen and construct features that are
highly sensitive to the sea surface. This paper uses a total of six
groups of feature sets with different information details for
model training and verifies its accuracy on the test set.
Experimental results show that the three fusion models
have the best retrieval accuracy on feature set 5 that

FIGURE 9 | Forecast results of R2 ranking fusion model and single point retracking method.

TABLE 6 | Comparison of SSH retrieval performance between R2-Ranking fusion
model and single point retracking methods.

Learner MAD RMSE CC

HALF 0.57 0.71 0.57
DER 0.54 0.68 0.52
R2-Ranking 0.19 0.23 0.75
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includes DW, PCP70 and PFD features. It shows that the
machine learning fusion model with feature set of 5 can better
learn the complex relationship between the original input
features, so as to accurately retrieve the height.

4) By comparing the retrieval results with the commonly used
DER and HALF traditional single-point tracking methods, it
is concluded that the new machine learning weighted average
fusion feature extraction method effectively improves the
precision of SSH retrieval. The precision has been
improved by 61, 61, and 44% respectively in MAD, RMSE
and CC.

The new machine learning weighted average fusion feature
extraction method proposed in this paper provides a new idea for
the future DDM-based GNSS-R sea surface altimetry verification
star height inversion. The method proposed in this paper can be
extended to a wider scientific fields, such as: GNSS-R sea surface
wind speed retrieval, sea ice and soil moisture detection, etc.
Only need to re-optimize the features and modify the input and
corresponding output data. Compared with the previous
inversion models, machine learning algorithms are easier to
build models, without the need to build multiple error models,
and can make full use of the physical quantities related to the sea
surface height, and have a good accuracy. The disadvantage is
that the machine learning model requires a large number of
labeled observations to train and build the model. The
spaceborne GNSS-R receiver can provide massive observation
data. However, the corresponding high-precision sea surface
height is difficult to obtain. Meanwhile, since the GNSS-R signal
is weak, how to construct features sensitive to SSH change is
another main factor of SSH inversion by machine learning
fusion model. In the next step, more physical parameters
related to sea surface height can be extracted to improve the
effect of the fusion model.
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