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Young’smodulus (E) is essential for predicting the behavior ofmaterials under stress and plays an
important role in the stability of surface and subsurface structures. E has a wide range of
applications inmining, geology, civil engineering, etc.; for example, coal andmetal mines, tunnels,
foundations, slopes, bridges, buildings, drilling, etc. This study developed a novel machine
learning regression model, namely an extreme gradient boosting (XGBoost) to predict the
influences of four inputs such as uniaxial compressive strength in MPa; density in g/cm3;
p-wave velocity (Vp) in m/s; and s-wave velocity in m/s on two outputs, namely static Young’s
modulus (Es) inGPa; and dynamic Young’smodulus (Ed) inGPa. Using a series of basic statistical
analysis tools, the accompanying strengths of each input and each output were systematically
examined to classify themost prevailing and significant input parameters. Then, two othermodels
i.e., multiple linear regression (MLR) and artificial neural network (ANN) were employed to predict
Es and Ed. Next, multiple linear regression and ANN were compared with XGBoost. The original
datasetwas allocated as 70% for the training stage and 30% for the testing stage for eachmodel.
To improve the performance of the developed models, an iterative 10-fold cross-validation
method was used. Therefore, based on the results XGBoost model has revealed the best
performance with high accuracy (Es: correlation coefficient (R2) � 0.998; Ed: R

2 � 0.999 in the
training stage; Es: R

2� 0.997; Ed: R
2� 0.999 in the testing stage), rootmean square error (RMSE)

(Es: RMSE � 0.0652; Ed: RMSE � 0.0062 in the training stage; Es: RMSE � 0.071; Ed: RMSE �
0.027 in the testing stage), RMSE-standard deviation ratio (RSR) index value (Es: RSR� 0.00238;
Ed:RSR� 0.00023 in the training stage; Es: RSR� 0.00304; Ed:RSR� 0.001 in the testing stage)
and variance accounts for (VAF) (Es: VAF� 99.71; Ed: VAF� 99.99 in the training stage; Es: VAF�
99.83; Ed: VAF � 99.94 in the testing stage) compared to the other developed models in this
study. Using a novel machine learning approach, this study was able to deliver substitute
elucidations for predicting Es and Ed parameters with suitable accuracy and runtime.

Keywords: dynamic Young’s modulus, k-fold crosses validation, machine learning, predictive modeling, static
Young’s modulus, XGBoost

Edited by:
Zetian Zhang,

Sichuan University, China

Reviewed by:
Harsha Vardhan,

National Institute of Technology, India
Yingchun Li,

Dalian University of Technology, China

*Correspondence:
Xigui Zheng

cumt_ckzxg@126.com

Specialty section:
This article was submitted to
Geohazards and Georisks,

a section of the journal
Frontiers in Earth Science

Received: 20 August 2021
Accepted: 12 October 2021
Published: 26 October 2021

Citation:
Shahani NM, Zheng X, Liu C,

Hassan FU and Li P (2021) Developing
an XGBoost Regression Model for

Predicting Young’s Modulus of Intact
Sedimentary Rocks for the Stability of
Surface and Subsurface Structures.

Front. Earth Sci. 9:761990.
doi: 10.3389/feart.2021.761990

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7619901

ORIGINAL RESEARCH
published: 26 October 2021

doi: 10.3389/feart.2021.761990

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.761990&domain=pdf&date_stamp=2021-10-26
https://www.frontiersin.org/articles/10.3389/feart.2021.761990/full
https://www.frontiersin.org/articles/10.3389/feart.2021.761990/full
https://www.frontiersin.org/articles/10.3389/feart.2021.761990/full
https://www.frontiersin.org/articles/10.3389/feart.2021.761990/full
https://www.frontiersin.org/articles/10.3389/feart.2021.761990/full
http://creativecommons.org/licenses/by/4.0/
mailto:cumt_ckzxg@126.com
https://doi.org/10.3389/feart.2021.761990
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.761990


INTRODUCTION

Young’s modulus (E) is important for predicting the behavior of
materials under load and plays a key part in the stability of surface
and subsurface structures. E has a broad application in mining,
geology, civil engineering, etc., i.e., coal and metal mines, tunnels,
foundations, slopes, bridges, buildings, drilling, etc. Computation
of accurate rock deformation properties, especially E is essential
to the design of any rock engineering or rock mechanics project.
Several researchers have studied the deformation and behavior of
various types of rocks (Zhao et al., 2017; Rahimi and Nygaard,
2018; Davarpanah et al., 2019; Xiong et al., 2019). Generally, there
are two common techniques, static and dynamic, employed to
measure E. Static Young’s modulus (Es) is generally acquired as

the digression of the stress-strain curve at 50% of the maximum
strength of the rock core sample. The dynamic Young’s modulus
(Ed) can be determined if the density of the rock along with the
velocities of compressional and shear waves is known. In rock
engineering, the variation between Es and Ed has been broadly
investigated (Brotons et al., 2016). Normally, the value of Ed is
slightly greater than the Es studied by various researchers (Zhang,
2006; Kolesnikov, 2009). The ratio between Ed and Es was
calculated to range between 1 and 20 (Wang, 2000).

Typically, there are two common techniques, such as
destructive and non-destructive, to estimate the strength and
deformation of rocks. According to the recommended standards
of the International Society of Rock Mechanics (ISRM) and the
American Society for Testing Materials (ASTM), the use of

TABLE 1 | Original dataset with statistical distribution in this study.

Serial No UCS (MPa) Density (g/cm3) Vp (m/s) Vs (m/s) Es (GPa) Ed (GPa)

1 11.37 2.22 2,500 1,500 3.24 12.18
2 11.31 2.31 2,351 1,293 3.41 9.91
3 23.87 2.31 2,338 1,241 4.19 9.28
4 20.16 2.35 2,515 1,532 5.04 13.29
5 48.73 2.35 2,163 1,327 5.28 9.92
. . . . . . . . . . . . . . . . . . . . .

60 81.24 2.65 2,975 1,935 17.13 22.49
61 97.39 2.69 5,519 2,953 55.68 60.96
62 91.4 2.68 5,534 3,012 36.05 62.71
63 46.51 2.64 3,811 2,122 17.31 30.32
64 40.68 2.73 1,838 951 13.74 6.5
Mean 56.19 2.51 4005.06 2173.33 29.35 36.73
Min 10.24 2.04 1826 900 0.77 4.98
Max 143.09 2.92 6,539 3,420 90.49 83.89
Std. D 32.78 0.21 1599.18 840.15 27.35 27.63

FIGURE 1 | Pairwise relationship of input parameters and outputs (A) Es and (B) Ed in the dataset.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7619902

Shahani et al. Predicting Young’s Modulus of Rocks

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


destructive testing in the laboratory to directly estimate E is
complex, time-consuming and expensive process. At the same
time, sample preparation is quite difficult in the case of fragile,
internally damaged, thin and highly foliated rocks (Jing et al.,
2020). Thus, attention must be paid to the indirect evaluation of E
through the use of rock index tests. Many researchers have
established prediction models to overcome these shortcomings
by employing soft computing methods such as artificial neural

network (ANN), multiple regression analysis (MRA) and other
novel machine learning approaches (Lindquist et al., 1994; Singh
and Dubey, 2000; Tiryaki, 2008; OzcelikBayram et al., 2013; Abdi
et al., 2018; Teymen andMengüç, 2020; Cao et al., 2021; Yang et al.,
2020; Duan et al., 2020). Waqas et al. used linear and nonlinear
regression, regularization and ANFIS (using neuro-fuzzy inference
system) to predict the Ed of sedimentary rocks (Waqas and
Ahmed, 2020). Abidi et al. proposed the ANN and MRA

FIGURE 2 | Correlation plot of input parameters and outputs (A) Es and (B) Ed in the dataset.

FIGURE 3 | Flow chart of the study.
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(linear) methods for predictive modeling of E using input variables
like porosity in %; dry density (γd) in g/cm3; P-wave velocity (Vp)
in km/s; and water absorption (Ab) in %. The results indicated that
the ANN model outperformed the MRA (Abdi et al., 2018).
Davarpanah et al. developed linear and nonlinear relationships
between static and dynamic deformation parameters of various
rocks and found strong correlations between them (Davarpanah
et al., 2020). Aboutaleb et al. conducted non-destructive
experiments with SRA (simple regression analysis), MRA, ANN
and SVR (support vector regression) and found that ANN and
SVRmodels were more accurate in predicting Ed (Aboutaleb et al.,
2018).Mahmoud et al. predicted the Es of sandstone using anANN
network with 409 data events in the training phase and 183 data
events in the testing phase. The developed ANN model predicted
Es with a high correlation coefficient (R2 � 0.999) and minimum
mean absolute percentage error (AAPE � 0.98%) (Mahmoud et al.,
2019). Elkatatny developed an ANN network for predicting Ed
from the drilling parameters. The study showed encouraging
results (Elkatatny, 2021). Elkatatny et al. was first to correlate Es
prediction results from different models such as ANN, ANFIS and
SVM. The established correlations improved the accuracy of the
estimated Es (Elkatatny et al., 2019). Cao et al. employed the novel
approach of supervised machine learning, namely an extreme
gradient boosting (XGBoost) combined with the firefly
algorithm (FA) to predict E. The results showed that the
proposed approach is suitable for predicting E.

Based on the above literature and to the best of author’s
knowledge, XGBoost machine learning method has rarely been
used, especially in combination with ANN andMLR, for predictive
modeling of E of rocks. Due to limitations of the conventional
predictive methods, the prediction of E with machine learning
approaches plays a key role in determining the accuracy of the
corresponding data of tests performed in the laboratory. In this
novel study, XGBoost is developed for predicting Es and Ed using

four input parameters, i.e., uniaxial compressive strength (UCS) in
MPa; density in g/cm3; p-wave velocity (Vp) in m/s; and s-wave
velocity (Vs) inm/s, complimented with ANN andMLR. Then, the
original dataset of 64 data points is split as 70% for the training
stage and 30% for the testing stage. To improve the performance of
the machine learning model, an iterative 10-fold cross-validation
method is used.

MATERIALS AND METHODS

Construction of a Dataset
Several multivariate parameters of intact sedimentary rocks
(marlstone, sandstone, and limestone) are already reported
(Moradian and Behnia, 2009) to have been used as inputs to
predict the static Young’s modulus (Es) and dynamic Young’s
modulus (Ed), which include uniaxial compressive strength
(UCS) in MPa; density in g/cm3; p-wave velocity (Vp) in m/s;
and s-wave velocity (Vs) in m/s. There were a total of 64 events
with no missing data. Table 1 shows the original dataset and
statistical distribution in this study.

In this study, to visualize the original dataset of E, the seaborn
module in Python was used. Figures 1A,B illustrate a pairwise
scatter of the kernel density estimation (KDE). The purpose of
building a KDE pairwise plot is to examine the association
between any two influencing parameters in the original
dataset. Based on Figures 1A,B, all the input parameters have
a moderate to strong positive correlation with both Es and Ed.
Next, Figures 2A,B highlight the diagonal correlations between
the input and output parameters. The seaborn module in Python
was used for diagonal correlation heatmaps to develop the
correlation coefficients of multiple inputs with Es and Ed.
Correlation coefficient values are specified in the light red to
dark red color for Es and light purple to dark purple for Ed.
According to Figures 2A,B, the overall correlation coefficients
between the input and output parameters are relatively high.
Therefore, all parameters were incorporated to improve the
accuracy of the final probabilistic prediction framework in the
Es and Ed circumstance. Figure 3 depicts the flow chart of
the study.

Methods
Multiple Regression Analysis
Multiple regression analysis (MRA) can be classified into linear
and nonlinear regression. However, this study has implemented
the multiple linear regression (MLR) as a result of multiple
variables using SPSS (version 23). MLR is a numerical method
that uses multiple descriptive parameters to estimate the output
of a reporting parameter. The MLR method is used to obtain the
best-fit relationship between the parameters. Generally, MLR can
be employed to establish the association between independent
(input) and dependent (output) parameters. In this study, the
MLR technique was used to predict Es and Ed, respectively. The
MLR relationship between the inputs and output can usually be
expressed by Eq. 1.

D � a + B1X1 + B2X2 + B3X3 + . . . + BnXn (1)

FIGURE 4 | Basic architecture of ANN network.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7619904

Shahani et al. Predicting Young’s Modulus of Rocks

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


where, D depicts the output parameter, a denotes the regression
constant, B1–Bn are the coefficients of regression and X1–Xn are
the input variables.

Based on the consequences of MLR, Es and Ed are predicted by
the established linear expressions as shown in Eqs 2, 3.

Es � 0.086UCS + 26.55Density + 0.014Vp − 0.004Vs − 89.47

(2)

Ed � 14.568Density + 0.008Vp − 0.15Vs − 0.034UCS − 64 (3)

where, Es and Ed are static and dynamic Young’s modulus in GPa,
respectively. UCS represents uniaxial compressive strength inMPa,
Vp andVs are the p-wave and s-wave velocities in m/s, respectively.

Artificial Neural Network
Artificial neural network (ANN) is among many supervised
machine learning methods and has found wide application in
a variety of fields. An ANN consists of three components,
i.e., input layers, hidden layers, and an output layer. The
structure of ANN and the choice of hidden layers and
neurons play a crucial part in ascertaining its performance
(Chester, 1990). The feedforward back-propagation (FFBP)
neural network, a multilayer perceptron network, was used

owing to its simple process and wide applicability. Back-
propagation (BP) is one of the most efficient and commonly
employed learning algorithms in multi-layer networks (Cevik
et al., 2011; Hajihassani et al., 2014). Each network must contain
sufficient neurons depending on the application of ANN.
Neurons of a given layer are connected to the neurons of the
subsequent consecutive layer with every connection having a
certain weightage (Atkinson and Tatnall, 1997). Equation 4 is
employed to estimate the approximate number of neurons in the
hidden layer (Nh), since the inappropriate selection of the neurons
in the hidden layer often leads to “under-fitting” and “over-fitting”
and must be prevented. Figure 4 represents the basic structure of
the ANN network for predicting Es and Ed in this study.

Nh ≤ 2N1 + 1 (4)

where, N1 denote the total number of inputs.
In order to build the net input n, the weighted input ωipi is

connected to a scalar bias b, f denotes the transfer function, and
O denotes the scalar output. If the neuron has Z input parameters,
the output can be computed by Eq. 5.

O � f∑Z

i�1(ωipi + b) (5)

FIGURE 5 | (A) Basic structure of the level-wise XGBoost tree model. (B) Grid search cross validation.
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This study used a sigmoid transfer function in the hidden layer
and a linear output function in the output layer. To achieve the
number of neurons in the hidden layer, this study used some
provisions, since there is no specific approach to providing the
desired results. In addition, fifty epochs were used for training the
ANN network and the least error of validation is considered as a
stop to avoid overfitting.

Extreme Gradient Boosting
The extreme gradient boosting (XGBoost) algorithm was created
by Chen and Guestrin (Chen and Guestrin, 2016). Being an
effective tree-based ensemble learning algorithm, it is considered
a powerful tool among data science researchers. XGBoost is based
on gradient boosting architecture (Friedman, 2001), which uses
various complement functions to estimate the results using Eq. 6.

yi � y0
i + η∑n

K�1fk(Ui) (6)

where, yi indicates the predicted output for ith data with the
parameter vector Ui; n denotes the number of estimators
corresponding to independent tree structures for each fk (i.e. k �
1 to n); andy0

i displays the primary hypothesis, which is actually the

mean of the original parameters in the training data. η represents
the rate of learning connected to improving the performance of the
model, whether connecting the additional trees to prevent over-
fitting. The statistical model has to be developed with less overfitting
which is one of the genuine problems that often conflicts inmachine
learning. In the XGBoost model, the training phase is determined in
a complementary way.

According toEq. 3 in the kth stage, the kth estimator is connected
to the model and the prediction of the kth y−k

i is calculated from the
estimated outputy−(k−1)

i in the next step, and the established fk of the
kth complementary estimator is shown in Eq. 7.

y−k
i � y−(k−1)

i + η fk (7)

whereas fk represents the leaves weight that is established by
reducing the objective function of the kth tree and is given by
Eq. 8.

fobj � cZ + ∑Z

a�1[ gaωa + 1
2
(ha + λ) ω2

a (8)

where, Z denotes the quantity of leaf nodes, c denotes the
complexity parameter, λ denotes constant coefficient, and ω2

a

TABLE 2 | Performance ranking and the corresponding RSR index values.

Performance ranking Poor Good Very good Best

RSR index value >0.7 0.6 ≤ RSR ≤0.7 0.5 ≤ RSR ≤0.6 0.00 ≤ RSR ≤0.5

FIGURE 6 | Results of (A) Es and (B) Ed prediction against original data in the training stage: (a) MLR, (b) ANN, and (c) XGBoost.
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denotes the leaf weight from 1 to Z. c and λ are regularization
parameters employed to improve the model to keep away
from the over-fitting. ga and ha are the summation
parameters for the entire dataset associated with a leaf of the
initial and previous loss function gradient, correspondingly. In
order to build the kth tree, a leaf is distributed into several leaves.
Such a system is implied by using the gain parameters expressed
in Eq. 9.

G � 1
2
[ O2

L

PL + λ
+ O2

R

PR + λ
+ (OL + OR)2

PL + PR + λ
] (9)

where, G denotes the gain parameters,OR and PR denote the right
leaf, respectively. OL and PLdenote the subsequent division of the
left leaf, respectively. When the gain parameter is approximated
to zero, the division criteria are generally assumed. c and λ are
regularization parameters that are indirectly reliant on the gain
parameters. For example, a larger regularization parameter can
significantly reduce the gain parameter, thus avoiding the leaf
convolution phenomenon. However, this will reduce the
performance of the model to adapt to the training data.
Figure 5A demonstrates the basic structure of the level-wise
XGBoost tree model.

Grid Search Cross Validation
The grid search method is used for the adjustment of
hyperparameters (Bergstra and Bengio, 2012). The technique
approves a search in an identified range of hyperparameters

and defines the desired results leading to the best outcomes of
the assessment criteria, i.e., R2, MAE, MSE and RMSE.
GridSearchCV() has been carried out in scikit-learn Python
programing language to process this strategy. This method
simply calculates the score of CV for all hyperparameters
integrated with a particular reach. In this study, a 10-fold
iterated arbitrary arrangement practice was incorporated in the
CV command as specified in Figure 5B. GridSearchCV() allows
not only to compute the desired hyperparameters, but also to
evaluate the metric values to their desired outcomes. This study
used all the remaining features of the Python programing
language by default to perform Grid Search CV.

Performance Criterion
Typically, the performance of a model must be estimated when
approaching the steadiness of a prediction framework, using an
extensive range of performance criteria to select a highly accurate
model. Therefore, this study proposes a unique performance
criterion as follows:

Correlation coefficient
The correlation coefficient (R2) is the key to the execution of the
regression survey. The computation of R2 can be expressed by
Eq. 10.

R2 � ∑n
i�1(Xi − �X)(Yi − �Y)																			∑n
i�1 (Xi − �X)2(Yi − �Y)√ 2 (10)

FIGURE 7 | Results of (A) Es and (B) Ed prediction against original data in the testing stage: (a) MLR, (b) ANN, and (c) XGBoost.
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Mean Square Error
Mean square error (MSE) is the mean of the square of all errors
and is one of the important metrics for evaluating the
performance of the corresponding models. The computation
of MSE can be expressed by Eq. 11.

MSE � ∑n
i�1 (Xi − Yi)2

n
(11)

Root Mean Square Error
Root mean square error (RMSE) is the square root of the mean of
the square of all errors and is measured as significant metric for

mathematical predictions. The computation of RMSE can be
expressed by Eq. 12.

RMSE �
													∑n

i�1 (Xi − Yi)2
n

√
(12)

Root Mean Square Error Standard Deviation Ratio
Root Mean Square Error Standard Deviation Ratio (RSR) is
employed in this study for the comparison of significant
models, which can be executed to predict Es and Ed. RSR
plays an important role as a valuable metric for testing

FIGURE 8 | Demonstration of predicted against original data of proposed models in the training stage for (A) Es and (B) Ed.
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analytical models. The computation of RSR can be expressed by
Eq. 13.

RSR �
													∑n

i�1 (Xi − Yi)2
√													∑n

i�1 (Xi − �Yi)2√ (13)

Variance Accounts For
Variance accounts for (VAF) is also considered as one of the
important metrics for evaluating the overall performance of the

model. Higher the VAF value, the greater will be the performance
of the model. The computation of VAF can be expressed by Eq. 14.

VAF � [1 − var(Xi − Yi)
var(Xi) ] × 100 (14)

where, �X and �Y are the mean of the original and predicted data
values, respectively, Xi and Yi are the original and predicted data
values, respectively, and n shows the number of datasets. �Yi is the
mean value of the original data. Table 2 signifies the performance
ranking and the corresponding RSR values.

FIGURE 9 | Demonstration of predicted against original data of proposed models in the testing stage for (A) Es and (B) Ed.
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FIGURE 10 | Change of relative error between predicted and original data of proposed models in the (A) training stage and (B) testing stage for Es and Ed.

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 76199010

Shahani et al. Predicting Young’s Modulus of Rocks

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


RESULTS AND DISCUSSION

In this study, a novel machine learning regression XGBoost
model was developed and compared with two other models,
namely MLR and ANN, to confirm the accuracy of predicting Es
and Ed. To avoid overfitting of these models, the original dataset
was partitioned into 70% for the training stage and 30% for the
testing stage of 64 events. The ANN and XGBoost models are
trained on training data and then validated by testing data. The 50
epochs were used for training the ANN model and the least error
of validation is considered as a stop to avoid overfitting.
According to Eq. 4, a total of nine neurons are selected in the
hidden layer, which is connected to four input neurons and two
output neurons, as shown in Figure 4. In this study, an XGBoost
model with the default features of the XGBoost module was
executed, i.e., M � 50 estimators, the regularization properties of
c � 0, λ � 1, and a learning rate of η � 0.3. Moreover, a 10-fold
iterated arbitrary arrangement practice was incorporated to
substantiate the models.

The original and predicted output values were then arranged
and represented in scattered plots in order to ease the
performance and correlation analysis of the developed models.
The input parameters are UCS (MPa); Density (g/cm3); Vp (m/s);
and Vs (m/s). The predicted output parameters are Es and Ed. The

final output was evaluated by using performance criteria such as
R2, RMSE and VAF, and the developed models were compared to
estimate the appropriate model with higher accuracy of
prediction results in this study.

Figures 6A,B to Figures 7A,B depict the scatter plots of the
predictions of the proposed models (a) MLR, (b) ANN and (c)
XGBoost for Es and Ed versus the original data in the training and
testing stages, respectively. The prediction performance accuracy
of the proposed models is (a) MRA (Es: R

2 � 0.928; Ed: R
2 � 0.981

in the training stage, and; Es: R
2 � 0.717; Ed: R

2 � 0.985 in the
testing stage), (b) ANN (Es: R

2 � 0.958; Ed: R
2 � 0.998 in the

training stage; and Es: R
2 � 0.849; Ed: R

2 � 0.998 in the testing
stage) and (c) XGBoost (Es: R

2 � 0.998; Ed: R
2 � 0.999 in the

training stage, and; Es: R
2 � 0.997; Ed: R

2 � 0.999 in the testing
stage).

Simultaneously, to comprehend the good visualization of the
predicted values aggregated with the original data of Es and Ed,
Figures 8A,B demonstrate the performance of MLR, ANN and
XGBoost models in the training stage, respectively. Figures 9A,B
demonstrate the performance of MLR, ANN and XGBoost
models in the testing stage for (a) Es and (b) Ed, respectively.

Figures 10A,B demonstrates the variation of the relative error
of the proposed models, i.e., MLR, ANN, and XGBoost, for the
prediction of Es and Ed and the original data in (a) training stage

TABLE 3 | Performance criterion of the MRA, ANN, and XGBoost.

Model Training Testing

R2 RMSE RSR VAF R2 RMSE RSR VAF

MRA Es 0.928 0.3080 0.01141 98.68 0.717 1.6176 0.06894 96.23
Ed 0.981 0.0117 0.00044 99.96 0.985 0.2815 0.01038 99.43

ANN Es 0.958 1.0044 0.03680 95.67 0.849 0.5274 0.02248 98.77
Ed 0.998 0.1723 0.00651 99.45 0.998 0.1270 0.00468 99.74

XGBoost Es 0.998 0.0652 0.00238 99.71 0.997 0.071 0.00304 99.83
Ed 0.999 0.0062 0.00023 99.99 0.999 0.0274 0.001 99.94

FIGURE 11 | The comparative Taylor diagrams of the proposed models MRA, ANN, and XGBoost in the (A) training stage and (B) testing stage for Es and Ed.
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and (b) testing stage, respectively. The prediction performance of
the proposed models for variation in relative mean square error
(MSE) is (a) MLR (Es: MSE � 0.095; Ed: MSE � 0.00014 in the
training stage, and; Es: MSE � 2.617; Ed: MSE � 0.079 in the
testing stage), (b) ANN (Es: MSE � 1.009; Ed: MSE � 0.030 in the
training stage, and; Es: MSE � 0.278; Ed: MSE � 0.079 in the
testing stage) and (c) XGBoost (Es: MSE � 0.0043; Ed: MSE �
0.00003 in the training stage, and; Es: MSE � 0.0051; Ed: MSE �
0.0007 in the testing stage).

Table 3 shows the performance criterion of the MRA, ANN
and XGBoost determined using Eq. 10–14. Figure 11 depicts the
comparative Taylor diagrams of the proposed models MRA,
ANN and XGBoost in the (a) training stage and (b) testing
stage for Es and Ed to further estimate the performance of the
models more extensively. The standard deviation values
associated with one another by the circular lines are shown as
horizontal and vertical coordinates in the diagrams. Two
performance metrics, one is the R2 value, indicated by the blue
radial lines from the starting of the coordinates, and the other is
the RMSE value, specified by the green circular line. Observed
values were used as the base model with zero errors, i.e., RMSE �
0 in the diagrams, the maximum R2 � 1, and the computed
standard deviations. Next, the R2, RMSE and standard deviation
of the other models were compared with the observed values. A
best model is one with highest degree of similarity to observed
data model. As shown in Figure 11, the XGBoost model has been
able to approach the observed data and outperformed the MRA
and ANN models in both the training and testing phases.

Moreover, according to Table 3 and the results in Figure 11,
the XGBoost model has revealed the best performance with high
accuracy (Es: R

2 � 0.998; Ed: R
2 � 0.999 in the training stage, and;

Es: R
2 � 0.997; Ed: R

2 � 0.999 in the testing stage), RMSE (Es:
RMSE � 0.0652; Ed: RMSE � 0.0062 in the training stage, and; Es:
RMSE � 0.071; Ed: RMSE � 0.027 in the testing stage), RSR index
value (Es: RSR � 0.00238; Ed: RSR � 0.00023 in the training stage,
and; Es: RSR � 0.00304; Ed: RSR � 0.001 in the testing stage) and
VAF (Es: VAF � 99.71; Ed: VAF � 99.99 in the training stage, and;
Es: VAF � 99.83; Ed: VAF � 99.94 in the testing stage) compared
to the other developed models in this study.

Therefore, XGBoost is an applicable machine learning
regression model that can be applied to accurately predict the
Es and Ed.

CONCLUSION

Young’s modulus (E) plays an important role in the stability of
surface and subsurface structures. Therefore, an accurate
estimation of E is mandatory. This study developed a novel
machine learning XGBoost regression model with four input
parameters, i.e., UCS (MPa), density (g/cm3), Vp (m/s) and Vs
(m/s) for predicting Es (GPa) and Ed (GPa). In addition, the MRA
and ANNmodels were included to compare their results with the
proposedmodel. To avoid overfitting of these models, the original
dataset was partitioned into 70% for the training stage and 30%
for the testing stage of 64 data points. The study concludes that
the proposed XGBoost regression model performed more
accurately than the other studied models in predicting Es and
Ed. Employing a novel machine learning approach, this study was
able to provide substitute elucidations to predict Es and Ed
parameters with appropriate accuracy and runtime. Future
work can be extended using various datasets to further
confirm the reliability of the proposed model.
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