
Detailed Processes and Potential
Mechanisms of Pliocene Salty Lake
Evolution in theWesternQaidamBasin
Qingda Su1, Hannah Riegel2, Lisha Gong1*, Richard Heermance3 and Junsheng Nie1*

1Key Laboratory of Western China’ Environmental System (Ministry of Education), College of Earth and Environmental Sciences,
Lanzhou University, Lanzhou, China, 2Department of Geological and Environmental Sciences, Appalachian State University,
Boone, NC, United States, 3Department of Geological Sciences, California State University Northridge, Northridge, CA,
United States

Hyperarid climate and salty lakes prevail in the current Qaidam Basin, but this basin was
once a large paleolake until the early Quaternary. However, its evolution history and
relationship with climate and tectonics are still elusive. Here we present detailed
stratigraphic descriptions combined with total organic carbon content and weight ratio
of organic carbon to total nitrogen records from fluvio-lacustrine sediments in the western
Qaidam Basin to infer how the lake evolved during the late Pliocene-early Pleistocene.
These data reveal a drying trend since 3.3 Ma, which we attribute to low latitude forcing
and/or local tectonic activities. However, this trend was interrupted during 2.84–2.48 Ma,
in which climate wetting was observed. We attribute the climate wetting during
2.84–2.48 Ma to intensified East Asian summer monsoon as is documented by the
Chinese Loess Plateau records. Halite and gypsum content increased dramatically
after 2.5 Ma, indicating the formation of salty lake in the western Qaidam Basin. These
data improve our understanding of the detailed processes of Qaidam aridification and its
potential forcing mechanisms.
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INTRODUCTION

The Qaidam Basin (QB), with an area of ∼80,000 km2 and an average elevation of ∼2.7 km above sea
level, is the largest internally drained basin on the northeastern Tibetan Plateau (Fang et al., 2007). A
hyperarid climate prevails with mean annual precipitation <50 mm and evaporation >1,000 mm in
this basin (Wu et al., 2011; Cai et al., 2012; Wang et al., 2013). The basin is largely covered by dry salt
playas, with only minor desert vegetation and hypersaline lakes (Wang et al., 2012). However,
previous studies suggest that a huge Qaidam paleolake might have existed during the Eocene (Wang
et al., 2006; Yin et al., 2008a, Yin et al., 2008b; Zhang et al., 2018; Liang et al., 2021), which expanded
from the Oligocene to the Miocene (Yang, 1986; Wu and Xue, 1993), and broke into several small
lakes likely during the Quaternary (Han et al., 2014; Lu et al., 2015). However, due to the scarcity of
continuously dated sediment records (Lu et al., 2015; Fang et al., 2016), how the Qaidam paleolake
evolved into its hyperarid condition remains relatively unknown. Furthermore, lack of such records
prevents understanding the underlying forcing mechanisms for Qaidam drying and central Asian
aridification.

Here we report lithofacies, total organic carbon (TOC), and weight ratio of organic carbon to total
nitrogen (C/N) data for the Huatugou (HTG) section in the western Qaidam Basin in order to clarify
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the above question. TOC coupled with C/N ratio in fluvio-
lacustrine sediments is sensitive to lake shrinkage and
expansion and has been widely used to reflect variations of
terrestrial input relative to lake productivity (Liu et al., 2013;
Fan et al., 2017). Normally, >20 C/N ratio indicate terrestrial
organic matter in lacustrine setting (Talbot and Lærdal, 2000),
therefore a higher TOC coupled with a higher than 20 C/N ratio
points toward terrestrial organic matter dominating TOC in lake
sediments, indicating more terrestrial input relative to lake
productivity (Talbot and Lærdal, 2000).

MATERIALS AND METHODS

Geological Setting
The Qaidam Basin is located at the northeastern Tibetan Plateau,
surrounded by the Altyn Shan to the northwest, the Qilian Shan

to the northeast, and the Kunlun Shan to the southwest
(Figure 1). It is far from any major moisture source and is in
the rain shadow zone of the Tibetan Plateau and central Asian
mountain ranges (Fang et al., 2007; Heermance et al., 2016). Its
climate is cold (mean annual temperature 0–5°C), windy and dry.
Hyperarid conditions combined with internal drainage within the
basin have resulted in extensive evaporite and playa deposition
throughout the Quaternary (Chen and Bowler, 1986; Fang et al.,
2008; Heermance et al., 2016; Zhang et al., 2012; Wang et al.,
2013). ∼12,000 m of sedimentary strata has been deposited in the
basin since the early Cenozoic (Huang et al., 1996). These strata
are divided into seven formations: the Lulehe Formation (Fm.),
Xiaganchaigou Fm., Shangganchaigou Fm., Xiayoushashan Fm.,
Shangyoushashan Fm., Shizigou Fm., and Qigequan Fm. (Fang
et al., 2007; Wang et al., 2007; Lu and Xiong, 2009; Zhuang et al.,
2011; Chang et al., 2015; Bush et al., 2016; Wang et al., 2017; Nie
et al., 2020).

The studied HTG section lies on the southern flank of the
Nanyi Shan (Figure 1B). The 476-m sedimentary strata consist of
evaporite, shale, siltstone, sandstone, and rare conglomerate
corresponding to the fluvio-lacustrine sediment of the Shizigou
Fm., and Qigequan Fm. (Luo et al., 2018). The age model of HTG
section is ∼3.9–2.1 Ma based on paleomagnetic dating by Luo
et al. (2018). Milankovitch cycles are detected in the magnetic
susceptibility record (Su et al., 2019a), demonstrating the validity
of the paleomagnetic age model.

Methods
For TOC analysis, a total of 298 crushed bulk samples (40–50 mg
ea.) were reacted with 3 mol/L HCl to remove carbonates before
being wrapped in tin capsules. The wrapped samples were then
heated to 1,800°C in a flow of oxygen using a Vario EL CubeFIGURE 1 | (A) Schematic summer atmospheric circulation pattern in

Asia and topography of Himalayan-Tibetan orogen (modified from Zhuang
et al., 2011). EASM: East Asian summer monsoon, ISM: Indian summer
monsoon. (B)Geological map of the western Qaidam Basin and location
of the Huatugou section [38°18.16′-38°15.5′N, 91°31.13′−91°34.2′E; labeled
with red star, modified from Chang et al. 2015, Luo et al. (2018)]. HTG:
Huatugou section, AFT: Altyn Tagh Fault. White dashed line depicts the
modern Asian summer monsoon limit (Gao, 1962).

FIGURE 2 | Stratigraphic column of the Huatugou section in the western
Qaidam Basin. The 476-m strata were subdivided into three units (Units 1–3)
based on lithofacies associations and depositional environments.
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elemental analyser (Elementar Analysensysteme, Germany). The
combustion of the sample and absorption of the released CO2

were performed in the automated mode. The mass content of
carbon in the sample was calculated using the proprietary
software provided by the device manufacturer. For each set of
analyses, calibration was performed against acetanilide.

RESULTS

Lithofacies of the Huatugou Section
The 476-m strata were divided into three units (Units 1–3) based
on lithofacies associations and depositional environments
(Figure 2): Unit 1 (0–273 m; playa-fluvial-lacustrine), Unit 2
(273–371 m; playa–fluvial), and Unit 3 (371–476 m;
playa–evaporite).

Unit 1: Playa-Fluvial-Lacustrine (0–273m)
Unit 1 is characterized by massive mudstone interbedded with
fine grained sandstone beds. The evaporite layers started to
appear at the base of the section (halite layer at 3.8 m and

gypsum layer at 7.9 m). Evaporite layers in Unit 1 are least
frequently observed of the entire sequence. Unit 1 is
interpreted as littoral to sublittoral lacustrine sedimentation in
an internally drained, playa environment (Pietras and Carroll,
2006). We note that fluvial layers are less frequent for the upper
portion of this unit (ca. 150–273 m), and this portion is
dominated by playa-lacustrine.

Unit 2: Playa–Fluvial (273–371m)
Unit 2 is dominated by fine-medium grained sandstone beds with
more frequent occurrences of evaporite layers (gypsum and
halite) than Unit 1, approximately every 2.4 m. Unit 2 is
interpreted as a sand flat and perennial shallow lacustrine
environment (Gierlowski-Kordesch and Rust, 1994). The
overall increase in grain-size and appearance of medium
sandstone beds suggest an increase in sediment-input from
fluvial erosion.

Unit 3: Playa–Evaporite (371–476m)
Unit 3 is dominated bymassive mudstone with interbedded halite
and gypsum beds. This unit has the highest frequency of evaporite

FIGURE 3 | Paleoenvironmental proxy records and corresponding stratigraphic column of the Huatugou section in the western Qaidam Basin, NE Tibetan Plateau.
(A–C) The χlf, χfd, and χfd/HIRM records (Su et al., 2019a; Su et al., 2019b). (D) The >63 μm fraction grain size record (Su et al., 2019b). (E–F) The TOC and C/N records.
Larger TOC values correspond to higher C/N ratio values, suggesting terrestrial organic matter input. Themagnetostratigraphy of the Huatugou section was derived from
Luo et al. (2018).
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beds, occurring every 2.1 m, which implies either regular times of
hyper-concentrated brine within the lake or frequent desiccation.

TOC and C/N Ratio Records
The TOC and C/N ratio records show similar patterns and can be
divided into four phases for this set of fluvio-lacustrine sediments,
with boundaries at 158, 273, and 380 m (corresponding to 3.3,
2.84, and 2.48 Ma, respectively, Figures 3, 4).

The TOC content record shows high amplitude fluctuations in
Phase 1 (0–158 m, corresponding to 3.9–3.3 Ma; Figure 4) and
Phase 3 (273–380 m, corresponding to 2.84–2.48 Ma; Figure 4).
The TOC values vary from 0.14–1.59% in Phase 1 and
0.34–1.76% in Phase 3, but almost all the TOC values are
below 1% in Phase 2 (158–273 m, corresponding to
3.3–2.84 Ma; Figure 4) and Phase 4 (380–476 m,
corresponding to 2.48–2.1 Ma; Figure 4). Similarly, the C/N
ratio values show high amplitude fluctuations in Phase 1 and
Phase 3 varying between 1.1 and 43.4, but most of the C/N ratio
values are below 10 in Phase 2 and Phase 4.

DISCUSSION

Environmental Implications of TOC and C/N
Ratio Variations
C/N ration is a useful proxy to distinguish different carbon
sources in lacustrine sediments (Talbot and Lærdal, 2000).
C/N ratios of aquatic vegetation are generally between 4 and
10, whereas C/N ratios of terrestrial plants are generally greater
than 20 (Talbot and Lærdal, 2000). The C/N ratio values in Phase
1 and Phase 3 are frequently greater than 20, suggesting that
organic matter in those intervals was mainly derived from
terrestrial plants transported by rivers. 83% of C/N ratio
values in Phase 2 and Phase 4 are below 10, suggesting a low
lake productivity and lack of terrestrial derived organic matter.
One may question whether high C/N ratios in the study site are
aligned with large grain size and fluvial transport, so that this ratio
can not be used to infer terrestrial derived organic matter.
However, few large grain size intervals (corresponding to
fluvial input) correspond to higher than 20 C/N ratio,

FIGURE 4 | Late Pliocene paleoenvironmental records from the Huatugou section and the SG1 core in the western Qaidam Basin. (A) The >63 μm fraction grain
size record (green line) and the χfd/HIRM record (black line, Su et al., 2019b) of the Huatugou section in the western Qaidam Basin. (B) The TOC record (black line) and
C/N ratio record (yellow line) of the Huatugou section in the western Qaidam Basin. (C–D) The aragonite record (Fang et al., 2016) and the artemisia record
(Koutsodendris et al., 2019) from the SG1 core in the western Qaidam Basin. (E)Marine δ18O record (Zachos et al., 2001). Three phase boundaries at ∼3.3, ∼2.84,
and ∼2.48 Ma are labeled with red dashed lines.
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suggesting that higher than 20 C/N ratios correspond to
lacustrine setting. Following this observation, we interpret the
intervals with higher TOC and C/N ratio during Phases 1 and 3 as
climate wetting.

Evolution of Western Qaidam Paleolake
During 4–2Ma
The evolution of Qaidam paleolake is divided into four phases
based on TOC and C/N ratios during the Plio-Pleistocene: Phase
1 (3.9–3.3 Ma), Phase 2 (3.3–2.84 Ma), Phase 3 (2.84–2.48 Ma),
and Phase 4 (2.48 Ma–2.1 Ma).

The lithofacies, TOC and C/N ratio records from the HTG
section suggest an open lake and a regularly wetting climate
before 3.3 Ma (Phase 1, Figure 4). This inference is consistent
with grain size and χfd/HIRM records from the Qaidam Basin
(Figure 4, Su et al., 2019b). We interpret that during a wetting
climate, terrestrial plants flourished in the surrounding regions,
resulting in more terrestrial organic matter being transported to
the depositional region.

The TOC and C/N ratio records from HTG section suggest
the Qaidam paleolake changed from an open lake to closed,
salty lake at ∼3.3 Ma (Figure 4). Previous studies from the
Qaidam Basin consistently suggest a phase of drying at
∼3.3 Ma (Heermance et al., 2016; Fang et al., 2016; Su et al.,
2019b). For example, in the Northeast Qaidam Basin, a change
from wetter fluvial/overbank strata to playa-lacustrine and
evaporite strata occurred around 3.3 Ma (Heermance et al.,
2016). A drying climate is observed in the western Qaidam
Basin as is recorded by mineral composition records
suggesting a brackish lake with higher Mg/Ca and higher
salinity after 3.3 Ma (Fang et al., 2016). Moreover, our χfd/
HIRM and grain size data from the HTG section in
northwestern Qaidam Basin reveal a phase of drying in the
Qaidam Basin at ∼3.3 Ma (Su et al., 2019b; Figure 4). Coupled
with previous studies from the western Qaidam Basin, we
interpret the hydrological transformation at ∼3.3 Ma as a
result of intensified aridity (Phase 2; Figure 4). Pliocene
tectonic uplift in the study region can be one forcing for
the observed drying (Lu et al., 2015). Alternatively, closure
of the Indonesian Seaway and associated sea surface
temperature (SST) decrease of the Indian Ocean is another
or additional potential way to explain central Asian drying at
∼3.3 Ma (Su et al., 2019b).

Interestingly, superimposed on the long-term drying trend, a
wetting climate in the Qaidam Basin occurred between 2.84 and
2.48 Ma (Figure 4). Sedimentological evidence from the same site
also indicates regular occurrences of fluvial system and wetter
conditions between 2.84 and 2.48 Ma. Previous studies
demonstrate a stepwise drying of central Asia since the
Pliocene (Fang et al., 2008; Han et al., 2014; Lu et al., 2015).
However, superimposed on the long-term drying trend, a phase
of undetected climate wetting did occur in the Qaidam Basin
during 2.84–2.48 Ma. This wetting is not unique to this site. For
example, averaged artemisia content decreased from 25.3% in
Phase 2 to 24.3% in Phase 3 (Figure 4, Koutsodendri et al., 2019),
suggesting climate wetting. Interestingly, aragonite content

increased from Phase 2 to Phase 3 (Figure 4, Fang et al.,
2016), different from the artemisia content variations. We
argue that biological proxies may better reflect regional climate
than evaporite mineral content. Therefore, we chose to use the
biological data.

Global climate was experiencing a cooling trend since 3.6 Ma
(Lisiecki and Raymo, 2005), so it is hard to attribute the observed
intensified precipitation in the study site during 2.84–2.48 Ma to
global forcing. Previous research suggests that stronger East Asian
summer monsoon (EASM) precipitation likely penetrated further
inland, which could bring more moisture to this inland basin (Liu
and Ding, 1998). The magnetic susceptibility records from the
Chinese Loess Plateau indicates an intensified Asian summer
monsoon during this interval (An et al., 2001; Nie et al., 2014).
Thus, we attribute the late Pliocene wetting of the Qaidam Basin
to enhancing EASM. Alternatively, increased moisture input
from westerly source is another possibility. However, evidence
for westerly moisture input increase at this time interval is
lacking.

Halite and gypsum content increased dramatically after
2.5 Ma (Figures 3, 4), indicating the formation of salty lake
and intensified aridification at ∼2.5 Ma in the western Qaidam
Basin. Intensified aridification of the Qaidam Basin at the
beginning of Quaternary is consistent with adjacent sections in
the Qaidam Basin (Wu et al., 2011; Cai et al., 2012; Wang et al.,
2012; Yang et al., 2013). The deep–lake black lamination abruptly
disappeared and changed to a shallow–lake gray massive
structure (Wang et al., 2012) and a shift in the paleolake
nutrient status (Yang et al., 2013) from SG–1 in the western
Qaidam Basin at ∼2.5 Ma, indicating rapid aridification at
∼2.6 Ma. Pollen records from SG–3 drill cores and Yahu
anticline also support intensified aridity during the Quaternary
period (Wu et al., 2011; Cai et al., 2012). The marine benthic δ18O
record (Lisiecki and Raymo, 2005) suggests intensified Northern
Hemisphere glaciations at 2.7 Ma. The intensified aridification of
central Asia at the Pliocene-Quaternary boundary may be in
response to intensive Northern Hemisphere glaciations and
resulting decreased evaporation from the Pacific and Indian
Oceans, which could have provided moisture to the Qaidam
Basin during the Pliocene (Su et al., 2019b). Decreased sea surface
temperatures in many oceans (Herbert et al., 2016) is in line with
this interpretation.

CONCLUSION

We report new, multiple-proxy records of the western Qaidam
Basin lake evolution. These records reveal four phases evolution
of the western Qaidam paleolake, with boundaries at ∼3.3, ∼2.84,
and ∼2.48 Ma. The data reveal that the Qaidam paleolake change
from an open lake to a closed and salty lake at ∼3.3 Ma, likely in
response to decreased precipitation from the low latitudes and/or
local tectonic uplift. Interestingly, superimposed on the long-term
drying trend, a phase of wetting climate was observed in the TOC
records in the Qaidam Basin during 2.84–2.48 Ma, which we
suggest linked to enhancing East Asian summer monsoon. Halite
and gypsum content increased dramatically after 2.5 Ma,
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indicating the formation of salty lake in the western Qaidam
Basin, which may be in response to intensive Northern
Hemisphere glaciation and decreased sea surface evaporation.
These data improve our understanding of the detailed processes
of Qaidam aridification and its potential forcing mechanisms.
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