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Soil aggregate stability (SAS) is a critical parameter of soil quality and its mapping can help
determine erosion hotspots. Despite this importance, SAS is less documented in available
literature due to limited number of analyzes besides being a time consuming. For this reason,
many researchers have turned to alternative methods that often use readily available variables
such as soil parameters or remote sensing indices to estimate this variable. In that framework, the
aim of the present study focused on the investigation of the feasibile use of adapted Leo
Breiman’s random forest algorithm (RF) to mapping different mean weight diameter (MWD) tests
as an index of SAS (mechanical breakdown (MWDmb), slow wetting (MWDsw), fast wetting
(MWDfw) and the mean of the three tests (MWDmean)). The model was built with 77 samples
distributed in the three watersheds of the study area located at Settat Ben-Ahmed, in Morocco
and with the use of several environmental variables such as soil parameters (organic matter and
clay), remote sensing indices (band 2, band 3, band 4, band 5, normalized difference vegetation
index (NDVI) and transformed normalized difference vegetation index (TNDVI)), topography
(elevation, slope, curvature plane and the topographic wetness index (TWI)) along with
additional categorical variables as geological maps, land use and soil classes. The results
showed a good level of accuracy for the training phase (75% of samples) for the different
tests (R2 > 0.92, RMSE and MAE < 0.15) and were satisfactory for the testing phase (25% of
samples,R2>0.65, RMSEandMAE<0.31). Also, organicmatter, topography andgeologywere
themost important parameters in the spatial prediction of SAS. Finally, themaps build during this
study could be of great use to identify areas of less stable soils in the perspective for taking the
necessary measures to improve their quality.
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INTRODUCTION

The concept of soil quality has several definitions and is often related to the area of
application. For example, the quality of soils intended for construction differs from that
of soils used in agriculture, so the same indicators are not used to assess both soil qualities. In
agriculture, soil quality was defined as its ability to provide all biomass and plants with a
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suitable environment for their development (Karlen et al.,
2003; Bünemann et al., 2018). Therefore, regular monitoring
and evaluation of soil quality are utmost necessary to
maintain its quality for a rational and sustainable use
(Nabiollahi et al., 2018; Melnik et al., 2019). Moreover, the
physical quality of the soil is directly related to its composition
and the way minerals and organic matter combine (McKenzie
et al., 2011; Magdoff, 2018). In this context, many important
key indicators have been invoked, inclusing soil aggregate
stability (SAS) which is one of the most important
parameters to evaluate the physical soil quality (Seybold
and Herrick, 2001; Delelegn et al., 2017). Thus, SAS
characterizes the resistance of the aggregates to the
degrading action of mechanical or physicochemical factors.
Even though research shows that SAS is a helpful index of soil
resistance to surface wind and water erosion in different
climates (Barthes and Roose, 2002; Cantón et al., 2009).
This helps to investigate the spatial soil quality and
determine erosion hotspots and areas requiring a particular
intervention to improve their quality and effectively develop
soil conservation measures. Unfortunately, this parameter is
not routinely measured, as it is considered a time and resource-
consuming parameter like many other ones which are
occasionally measured, making regular monitoring of soil
quality more difficult (László, 2009; De La Rosa, 2003; Qiao
et al., 2021).

Recently, the development of geographic information
technologies and spatial data processing has allowed to
improve the production of soil maps and to apply more
efficient techniques than conventional approaches (Silva et al.,
2019) in which the polygons of homogeneous soil types (mapping
units) were mapped based on the surveyor’s experience and field
observations such as aerial photographs, remote sensing
imageries, geological maps (Santra et al., 2017). In this respect,
the significant increase in digital soil mapping (DSM) contributed
to the development of pedology in general (Ma et al., 2019) and

created high-resolution soil maps using many techniques, either
geostatistical or machine learning-based (Lagacherie, 2008;
Wadoux et al., 2020).

Overall, this technique achieves its effectiveness due to the
availability of many important factors, such as the significant
progress of machine learning algorithms and their widespread
applications in several fields (Wadoux et al., 2020), including
soil science, and their contribution to the prediction and
mapping of different continuous soil propreties such as
organic carbon (Lamichhane et al., 2019), soil plasticity (Al
Masmoudi et al., 2021), soil aggregate stability (Rivera and
Bonilla, 2020; Bouslihim et al., 2021) and texture (Barman and
Choudhury, 2020). It is also involved in the prediction of
discontinuous soil characteristics such as soil classes and soil
horizons (Zeraatpisheh et al., 2020). In addition, the role of
environmental variables used as input to the model should not
be neglected. Such data have become very abundant due to the
remarkable progress in remote sensing and the availability of a
large number of satellite images (Sepuru and Dude, 2018), and
the availability of various databases related to soil (Batjes et al.,
2017; Hengl et al., 2017), topography (Gonzalez-Moradas and
Viveen, 2020), or climate (Fick and Hijmans, 2017), which are
shared with the researchers for free. This enables users to
access many variables that can be used to predict and map soil
parameters (Hengl and MacMillan, 2019).

Based on the ideas of Dokuchaev (1948) and Jenny (1941),
McBratney et al. (2003) proposed the “scorpan” model (Eq.
1), which can be considered as the empirical quantitative
relationship of a soil attribute and its spatially implicit
forming factors. These factors may involve different types
of data, such as: soil (s) which represents different soil
properties including: climate (c), which represents the
climatic properties; organisms (o), which denotes the
vegetation, fauna or human activity; topography (r), which
refers to landscape properties; parent material (p)
representing the lithology; age (a), which describes the
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time factor and finally, space (n), which is the spatial
position.

S(x,y) � f(s(x,y), c(x,y), o(x,y), r(x,y), p(x,y), a(x,y), n(x,y))
+ e(x,y)

(1)

where (x,y) corresponds to the coordinates of a soil
observation, and e is the spatial residual and e is spatially
correlated residuals.

In the present study, we mapped for the first time the
different SAS tests listed in the ISO/FDIS 10930 (2012)
based on widely available and accessible covariates and the
Random Forest algorithm. Digital mapping of this parameter
also permitted to investigate the soil quality in terms of
stability and, at the same time, determine the location of
unstable soil that can be considered erosion hotspots.

To cover the maximum number of parameters that can have
an effect on SAS prediction, we used various environmental
covariates related to soil, topography, remote sensing and
additional categorical variables as geological maps, land use
and soil classes. However, climatic data are not used as the
study area is small and homogeneous. Overall, the objective of
the present study was to mapping different mean weight
diameter (MWD) tests as an index of SAS (mechanical
breakdown (MWDmb), slow wetting (MWDsw), fast
wetting (MWDfw) and the mean of the three tests
(MWDmean)) using an adaptation of Leo Breiman’s
random forest algorithm (Breiman, 2001) in the three
watersheds of the study area (Settat Ben-Ahmed, Morocco).
Finally, the maps produced can help identify less stable soils,
which can be considered erosion hotspots and take the
necessary measures to improve their quality.

MATERIALS AND METHODS

Research Location and Description
The study area is a part of the Settat-Ben Ahmed region, as three
watersheds are arranged side by side, as shown in Figure 1. The
most important watershed is named Tamedroust, with an area of
642.42 km2; the other two watersheds, Maze and El Himer are the
smallest with 179.2 and 177.7 km2, respectively. The slope is
generally gentle, and the three watersheds contribute to the
recharge of the Berrechid aquifer. The climate is considered
semi-arid with an average annual rainfall value of 300 mm/year
(Driouech, 2010), distributed generally in the rainy period,
extending from October to April with maximum values of 53.1
and 48.7 mm for the months of December and January. From a
pedological perspective, Calcisols dominate the surface of the three
watersheds, with a limited presence of Rankers and Xerosols in El
Himer watershed (Bouslihim et al., 2019).

Soil Sampling and Laboratory Analysis
In this study, we adopted a stratified sampling method based on
auxiliary information. Thus, 77 samples were selected based on the
available soil map. Generally, we tried to ensure that all soil types
were covered in the different areas, except in the middle of the
Tamedroust watershed, and for that reason, we used digital
mapping to produce a spatial distribution of soil aggregate
stability in the entire study area. Soil samples were collected
using a hand auger to collect a disturbed sample from 20 to
30 cm depth. In this regard, soil sampling standards were followed.
In general. Approximately 2 kg of soil were taken from different
points of the same soil and mixed in a plastic container to ensure
homogeneity of the recovered sample (Proce, 1997). For SAS
analysis, we adopted the standard method ISO/FDIS 10930
(2012), often known as Le Bissonnais method. Thus, only soil
aggregates with diameters between 3 and 5 mm were retained and

FIGURE 1 | Location of study area and distribution of sample points.
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subsequently used to measured the three SAS tests (fast wetting by
immersion, slow wetting by capillary action and mechanical
breakdown by agitation after immersion in ethanol). These
three tests present the different hydric conditions that can be
encountered in the field. Fast wetting is used to compare the
behavior of a wide range of soils during rapid wetting (e.g., heavy
summer rainstorms). On the contrary, the slow wetting, which is
less destructive than the fast wetting and can allow a better
discrimination between unstable soils, corresponds to a wetting
ground condition under a gentle rain. Lastly, we find the
mechanical breakdown, this treatment allows to test the
behavior of wet materials, generally in the wet winter periods
(Le Bissonnais, 2016).

The recovered aggregates (3–5mm) were dried in the oven for
24 h at 40°C to ensure a constant matrix potential and each test was
repeated three times according to the protocol, hence for the 77
samples, we havemade 693 analyses in total. The results are expressed
by the mean weight diameter (MWD), which is the sum of the mass
fraction of soil remaining on each sieve after sieving multiplied by the
mean aperture of the adjacent mesh (Le Bissonnais, 2016).

Environmental Covariates
To complete the explanatory variables list, we added some
environmental covariates related to soil, topography, remote
sensing and additional categorical variables as geological maps,
land use and soil classes (Figures 2K–M). Table 1 gives the list and
characteristics of all environmental covariates used in this study.

The different parameters of the topography such as elevation, slope,
curvature plane and the topographic wetness index (TWI) (Figures
2G–J) were extracted with a spatial resolution of 12.5m from the
ALOS PALSAR digital elevation model acquired at https://asf.alaska.

edu. The topographic covariates have been performedusing the terrain
analysis toolbox available in System for Automated Geoscientific
Geographical Information System (SAGA-GIS) software.

For remote sensing indices, we used spectral data from the
LANDSAT 8 satellite, launched in 2013 and including two
sensors, namely OLI (Operational Land Imager) characterized
by seven spectral bands (VNIR-SWIR) and one cirrus band with a
spatial resolution of 30 m (Figures 2A–D), in addition to a
panchromatic band of 15 m. The second is the Thermal
Infrared Sensor (TIRS) which contains two thermal bands.
Landsat-8 scenes cover 185 km × 180 km, available free of
charge, with a radiometric resolution of 16 bits (Roy et al., 2014).

The Landsat 8 image (ID: LC08_L1TP_202037_20170414_
20170501_01_T1), acquired on April 14, 2017, was used in the
present work with L1T correction level and 0% cloud cover. The
different bands are provided with the Universal Transverse
Mercator (UTM) projection and the WGS 84 global geodetic
system. Bands 1 and 9 are not used in this study as they are
destined for atmospheric aerosol properties and cirrus detection,
respectively (Roy et al., 2014; Adiri et al., 2020). The radiometric
values of the spectral bands can be converted to reflectances by
the following equation (Landsat Missions, 2016).

ρλ′ � MρpQcal + Ap

Where ρλ′ is the Top of Atmosphere Planetary Spectral
Reflectance, without correction for solar angle. Mρ, Aρ and
Qcal are the Reflectance multiplicative scaling factor for the
band, the Reflectance additive scaling factor for the band and
Level 1-pixel value in DN.

The ρλ′ is not true reflectance because it does not contain a
correction for the solar elevation angle. Once a solar elevation

FIGURE 2 | Conditioning factors used for soil aggregate stability mapping. (A) Band-2 Blue, (B) Band-3 Green, (C) Band-4 Red, (D) Band-5 NIR, (E) NDVI, (F)
TNDVI, (G) Elevation, (H) Plan curvature, (I) Slope, (J) TWI, (K) Geology, (L) Landuse, (M) Soil classes, (N) Organic matter and (O) Clay.
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angle is chosen, the conversion to true reflectance is as follows
(Zanter, 2019):

ρλ �
ρλ′

sin(θSE)
Where ρλ is the True planetary reflectance and θSE is the Local
sun elevation angle.

Finally, panchromatic band-8 was used to resample the OLI
sensor bands at 15 m using the Pan Sharpening method
“Gram-Schmidt” (Laben and Brower, 2000; Amer et al.,
2012; Maurer 2013).

In semi-arid and arid regions, tracking vegetation dynamics
is a significant indicator of water erosion and desertification
processes. Generally, soil degradation increases when the soil
has little vegetation cover. This can be quantified from remote
sensing images, either by inverse modeling using radiative
transfer models or using vegetation indices (Bannari, 1995).
In remote sensing, the variation of the spectral response
measured at the satellite sensor is an indicator of
environmental change. For the quantification of vegetation
cover, several vegetation indices can be used (Bouslihim
et al., 2021). In the literature, the normalized difference
vegetation index (NDVI) (Figure 2E) is the most popular
and widely used (Mahmoudabadi et al., 2017; Maynard and
Levi, 2017; Lamichhane et al., 2019). However, other indices
have been developed, such as the transformed difference
vegetation index (TNDVI) (Figure 2F), which quantifies
vegetation cover rates more accurately than other vegetation
indices (Bannari et al., 2007). NDVI and TNDVI are relatively
correlated with vegetation cover rates and green biomass
(Rondeaux et al., 1996).

In the present study, vegetation indices were calculated using
the reflectance data of the red ρ_R and near-infrared ρ_(NIR)
domains of the LANDSAT 8 satellite by the following formulas:

NDVI � ρNIR − ρR
ρNIR + ρR

� ρB5 − ρB4
ρB5 + ρB4

TNDVI � ����������
NDVI + 0.5

√

Machine Learning Technique
The model used in this study is an adaptation of Leo Brieman’s
Random Forest (Breiman, 2001) proposed by ESRI in ArcGIS
Pro program named Forest-based Classification and
Regression (FCR). The power behind combining this
machine learning algorithm and the ArcGIS Pro program is
to take advantage of its graphical interface, which provides the
user of many benefits and the ability to facilitate data
preparation, explanatory data analysis, model development
and model deployment. Also, this tool can be used to
develop the model for both categorical variables
(classification) and continuous variables (regression) based
on different input data formats available. For this reason,
the FCR algorithm supports different forms of explanatory
variables such as tabular attributes, distance-based features,
and rasters datasets. The prediction is based on creating many
decision trees (forest). Each tree generates its prediction and
will be used in a voting system based on the whole forest to
avoid overfitting. In the current study, according to the
flowchart presented in Figure 3, the model was performed
using organic matter, clay, band 2, band 3, band 4, band 5,
NDVI, TNDVI, elevation, slope, curvature plane and TWI as

TABLE 1 | Environmental covariates for soil aggregate stability prediction.

Environmental covariate Source Description/Resolution

Elevation ALOS PALSAR 12.5 m
Slope
Curvature plane
Topographic wetness index (TWI)

Band 2 Landsat OLI 8 Blue, 0.45–0.51 µm (15 m)
Band 3 Green, 0.53–0.59 µm (15 m)
Band 4 Red, 0.64–0.67 µm (15 m)
Band 5 NIR, 0.85–0.88 µm (15 m)
Normalized Difference Vegetation Index (NDVI) 15 m
Transformed Normalized Difference Vegetation Index (TNDVI) 15 m
Landuse 30 m

Geology Geological map (El Gasmi et al.,
2014)

1/200,000

Soil classes Ministry of Agriculture and
Fisheries, Morocco/Hassan II
Institute of Agronomy and
Veterinary Sciences

1/100,000

Organic matter Clay Bouslihim et al. (2021) 30 m
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continuous variables and three categorical variables (geological
maps, land use and soil classes).

Model Evaluation and Accuracy
Assessment
For model performance evaluation, it is necessary to randomly
divide the data into two sets. For this reason, our samples (77 in
total) were divided into two subsetes, where the first one acconted
for 75% of the dataset (i.e., n � 57) andwas used formodel training.
The validation was performed using the remaining 25% of the
dataset (i.e., n � 20). The following equations represent the three
statistical parameters that have been adopted to statistically assess
the model performance. They respectively are, coefficient of
determination (R2), Mean absolute error (MAE), root-mean-
square error (RMSE):

R2 � 1 − ∑n
i�1|MWD(Xi) −MWD(Yi)|2

∑n
i�1

∣∣∣∣∣∣∣MWD(Xi) −MWD(Xi)∣∣∣∣∣∣∣
2

RMSE �
�����������������������������∑n

i�1[MWD(Xi) − MWD(Yi)]2/n
√

MAE �
∣∣∣∣∣∣∣∣∣1n ∑n

i�1
|MWD(Xi) −MWD(Yi)

∣∣∣∣∣∣∣∣∣
where, MWD(Xi) is the observed values and MWD(Yi) is the
simulated values. MWD(Xi) is the mean value of observed
values and n is the size of the observations.

Model with throughput resolution of prediction should
display an R2 value close to 1 with a low MAE and RMSE.
For a classification criterion for R2 values we adopted the
classifications proposed by Li et al. (2016). A value of R2 lower
than 0.5 means an unacceptable prediction, values between 0.5
and 0.75 are acceptable and values higher than 0.75 can be
considered as a good prediction.

Variable importance (input data) is also a crucial determinant
of model performance, as it provides insight into each variable’s
contribution. However, the importance score is determined using
Gini coefficients (Menze et al., 2009), which can be considered as
the number of occasions a variable is responsible for a split and its
impact divided by the number of trees.

Data Processing and Statistical Analysis
Prior to this analysis, original values are ln(x + 1)-transformed so
they can have a comparable scale. As the multivariate statistical
approaches involve all the variables in data processing thus, this
two-dimensional clustered heatmap and principal component
analysis (PCA) were applied using R software for comprehensive
data analysis. For 2-D clustered heatmap, rows are centered; Unit
variance scaling is applied to rows. Both rows and columns are
clustered using correlation distance and average linkage. The
color-coding within the dataset, using different colors with their
intensities for positive and negative correlations, is the
fundamental principle in cluster heatmapping. Weak
correlations are displayed in low color intensity, while stronger
ones are shown with high color intensity. Positive correlations

FIGURE 3 | Methodological flowchart. SAS, soil aggregate stavility; MWDmb, mechanical breakdown; MWDsw, slow wetting; MWDfw, fast wetting and
MWDmean, the mean of the three tests.
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were represented by red color, while negative ones were marked
in turquoise.

Regarding the PCA method, unit variance scaling is applied
to rows; Nipals PCA is used to calculate principal components.
X and Y axis show principal component 1 and principal
component 2, explaining 98.1 and 0.9% of the total variance,
respectively. The aforementioned methods, with (PCA) and
without (heatmap) dimensionality reduction, were both used
to understand the network connections in a symmetric
adjacency matrix and then to determine the most relevant
variables in the dataset. Finally, Pearson correlation
coefficients were used to determine the relationship between
any two groups of variables.

RESULTS AND DISCUSSION

Descriptive Statistics
Both clustering heatmap and PCA models that assume an
unsupervised learning approach were used alongside a
machine learning approach that relies on a supervised learning
process to understand the network connections in the dataset and
then determine the most relevant variables explaining the large
variance in both models.

Data imagining is an essential mean for soil data analysis,
and dimensionality reduction procedures, such as PCA, are
regularly used to plot high dimensional data onto two- or

three-dimensional space for better visualization. However,
this approach is costly, often resulting in the loss of the
total variance explained by the model. Indeed, a
hierarchically clustered heatmap is among many analyses
that do not require a dimensionality reduction for data
visualization. It is widely used to examine complex data by
displaying potential relationships in a symmetric matrix to
understand the data better. The color-coded heatmap is
formed with two clusters using correlation distance and
average linkage; one is sample-oriented while the other is
variable-oriented (Figure 4). In this figure, the output
variables, including MWDmean, MWDmb, MWDfw and
MWDsw, were clustered together in the same subcluster,
next to which OM, clay and slope were identified as a
single subcluster. These variables were found to be strongly
correlated, as shown in Figure 5. However, both TNDVI and
NDVI were separately classified in another subcluster
alongside the variables B2, B3 and B4, to which they were
negatively correlated (Figures 4, 5). The last subcluster
included TWI, elevation and curvature, which displayed
weak negative correlations (Figures 4, 5). Examining the
clustered heatmap models shows that the variable elevation
has a large effect on the model since it captured the highest
amount of the total variance shared. In order of importance,
the following variables clay, TWI and OM, along with slope,
have largely contributed to the variance explained. Likewise,
the 2-D plot of the PCA loadings showed that only the five

FIGURE 4 | Two-dimensional clustered heatmap based on the correlation matrix of studied variables. Weak correlations are displayed in low color intensity, while
stronger ones are shown with high color intensity. Positive correlations were represented by red color, while negative ones were marked in turquoise.
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aforementioned variables, respecting the above order of
importance, have captured a large amount of total variance
explained by the model (Figure 6). The sample-oriented

cluster showed two main soil groups; the first one includes
only seven samples, while the second was larger with 70 soil
samples subdivided into three subclusters. Based on the color-
coded correlation of the heatmap, the only significant
difference between the two main clusters is attributed to
the slope. Thus, the first cluster was characterized with a
very low slope ranging between 0 and 0.51. It is noteworthy
that both PCA and clustered heatmap models displayed
almost similar total variance, despite being different in
their respective data processing methods. This is probably
due to high collinearity between the investigated variables,
particularly the input variables.

Determining the Relative Importance of
Variables
Based on Figure 7, it was observed that topography
parameters and organic matter have the most contribution
in predicting different MWD tests. For MWDfw, we notice
that elevation was the best predicting variable with 24%,
followed by OM, clay, and band 5 with 19, 14, and 12%,
respectively. The other variables such as slope, geology, band 2
and TNDVI were considered as redundant attributes among
the input parameters and their contribution did not overall
exceed 10% (9% for slope, 8% for geology and 7% for band 2

FIGURE 5 | Heatmap correlations showing the relationships between investigated variables. MWDmb, mechanical breakdown; MWDsw, slow wetting; MWDfw,
fast wetting; MWDmean, the mean of the three tests; OM, organic matter; NDVI, normalized difference vegetation index; TNDVI, transformed normalized difference
vegetation index; B2, Band 2; B3, Band 3; B4, Band 4; B5, Band 5 and TWI, topographic wetness index.

FIGURE 6 | PCA scatter lot showing the variable contribution in the
dataset. X and Y axis show principal component 1 and principal component 2
that explain 98.1 and 0.9% of the total variance.
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and TNDVI). However, other parameters such as plan
curvature, soil and land use have no contribution in any
other model. For MWDmb and MWDsw, this time, organic
matter leads the predictive variables, with values between 27
and 29%. Also, elevation, slope and clay contribute
significantly to this prediction, with values ranging between
11 and 18%. For the MWDmean, Figure 7 shows a roughly
balanced contribution between OM, elevation, slope, clay and
geology with values ranging between 29 and 15%.

Therefore, it can be determined that soil properties contribute
significantly to predictingMWD, specifically organic matter. This can
be supported by previous studies, which showed the high correlation
betweenOMand SAS (Abiven et al., 2009; Chaplot andCooper, 2015)
and that OM represents a significant contributor in the prediction of
MWD (Bieganowski et al., 2018; Rivera and Bonilla, 2020). Also,
Annabi et al. (2017) reported the significant weight of clays in the
pedotransfer-function ofMWDfw,which confirms the current study’s
results on the contribution of clay in the prediction of different SAS
tests. This funding returns us to the important role of geology (the
nature of substrates) in this prediction, which is the source of various
soil properties (such as soil texture, organic matter, and proportion of
different chemicals) (Annabi, et al., 2017).

Many other studies confirmed the significant role of topography
and its derivatives (elevation, slope and TWI) in the spatial
distribution of SAS (Cantón et al., 2009; Tang et al., 2010;
Nsabimana et al., 2020). Furthermore, we cannot forget the
effect of the topography on other soil properties (Kumar and
Singh, 2016; Li et al., 2020;Maleki et al., 2020; Tajik el al., 2020) and

FIGURE 7 | The relative importance of different variables.

TABLE 2 | FCR training and testing results for different MWD tests.

Training (n = 57) Testing (n = 20)

R2 RMSE MAE R2 RMSE MAE

MWDmean 0.92 0.15 0.111 0.8 0.31 0.249
MWDfw 0.95 0.138 0.107 0.65 0.297 0.249
MWDmb 0.93 0.158 0.119 0.73 0.286 0.232
MWDsw 0.95 0.143 0.111 0.76 0.196 0.167

Frontiers in Earth Science | www.frontiersin.org September 2021 | Volume 9 | Article 7488599

Bouslihim et al. Digital Mapping of Soil Aggregate Stability

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


distribution of vegetation (Celik, 2005; Jin et al., 2008;
Mahmoudabadi et al., 2017; Maynard and Levi, 2017), which
will undoubtedly affect the distribution of soil stability.

Besides all above results, we cannot forget the role of remote
sensing parameters, which have shown their importance during
this study. Many previous studies can also support these results
(Besalatpour et al., 2014; Shi et al., 2020; Jones et al., 2021;
Kamamia et al., 2021). In contrast, Bouslihim et al. (2021)
reported a low contribution of remote sensing indices in
estimating SAS, and this was justified by the presence of
other parameters that often reduced the role of remote
sensing indices. Although some studies have reported the
role of climate in SAS distribution (Cerdà, 2000; Guan et al.,
2018; Le Bissonnais et al., 2018), these data were not used in the
current paper due to the small size of the study area and the
limited spatial change for climatic conditions.

Model Accuracy
The performance results of different models were evaluated
based on statistical validation indices such as R2, RMSE and
MAE for both training (75% of samples) and testing (25% of
samples). All achieved results are listed in Table 2. According to
the classification proposed by Li et al. (2016), for the training

stage, the obtained R2 results showed that all the models
performed by FCR for the different SAS tests (MWDsw,
MWDfw, MWDmb and MWDmean) are classified in the
“good prediction” category (R2 > 0.92). This shows that the
FCR model has well modeled the different stability tests,
especially for MWDsw with an R2 value of 0.95. The other
statistical indices (RMSE and MAE) were used to diagnose error
variation. We notice that the values obtained for RMSE and
MAE are low for the four implemented models, with values
ranging from 0.138 to 0.158 mm for RMSE and between 0.107
and 0.119 mm for MAE. Also, the difference between the two
indices is insignificant. The average differences between the
predicted and the measured values of MWD was between 0.031
and 0.039 mm for the four tests. This indicates that the
magnitude of the errors varies slightly, which confirms the
good results obtained during the training stage.

For the validation phase, we remarked a decrease in the
performance of different models. According to R2

classification, testing results were classified as (good
prediction � R2 ≥ 0.75) for MWDmean and MWDsw, with R2

values of 0.8 and 0.76. In comparison, the two other models were
classified as (acceptable prediction � 0.50 ≤ R2 < 0.75) with R2

values of 0.73 and 0.65 for MWDmb and MWDfw. The other

FIGURE 8 | Prediction maps of soil aggregate stability: (A) MWDsw, (B) MWDmb, (C) MWDfw and (D) MWDmean.
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indices (RMSE and MAE) follow the same tendency, with low
values close to 0 for the four built models. Moreover, the
difference between the two indices remained low and did not
exceed 0.061 mm. These results show that the FCR model
successfully predicted the MWD values for the different SAS
tests for the validation step.

Previous studies have tried to estimate soil stability using
various models and available information. However, the
difference in measuring soil stability using those models
remained a challenging obstacle for comparing their prediction
resolutions. Indeed, the R2 values reported in the current study
were higher compared to thoses reported in several previous
studies. Kamamia et al. (2021) obtained R2 values of 0.53 and
0.39 for training and testing, respectively, using the Cubist model
and 90 samples in the Ruiru watershed (Kenya). Singh et al. (2019)
used Multiple Linear Regression in the Uttarakhand watershed
(India) by applying a different data combination (soil, topography
and soil/topography); The results obtained did not exceed 0.50 for
R2 for the soil and topography combination, where reported values
ranged between 0.36 and 0.37 for the other models.

Contrary to aforementioned studies, Rivera and Bonilla (2020)
reported good performance for the Artificial Neural Network
(ANN) model with an R2 value � 0.80 for training and R2 �
0.82 for testing. On the other hand, Generalized Linear Model
yielded acceptable results with R2 values of 0.59 and 0.63 for both
training and testing. Using ANN and MLR models, Marashi et al.
(2017) showed the capability of the ANN model to predict MWD
with an R2 value of 0.87 for training and 0.93 for testing, against
values of 0.78 and 0.90 for training and testing, respectively, for the
MLR model. All these findings show that the results obtained
during this study are encouraging, especially the stability of the
model during the different phases (training and testing).

Spatial Prediction of Soil Aggregate Stability
The different environmental covariates that significantly impact
model development were used in a raster format to generate spatial
distribution maps using the FCR model under the ArcGIS Pro
program. The best prediction map of each SAS test (MWDsw,
MWDfw, MDWmb and MWDmean) are presented in Figure 8.
The generated maps show the existence of unstable and medium
stable soils in the southwestern part of the study area, while stable
soils are found in the middle and north. The very stable soils are
generally distributed in the northeast part. The effect of topography
(especially elevation) on the distribution of stability indices was
clearly seen. The unstable soils are found in the areas with the
highest elevations (the western part), while the very stable soils are
concentrated in the plain areas with the lowest elevations (the
downstream part of the Mazer and Tamedroust watersheds).
Besides, the effect of geology is apparent, especially for
MWDmean (Figure 8D). Several MWD classes have shaped
the geological layers, e.g., the Turonian in the middle of the
study area, the Quaternary and Triassic in the downstream
parts of the watersheds. This effect of the geological map
pattern on SAS distribution was reported by Annabi et al.
(2017). This was indeed expected, considering the relationship
of geological factors to soil properties (Crowther, 1930; Kassai and
Sisák 2018).

Unlike other watersheds, the downstream part of the El Himer
is characterized by the presence of stable soils for MWDmean,
which is generally due to the existence of anthropogenic activities
(clay quarries) and high slopes on the northeastern limb in the
right tributary of El Himer river, as mentioned in the study
conducted by Bouslihim et al. (2020). What is interesting is the
absence of very unstable soils throughout the region (MWD <
0.4 mm) with a domination of the two classes: moderately stable
(0.8 < MWD < 1.3 mm) and stable (1.3 < MWD < 2.0 mm). This
can be underpinned by the findings by Bouslihim (2020),
Bouslihim et al. (2021) regarding the low soil erosion rates in
the region; moreover, the only exposed area to erosion is the
downstream part of the El Himer watershed due to the factors
mentioned earlier (anthropogenic factors and topography).

CONCLUSION

The model used in this study approved its capabilities to predict soil
structural stability based on the MWD index with its different tests
(MWDfw, MDWsw, MDWmb and MWDmean). The results
obtained are satisfactory for both training and evaluation phases.
The integration of the RF algorithm in the ArcGIS Pro program
permitted to produce maps of the spatial distribution of the four
stability tests using the model results. The generated maps showed
the existence of unstable to moderately stable soils in the
southwestern part, stable soils in the middle and northern part of
the area, with very stable soils distributed in the northeastern part.
This distribution was generally affected by a few factors such as
organic matter (more than 24%), topography (specifically
elevation with a percentage ranging from 15 to 24%), and
geology (20% for MWDmean), with a moderate contribution
from remote sensing indices and at best does not exceed 12%.
In the absence of sufficient studies, further investigations
under similar conditions are utmost required to verify that
the same variables remain significant for mapping the stability
of soil aggregates in regions characterized by a semi-arid
climate. The prediction maps can be used as a basis for
delineating areas of potential erosion and are very useful for
management considerations. This approach can be considered
an affordable methodology. However, one of the limitations of
this work is that a larger sample size is required.
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