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The second millennium CE in Europe is known for both climatic extremes and bloody
conflict. Europeans experienced the Medieval Warm Period and the Little Ice Age, and they
suffered history-defining violence like theWars of the Roses, Hundred YearsWar, and both
World Wars. In this paper, we describe a quantitative study in which we sought to
determine whether the climatic extremes affected conflict levels in Europe between 1,005
and 1980 CE. The study involved comparing a well-known annual historical conflict record
to four published temperature reconstructions for Central and Western Europe. We
developed a Bayesian regression model that allows for potential threshold effects in
the climate–conflict relationship and then tested it with simulated data to confirm its
efficacy. Next, we ran four analyses, each one involving the historical conflict record as the
dependent variable and one of the four temperature reconstructions as the sole covariate.
Our results indicated that none of the temperature reconstructions could be used to
explain variation in conflict levels. It seems that shifts to extreme climate conditions may
have been largely irrelevant to the conflict generating process in Europe during the second
millennium CE.

Keywords: Bayesian time series analysis, conflict, climate change, extreme events, Europe

INTRODUCTION

“Winter is coming”, the motto of House Stark in George R.R. Martin’s A Song of Ice and Fire series of
epic fantasy novels, is an ominous metaphorical portent of difficult times to come. The novels were
inspired by the historical events of the Wars of the Roses (DiPaolo, 2018), a series of conflicts in Late
Medieval England that began in 1455 CE (Hicks, 2012). These conflicts erupted shortly after the onset of
the Little Ice Age, a period during which average temperatures in the Northern Hemisphere dropped by
around 0.5°C in a few decades and then remained low for centuries (Mann et al., 2009). In light of these
connections to historical events, the Stark’s motto can be read as an allegorical reference to the twin
threats of anthropogenic climate change and the violent conflicts it may ignite (DiPaolo, 2018).

The idea that anthropogenic climate change will lead to more conflict has received increasing
attention in recent years. It has been endorsed by a number of major policy organisations including
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the Inter-Governmental Panel on Climate Change (IPCC) (Adger
et al., 2014), the US Department of Defense (2010), and the
European Commission (2013). There has also been intense
scientific interest in climate-conflict dynamics. Dozens of case
studies have been published reporting quantitative analyses of
conflict records and climatic variables. The conflict records
include events ranging in scale and intensity from cattle raids
to political uprisings and civil wars that occurred during various
sub-intervals of the 20th and early 21st centuries CE. Surprisingly,
though, results have been mixed (Koubi, 2019; Mach et al., 2019).
Some studies have found that increases or decreases in
temperature corresponded to increased conflict levels
(i.e., incidence) (e.g., Zhang et al., 2006; Burke et al., 2009),
while others reported mixed findings (e.g., Tol and Wagner,
2010) or no effect at all (e.g., Carleton et al., 2021). Similarly
inconsistent findings have been reported with respect to the
potential impact of rainfall variation on conflict levels (e.g.,
Theisen, 2012; Von Uexkull et al., 2016).

These contradictory findings are counter-intuitive.
Environmental variables are clearly linked to economics,
primarily through the impact of environmental variation on
agricultural productivity and trade (Gornall et al., 2010). It
seems that this should, in turn, affect the prevalence of violent
conflicts between groups competing for access to increasingly
scarce resources (e.g., Allen et al., 2016). If droughts, for instance,
diminish agricultural productivity, then the resulting shortfall in
the food supply and commodities might be expected to increase
the odds that the negatively affected groups would attempt to
compensate at times by taking the desired resources from others
(e.g., Burke et al., 2009). Reluctance to hand over resources would
then give rise to organised violent conflicts. Scholars of
international relations and conflict and peace researchers have
referred to this putative causal chain as a “scarcity mechanism’
and it has intuitive appeal (e.g., Glowacki and Wrangham, 2013;
Koubi, 2019; Schmidt et al., 2021). Even in cases where
compensatory strategies were available (e.g., alternate foods,
trade), these would not always work as hoped—trade
agreements fail and alternate resources are not always
sufficient. In addition, the scarcity mechanism would still
produce higher levels of conflict given enough time or a large
enough focal region. This is because the odds of conflict occurring
would still be elevated, which ultimately means more conflicts on
average. That recent research has so far failed to find evidence for
a universal relationship between temperature and conflict levels
is, therefore, surprising.

This situation has led some researchers to highlight the
importance of longer-term records (e.g., Buhaug, 2015; Koubi,
2019). The suggestion makes sense because there are differences
between records with different time horizons. Short-term records
of conflict incidence, for instance, are likely to be highly erratic
with respect to causation. Individual conflicts can happen for
numerous reasons that vary among incidents. Additionally, there
is a well-known pattern of autocorrelation in conflict data
(Richardson, 1944; Houweling and Siccama, 1985; Brandt
et al., 2000). Such autocorrelation means that a high level of
conflict in one period can predict the level of conflict in
subsequent periods. This pattern may occur simply because

conflicts beget further conflicts as opponents retaliate for past
aggression, which makes it difficult to attribute changes in
conflict levels to external factors. Similar features are present
in climatological data (Vasseur and Yodzis, 2004). Day-to-day
variation in climatological observations cannot necessarily be
attributed to changes in long-term patterns. At the same time, the
temperature or precipitation in one interval is usually correlated
with the temperature or precipitation in previous
intervals—i.e., there tends to be autocorrelation in
climatolological processes, too. These common features of
conflict and climate processes create challenges for seeing
meaningful persistent signals in short runs of observations
because the records can be noisy and explained by previous
observations alone. Consequently, it can be difficult to detect
persistent and significant covariation between conflict records
and climate change if only short intervals are considered.

Unfortunately, however, the inconsistency persists even when
considering long-term conflict and climate records. To our
knowledge, there are three major long-term historical case
studies available for comparison. Each includes a conflict
record spanning multiple centuries that has been analysed
quantitatively. One is the epigraphic (monument inscriptions)
record of Classic Maya conflict spanning more than 600 years (ca
250–900 CE) (Kennett et al., 2012); another involves more than
2000 years of Chinese conflict records (ca. 800 BCE–1911 CE)
(Zhang et al., 2006); and the third involves nearly 1,000 years of
conflict among central and western European societies (ca.
1,000–1980 CE) (Tol and Wagner, 2010). Recent studies
involving the Classic Maya epigraphic data have found that
increased temperatures corresponded to increased conflict
while annual precipitation had no apparent effect (Carleton
et al., 2017; Collard et al., 2021). Analyses of the Chinese
historical data, on the other hand, found that decreasing
temperature corresponded to increased conflict levels (Zhang
et al., 2006). Lastly, studies involving the conflict data for second
millennium CE Europe have found either weak evidence for an
effect of climate change on conflict (Tol andWagner, 2010) or no
evidence at all (Carleton et al., 2021).

The last of these cases is particularly interesting. Europe was
repeatedly afflicted by wars during the second millennium CE
(Tallett and Trim, 2010). These include the Hundred Years
War—a series of wars between Medieval England and France
from 1,337 to 1453 CE (Green, 2014)—and the aforementioned
Wars of the Roses from 1,455 to 1487 CE (Hicks, 2012). These
Late Medieval clashes were then followed by the European Wars
of Religion between the 1520s and 1640s CE, multiple wars with
the Ottoman Empire, numerous revolutionary wars, the
Napoleonic Wars, and of course the two world wars of the
20th century CE (Neiberg, 2003; Black, 2007; Tallett and Trim,
2010). The period was also punctuated by bouts of climate
change. The beginning of the millennium witnessed a
relatively warm period in much of Europe. Known today as
the Medieval Warm Period (or Medieval Climate Anomaly),
this lasted from about 950 to 1250 CE (Crowley and Lowery,
2000; Mann et al., 2009). Subsequently, around 1400 CE, the
continent was plunged into the Little Ice Age, a deep cold that
lingered into the early 19th century CE (Mann et al., 2009) with
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some parts of the Northern Hemisphere experiencing as much as
a 4°C drop in average temperatures in a few decades (D’Andrea
et al., 2011). The conflicts that occurred during these substantial
swings in climatic conditions were in part fought over access to
wealth and they required resources to initiate and sustain. It is,
therefore, striking that the aforementioned studies found the
association between climate change and conflict levels to be
weak to non-existent.

There are several possible explanations for the failure of
previous research to find a relationship between climate
conditions and historical European conflict levels. One might
involve biases in the conflict and/or climate records, for example.
Another explanation might be that analyzing aggregated data for
the whole of Western Europe obscured important local or
regional differences in one or more variables, leading to a
falsely negative signal about the climate-conflict relationship.
A third explanation may be that the scarcity hypothesis is
simply wrong, or points to an effect that is eclipsed by other
factors like greed, prestige, and politics. Lastly, it could be that the
statistical models used so far are too simplistic to identify the
relationship between climate and conflict. As Carleton et al.
(2021) point out, some of these explanations can be
discounted by careful reasoning while others are harder to
evaluate at present and should be the subject of future research.

In the present paper, we describe a study in which we explored
an important avenue for future research identified by Carleton
et al. (2021): the potentially unique impact of extreme climate
conditions on conflict levels. Both Tol and Wagner (2010) and
Carleton et al. (2021) employed regression models that assume
the relationship between climate variation and conflict levels was
constant for all levels of the climate variable, temperature being
the key proxy for climate change in both cases. This assumption
may have led to the analyses missing a threshold effect. It is
possible that for moderate temperatures the European conflict
process was dominated by non-climatic factors. These might have
included retaliation or purely political motivations among those
involved. But, during periods of extreme temperatures—say, the
coldest intervals of the Little Ice Age—climate variation could
plausibly have become much more important.

To explore this possibility, we revised the time-series model
used in Carleton et al. (2021) so that it could identify threshold
effects. As with the previous model, the new one is Bayesian and
employs an autocorrelation term to reflect the “memory” present
in the conflict record and allows for covariates to potentially
explain any remaining variation in the record not better
accounted for by autocorrelation. The new model, however,
also employs a “broken-stick” regression framework for the
covariates—the “broken stick” refers to connected regression
lines that can have different slope values. The model creates
the separate “sticks” by fitting two thresholds to the independent
variable, one upper and one lower. These thresholds allow for
three different ranges of covariate values. A separate regression
coefficient (i.e., slope) can then be estimated for each of the three
ranges (the three sticks). The separate regression functions make
it possible for a given independent variable to have a different
relationship to conflict over each of the ranges defined by the
thresholds. Therefore, the relationship between conflict levels and

a given covariate can be non-linear over the whole covariate
range. Conflict levels, for example, could have a U-shaped
relationship with temperature in the model, which would
mean that conflicts were only significantly higher when
temperatures were extreme and effectively random otherwise.
Importantly, the model’s parameters (including threshold
locations and slopes) are all estimated simultaneously from the
data. Thus, the estimated values reflect the combined likelihood
of those parameter values given all of the data. After adjusting the
model, we used it to compare a well-known time-series of
European conflict levels (incidents per year) during the second
millennium CE to four temperature time-series.

MATERIALS AND METHODS

The Data
The conflict record utilised in the present study was first analysed
by Tol and Wagner (2010) in their influential investigation of
climate-conflict dynamics. The record was recently reanalysed in
the aforementioned paper by Carleton et al. (2021). The copy of
the record we analysed was kindly provided by Richard Tol.

Tol and Wagner (2010) record contains an annual count of
wars and battles between 1,000 and 2000 CE, with a conflict being
counted in each year it was ongoing (Figure 1). Tol and Wagner
(2010) compiled the record from entries in three databases: 1)
Peter Brecke’s catalogue of historical conflicts (https://brecke.
inta.gatech.edu/research/conflict/); 2) the Uppsala Conflict Data
Program (https://ucdp.uu.se/); and 3) the COSIMO database
(hosted by Heidelberg Institute for International Conflict
Research—HIIK) (https://hiik.de/). In total, the Tol and
Wagner (2010) record includes 3,450 conflict-year events from
1,000 to 1999 CE—there are fewer uniquely named historical
conflicts than conflict-years because a conflict is counted in every
year in which it occurred. Like Tol and Wagner (2010) and
Carleton et al. (2021), we limited the record to the period from
1,005 to 1980 in order to ensure complete temporal overlap with
the available temperature reconstructions. The restriction
reduced the counts by a small amount, from 3,450 to
3,367 conflict-year events.

It is worth highlighting that this dataset represents only one
dimension of violent conflict. The record comprises conflicts
counted in a given year, as explained. In such a dataset, a border
skirmish involving two states and a hundred soldiers would count
as much as a larger war involving tens of thousands of combatants
and multiple states. Our study, therefore, is only looking at
conflict from one angle, namely conflict incidence. Other
dimensions of conflict include onset, duration, number of
warring parties, number of battle deaths, and so on. One
reason for focusing on incidence as we did, though, was to
ensure our results would be comparable with those of previous
studies. Another reason is that the historical record contains more
information about conflict dates than it does about the variables
needed to assess the other dimensions of conflict. Filtering the
dataset to only those historical conflicts where we know the
number of battle deaths, for instance, would reduce the number of
observations so much that meaningful patterns could no longer
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be extracted. After all, it can be difficult to estimate battle deaths
from modern and recent wars let alone historical and ancient
ones. Lastly, our intention was to evaluate whether climatic
extremes led to an increase in per-period conflict levels as
would be expected if the scarcity mechanism was a principle
cause of variation. Importantly, according to that hypothesis, we
would expect conflicts to start when resources became scarce and
to persist (or be reignited) as long as they remained scarce, all else
being equal. Such a relationship would be obscured by looking
only at conflict onset. Consider a simple time-series of onset
counts compared to a climate record. In that comparison, the
climate variable could have an extreme value when the count was
one (conflict begins) and the same extreme value when conflict
count was zero (no new conflicts, despite continued fighting),
which would imply no relationship between the two variables. For
this reason and others, incidence is frequently used in conflict

studies intended to identify relationships between overall conflict
levels and external forces (Gleditsch et al., 2002; Hsiang et al.,
2013). Consequently, in our view, the Tol and Wagner (2010)
record was suitable for the study.

We compared the Tol and Wagner (2010) conflict record to
four annual temperature reconstructions, the first three of which
pertain specifically to Western and Central Europe and they were
used in Carleton et al. (2021) as well (Figure 1). One of the
temperature records was developed by Glaser and Reimann
(2009) based on European historical documents. These
documents include a variety of annals and personal diaries
from different regions within Europe, though concentrated in
the central and northern portions. The corpus includes
descriptions of weather conditions as well as statements about
crop yields. Glaser and Reimann (2009) categorised the
descriptions into an ordinal temperature index, spanning

FIGURE 1 | Time series data used in this study. Where available, we include confidence intervals for the climate data (middle three panels) and those are
represented by lighter grey ribbons.
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approximately 1,000–1,800 CE, which they then calibrated using
a instrumental data from 1761 to 1970 CE. Glaser and Reimann’s
(Glaser and Riemann, 2009) index and the instrumental data are
correlated with a Pearson’s R coefficient of 0.88.

The second temperature reconstruction was developed by
Büntgen et al. (2011) and is based on high resolution tree-
ring-width data. The widths were measured from 1,089 stone
pine and 457 larch trees scattered throughout Europe, although
like the previous historical data the spatial distribution is uneven
with clusters in the central regions of relatively higher elevation.
The reconstruction spans approximately 400 BCE to 2000 CE.
The authors report Pearson’ R correlations in the range of
0.72–0.92 for the association between their reconstruction and
instrumental data from 1864 to 2003.

The third temperature reconstruction was developed by
Luterbacher et al. (2016) and is based on multiple lines of
evidence. It is a product of the international PAGES 2k
Consortium, a network of palaeoclimatologists who aim to
create high-resolution climatic reconstructions (Turney et al.,
2019). The source data include both tree-ring records and
historical documents, some of which overlap with the data
used for the previous two reconstructions. This composite
reconstruction spans 138 BCE to 2003 CE. When the authors
compared their reconstruction to instrumental data, they
obtained Pearson R correlations on the order of 0.81–0.83.
Luterbacher et al. (2016) produced two types of reconstruction
and an average model. The average model is the one we used in
the present study.

The fourth temperature time-series we included is a newly
developed Northern Hemisphere tree-ring-based reconstruction
(Büntgen et al., 2021). This time-series was constructed as part of
a sizable community-based experiment in which the authors
sought to determine how different methodological decisions
affect tree-ring temperature reconstructions. The authors asked
more than a dozen research groups to produce a reconstruction
for the northern hemisphere and then compared the results. The
reconstructions were based on tree-ring data from several sites
around the Northern Hemisphere with a temporal ranges
spanning the first two millennia CE. Ultimately, they
determined that an ensemble mean most closely matched the
instrumental record (with a Pearson R correlation of 0.79) and
recommended using such ensemble means as a way of combating
method-induced biases. In line with that recommendation, we
decided to include the ensemble reconstruction in our analysis
even though it likely registers hemispheric rather than European-
specific temperature variation for the study period.

Defining Extremes
In order to explore the potential impact of “extreme” temperature
values on conflict levels, we first needed to settle on a way of
thinking about extremes in this context. Stewart et al. (this
volume) conducted a large systematic survey of 200 journal
articles in an effort to map out the ways in which extreme
events in biological, societal, and Earth sciences have been
studied. The review gave special attention to the quantitative
and qualitative definitions used to operationalise extreme event
research.

From their survey, Stewart et al. (this volume) determined that
a common way of thinking about extremes involves deviations
from reference (“normal”) conditions. In particular, research on
temperature extremes—e.g., heat waves—commonly employs
thresholds like the 95% confidence interval for temperatures
compared to a given reference period. This 95% threshold is
defined by a distribution of values where the bulk closest to the
mean are considered “normal”. By way of contrast, extreme
values deviate far from the mean, where “far” is defined by a
threshold beyond which higher or lower values occur only 5% of
the time or less in a random sample of measurements. Many
studies also used a more effect-oriented way of thinking about
extremes. Again, with respect to heatwaves for example, this
effect-definition involved an established human biological heat
tolerance threshold in degrees Celsius. The idea here is that, for
biological reasons, temperatures in excess of this threshold lead to
health problems and the relevant temperatures can, therefore, be
considered “extreme”.

We decided that neither of these approaches would be
appropriate for the present study. We were reluctant to
employ a particular probability threshold (e.g., 95%) because
the choice of such a threshold is arbitrary—why not use 90% or
99%? The second approach would not have worked either
because we have no information about the temperature
threshold(s) that might exist in the conflict generating process,
at least not in Europe. Thus, we opted for a composite approach,
one that combined the notion of deviations with data-driven
estimation for the threshold values. Specifically, we scaled and
centred all the of the temperature series, such that the values
would represent deviations from the study-period-wide averages.
Extremes among these scaled deviations were not defined a priori.
Instead, we designed the time-series model to include the values
of the potential thresholds as parameters to be estimated from
the data.

The Broken-Stick Model
The time-series model, adapted from Carleton et al. (2021), is
based on the Poisson distribution. It treats the count of conflicts,
y, at a given time t as a conditionally independent observation
from a latent conflict generating process. Thus,

yt ∼ Pois(λt) (1)

λt � ert+μt , (2)

where λ refers to the mean of the Poisson distribution.
The rt term represents the autocorrelation in the conflict

record. It is defined as a function of the previous level of the
autocorrelation term, rt−1, multiplied by a coefficient, ρ.
Importantly, the model is stochastic and flexible enough to
represent strictly autoregressive processes where ρ is between
−1 and 1, and explosive or collapsing processes where ρ is greater
than 1 or less than −1, respectively. This process can be expressed
as follows,

rt ∼ N(μr, σr) (3)

μr � rt−1ρ (4)

σr ∼ Exp(·) (5)

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7691075

Carleton et al. Temperature Extremes and European Conflict

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


ρ ∼ N(·) (6)

r0 ∼ N(·). (7)

As this block of equations shows, there are several components
to the autocorrelation process. The “(·)” notation is a placeholder
for standard distribution parameters, while N () and Exp () refer
to the Normal and Exponential distributions, respectively. The
autocorrelation process has to have an initial level, denoted r0,
which is then fed into the equation for r1. This term has a normal
prior distribution with prior parameters for the mean and
standard deviation, which we set to 0 and 2, respectively, and
its most likely value is estimated from the data. Similarly, the
autocorrelation coefficient, ρ, has a normal distribution with
priors we set to 0 and 2 as well. The standard deviation of the
autocorrelation process, σr, was given its own exponential prior
distribution instead of using a fixed parameter value so that it
could be estimated from the data. We opted for the exponential
distribution because standard deviations must be positive by
definition. This parameter controls the smoothness of the
autocorrelation function. A large standard deviation would
indicate a highly variable conflict generating process, which
would make it very difficult to discern covariate impacts from
intrinsic stochasticity. We assumed, therefore, that the
background autocorrelation process is fairly smooth, which is
reflected in our choice rate parameter (0.75) for the
exponential prior.

The regression term in our model is represented by the μt
parameter. Commonly in regression models, this parameter
would be defined as follows,

μt � xtβ (8)

β ∼ N(·), (9)

where xt is a covariate measurement at time t and β is a regression
coefficient with a normal distribution—of course, x and β could
be vectors referring to multiple covariates as well.

However, for the purposes of the present study, we needed to
include thresholds for delineating extreme covariate values—the
broken-stick regression (Feder, 1975, regarding broken stick
models). Two thresholds were used to account for upper and
lower extreme effects. These thresholds can be thought of as
creating a set of conditions such that β could take on one value if
xt is above the upper threshold, τ

+; another value if it is below the
upper yet above the lower threshold, τ−; and, a third value if xt is
below the lower threshold. The thresholds define the points of
articulation between the “broken sticks” (linear regression
functions). We can represent this logic with different cases for μt:

μt �
xtβ

+, if xt > τ+
xtβ, if τ− ≤xt ≤ τ+

xtβ
−, if xt < τ−,

⎧⎪⎨
⎪⎩ (10)

given that τ+ > τ−. Assigning indicator functions, I (), to the cases
makes for simpler computer code and can condense the above
equations into a single one—these indicators are simply functions
that equal 1 when a condition is met and zero otherwise, like a
switch. Let I+(xt) be a function that returns 1 when xt > τ+ and

zero otherwise. Along similar lines, let I−(xt) return 1 when xt < τ−

and zero otherwise. Then,

μt � xt(β + (β+I+(xt) + β−I−(xt))), (11)

which means that the model can fit different regression
coefficients to different levels of the covariate using the mid-
level coefficient, β, as a baseline. The other levels—β+ and β−—are
then offsets from the baseline effect and have to be interpreted
that way. These β parameters define the slopes of the articulating
“sticks”.

The thresholds have to be given sensible priors and, in
practice, need to be structured in such a way that they
maintain their order so that the model remains identifiable.
To that end, we defined the upper threshold first and then
established the lower threshold by defining a differential
parameter, d, that would be subtracted from the upper
threshold. By then constraining d to be positive and non-zero
we could ensure that the thresholds are properly estimated and
always uniquely identifiable. Thus,

τ+ ∼ U(·) (12)

d ∼ U(·) (13)

τ− � τ+ − d. (14)

In these equations,U (·) refers to the uniform distribution with
minimum and maximum bounds. Those boundaries are priors in
the model. For τ+, we set the minimum boundary to 0 and the
maximum to 5. We used these values because the covariates
(i.e., temperature reconstructions) were mean-centred and scaled,
as explained earlier. So, a value of 0 would refer to the study-
period average against which extremes would be measured. We
used a value of 5 for the maximum because none of the scaled
temperature series exceeded |4| (akin to 4 standard deviations if
the data were from a stationary normal distribution). The most
extreme positive deviation, then, would have been upwards of 4,
which meant that using 5 allowed for the possibility that the best
fitting model included no upper threshold in the range of the
observed data. The model, in effect, could push the boundary out
of consideration altogether if such a very high boundary value had
a higher likelihood than a lower one located within the range of
the observed data.

For the lower boundary—defined by d—we used a minimum
of 1 and a maximum of 15 to define the prior. Remember that this
value, which is between 1 and 15, would be subtracted from the
upper threshold to produce the lower one. The minimum,
therefore, had to be greater than zero in order to avoid the
boundaries being equal, again because they need to be uniquely
identifiable. Additionally, the maximum needed to be great
enough that the resulting lower boundary, τ−, could plausibly
reach beyond the minimum observed deviation. Put another way,
whatever the value was for τ+, d had to be large enough to
potentially exceed the lowest covariate value. As noted, the
observed minimum was close to −4. So, a reasonable range of
probable values for d would need to include at least twice the
highest potential value for τ+. That is, τ+−dmust be able to reach
at least < − 5, which meant d had to plausibly be ≥ 10.
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Including thresholds this way had an important advantage. It
allowed us to remain agnostic about the threshold values. This is
because those thresholds would be estimated from the data along
with the regression coefficients and parameters of the
autocorrelation process. The posterior distributions for the
thresholds and other parameters all reflect the distributions of
most likely values given the observed data.

The Analyses
Importantly, prior to running our main analyses we first tested
the broken-stick model with simulated data (Supplementary
Material). The simulated data were generated with one of the
temperature reconstructions and predetermined values for the
true regression coefficient and thresholds in order to determine
that the model works as expected. We explored a variety of values
for these settings and the model worked in each case. That we
used a real temperature reconstruction in the simulation implies
that the model would indeed be capable of identifying an effect
(and correctly estimating model parameters) if there was a clear
signal in our real data.

Subsequently, we ran four analyses to test whether temperature
extremes affected conflict levels in Europe during the second
millennium CE. For each analysis, we compared the conflict
record to one of the temperature reconstructions using the model
described above. We then examined the posterior distributions for
the regression coefficients and threshold parameters estimated with a
Markov Chain Monte Carlo (MCMC) simulation. There were three
regression coefficient posterior distributions for each analysis: one for
the mid-range of the given temperature series (β); one for the upper
range defined by the upper threshold (β+); and one for the lower
range defined by the lower threshold (β−). We reasoned that if
extreme temperature values had an impact on conflict levels, one or
more of these posteriors should be non-zero at the 95% level in at
least one analysis. That is, the 95% credible interval of the posterior
distribution for at least one of the regression coefficients pertaining to
at least one of the temperature series should exclude zero.

It should be noted that, in theory, estimates for the threshold
parameters can potentially cause the model to “collapse” into a
standard regression with only one informative regression
coefficient. This would occur in the event that the most likely
upper and lower thresholds were above and below the observed
maximum and minimum deviations in a given temperature series.
Effectively, this would imply that one regression coefficient
adequately describes the relationship between a given temperature
series and the conflict record over the whole range of observed
temperatures—i.e., no threshold effects. Consequently, the MCMC
would return posterior distributions that reflect the priors for the
upper and lower regression coefficients: normal distributions with
means of 0 and standard deviations of 100.

All the analyses were conducted using R (R Core Team, 2021).
We used an MCMC simulation to estimate the posterior
distributions for the model’s parameters. The MCMC was
performed with the Nimble package (de Valpine et al., 2021).
Each MCMC simulation was run for at least 2,000,000 iterations.
Convergence of the resulting MCMC parameter chains was
determined by a combination of visual inspection and
standard Geweke diagnostics (Geweke, 1992). The MCMC

diagnostics, exploration of priors, and simulation test are all
presented in the Supplementary Information associated with
this manuscript. We also made use of the “ggplot2”
(Wickham, 2016) and “ggpubr” (Kassambara, 2020) packages
for plotting. R code and data are also available on Github (https://
github.com/wccarleton/extreme-conflict) and have been archived
with Zenodo (DOI TBD).

RESULTS

The model performed well with the simulated dataset. It was able
to accurately estimate the regression parameters and threshold
positions that we used to create the simulated count data
(Supplementary Material). With this in mind, we are
confident that the approach could identify a relationship
between the climate records and the real conflict record,
including adequate estimates for the thresholds, under the
assumptions of model.

According to all four analyses, temperature variation had no
significant effect on conflict levels. The coefficients for the three
main regression parameters in each analysis—referred to above as
β, β+, and β−—were all indistinguishable from zero (Figure 2).
These results align with those of Carleton et al. (Carleton et al.,
2021) regarding the impact of temperature variation more
generally on second millennium European conflict levels.

Importantly for the present study, the results indicate
specifically that extreme temperatures had no discernible
impact on conflict levels. The posterior distributions for the
upper and lower extreme value regression coefficients were
estimated to be zero on average, as noted above. They also
had variances that reflected the relevant priors (Figure 2).
This means that there was insufficient information in the data
to update those prior distributions. The reason for this,
computationally, was that the highest likelihood thresholds
were outside the range of observed temperature deviations
(Figure 3). The upper threshold was estimated to be higher
than the highest observed temperature deviation in each
reconstruction ( ∼ 3–5). Similarly, the lower threshold was
estimated to be lower than the lowest observed temperature
deviations (d∼6–15). Thus, the MCMC determined that the
most likely parameter values effectively excluded thresholds—it
pushed those thresholds beyond the observed data. This meant
that no threshold effects (β+ and β−) could be estimated. Instead,
the optimal solution was one in which temperature deviations
had no effect on conflict over the whole range of observed
temperature values.

DISCUSSION AND CONCLUSION

In HBO’s TV adaptation of the first novel in George R.R. Martin’s A
Song of Ice and Fire series, King Robert says to his friend and advisor
Ned Stark, “(t)here’s a war coming, Ned. I don’t know when, I don’t
know who we’ll be fighting; but it’s coming.” These lines convey
something about the nature of warfare: it appears to inevitably arise
from some inexorable process that is difficult to predict. For at least
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60 years, social scientists have tried to understand that process by
identifying the correlates of warfare, motivated largely by a desire to
predict and ideally prevent the process from giving rise to violence in
the future (Suzuki et al., 1998). Recently, climate change has taken a
central position in the literature on this topic, with many scholars
declaring that climatic changes can be expected to increase the risk of
violent conflict (e.g., Burke et al., 2009, 2015; Hsiang et al., 2013;
Schmidt et al., 2021).

The results of the present study are not consistent with this
claim. They indicate that even extreme climate conditions (as
indicated by temperature reconstructions) did not affect conflict
levels in Europe during the secondmillenniumCE. This finding is

perhaps surprising. Not only were there substantial climatic
fluctuations in Europe during the second millennium CE, but
also for much of the time period in question European societies
were substantially less technologically developed than present-
day European societies and were also more reliant on local
agriculture. Less complex technology and greater dependence
on local resources, one would think, should have made European
societies susceptible to environmental shocks, especially large
ones. But that does not seem to be the case. There is no evidence
that the Little Ice Age or any of the other environmental shocks
that impacted Europe during the second millennium CE affected
conflict levels on average.

FIGURE 2 | Posterior densities for the key regression model parameters. Each row contains the posterior densities for the model involving the temperature
reconstruction indicated by the labels on the right of the plots. All densities have been scaled to amaximum of one. The (A) column contains the posterior densities for the
baseline regression coefficient; the (B) column contains the posterior densities for the regression coefficient when the given temperature record is above the most likely
upper threshold; and the (C) column contains the posterior densities for the regression coefficient when the given temperature record is below the most likely lower
threshold. Note that the x-axis appears large in the left column only because the MCMC sampled and retained some low values for that parameter. While the densities in
that column are largely normal and centred on zero, we nevertheless include the low values for the sake of transparency and reporting accuracy.
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Why did our analysis fail to identify an impact of extreme
climatic events on conflict levels in Europe during the second
millennium CE? There are at least six explanations that are worth
considering, some of which we alluded to earlier. The first three
we think can be discounted by careful reasoning. The last three,
however, are harder to eliminate at present and suggest avenues
for future research.

The first explanation—one we think can be
discounted—involves sampling biases in the conflict record. As
explained earlier, the conflict data we analysed were compiled
from authoritative conflict databases. But, since no historical
database is likely to be complete, it is possible that the record
we analysed is missing conflict events for several reasons. Not all
conflicts that actually occurred were necessarily recorded, for

example, and more recent periods are likely to be better
represented because of document survival biases or other
period-specific differences in reporting. Spatial gaps may be
present in the data as well. Some sub-regions in western
Europe may have been more important to historians and
chroniclers, such as regions that were economically and
politically important to ruling elites. In addition, the density of
surviving historical documents varies spatially within Europe,
with early historical coverage concentrated around major urban
centers and in the south, particularly France and Italy. Thus, we
should expect the Tol and Wanger (2010) conflict record to be
incomplete and biased. However, there is reason to believe that
regional-scale trends in second millennium conflict levels are
likely captured by the Tol andWagner (2010) record. Most major

FIGURE 3 | Posterior densities for the estimated temperature threshold values. Each row contains the posterior densities for the model involving the temperature
reconstruction indicated by the labels on the right of the plots. All densities have been scaled to a maximum of one. The (A) column contains the posterior density
estimates for the upper threshold value, and the (B) column contains the estimates for the difference between the upper and lower threshold.
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conflicts involved Europe’s largest, most literate societies. So, the
most significant conflicts were probably recorded in a sufficient
number of archives that knowledge of them survived to the
present. This means that trends in economically and politically
important conflicts are likely reflected in the record we analysed.
There is also no obvious trend(s) in the record that might indicate
a persistent document survival bias (Figure 1). Moreover,
geographic unevenness would not be a significant problem for
our analysis. If conflict levels were substantially affected by
temperature variation in general, then we would expect the
conflict records of any sizable sub-region within Europe to
respond in the roughly same way to region-wide temperature
changes.

Another potential explanation that we think can be discounted
involves biases in the four temperature time-series. The
temperature proxies we analysed are based on historical
documents, tree-ring widths, or a combination of the two.
Neither primary source is evenly distributed in space or time
within Europe and, therefore, they undoubtedly contain biases.
These biases will be acute for short term temperature fluctuations
and sub-regions within western Europe. Recent research has also
demonstrated that methodological and analytical choices
involved in the production of tree-ring-based temperature
reconstructions affect the patterns present in those
reconstructions (Büntgen et al., 2021). Variability with respect
to analytical choices of researchers—all of which may be
justifiable—can lead to biases in and differences among
individual reconstructions even when they are based on
overlapping source data (some of the same trees or trees from
the same regions). Despite these known biases, however, the
reconstructions all appear to contain the same long-term, large-
scale signal. They have each been shown to correlate positively
with temperature variations during instrumental periods with
Pearson’s R values ranging from 0.7 to 0.8. One of the
reconstructions in particular—the one created by Büntgen
et al. (2021)—averages out methodological differences and
correlates very well (0.79, p < 0.001) with instrumental
observations at different scales. It also has autocorrelation
properties that match those of instrumental observations, and
it has considerable predictive power for 20th and 21st century
temperatures in the Northern Hemisphere. Taken together, the
diagnostics performed by the scientists who produced the
reconstructions appear to reflect their target reasonably well.
Thus, despite their imperfections, the temperature time-series
very likely capture regional trends and variations during the
Common Era—this is especially true for the newest ensemble
reconstruction produced by Büntgen et al. (2021). It is unlikely,
then, that at the scale and resolution of our analysis, biases
present in the temperature reconstructions account for our
findings.

A third potential explanation, and the last we find
unconvincing, is that we looked at the wrong type of climate
data. The main agriculture staple in Europe throughout most of
the second millennium was cereal grain (e.g., wheat, barley, rye,
and oats) (Alfani and Ó Gráda, 2018; Ljungqvist et al., 2021).
Yields for the main grain crops are affected by climate conditions,
especially significant deviations from optimal conditions

(Zscheischler et al., 2017). But, sensitivity to temperature
specifically varies with crop type and region (Ljungqvist et al.,
2021). Wheat, for example, is known to be quite tolerant of
temperature deviations within the range of variation indicated by
the reconstructions, even during much of the Little Ice Age
(Porter and Gawith, 1999). In contrast, precipitation and,
crucially, the timing of precipitation is very important for
determining wheat yields (Brooks et al., 2018; Alfani, 2010).
Thus, temperature may simply be the wrong covariate for
investigating climate-conflict dynamics in Europe given that
different crops react differently to temperature deviations. On
its own, though, this explanation is wanting. Temperature
variation is often used as a general climate indicator. The
reason for this is that average temperatures (average over large
areas and long spans of time) are associated with certain weather
patterns and, so, major deviations in average temperatures are
likely to entail changes in those patterns (Arnell et al., 2019).
Extreme temperature deviations, therefore, could be expected to
lead to significant changes in precipitation amounts and annual
distributions of precipitation. Because both precipitation
extremes—flooding on the one hand, and drought on the
other—would have been bad for any cereal grain production,
the temperature proxies we looked at should still be relevant.
Essentially, the reconstructions we used can be thought of as
general climate indicators and extreme values would likely have
meant local, short-term disruptions to “normal” weather
patterns. Crucially, the specific direction of that disruption
with respect to precipitation—more rainfall or less—is not as
important as the fact that a major disruption occurred.
Substantial perturbations in either direction would likely have
affected grain yields even though temperature may not have been
the proximate cause (Zscheischler et al., 2017).

The fourth potential explanation—the first that we think is
plausible—is that spatial aggregation of the data masked the true
climate-conflict dynamics. This could occur in at least two ways.
A change in temperature can lead to different effects in different
locations (Mahlstein et al., 2013). A change in average European
temperature may have produced different localised responses.
Some areas might have been negatively affected while others were
not. In fact, some research has indicated that northern and
southern Europe will likely experience dramatically different
outcomes as a result of continued global warming, with water
shortages expected in the south and an increase in agricultural
land in the north (e.g., Bindi and Olesen, 2011). A similar pattern
of regional differentiation may have occurred in the past,
meaning that northern and southern European societies may
have experienced very different agro-economic effects from
changes in average temperature (Alfani, 2010; Alfani and Ó
Gráda, 2018). Consequently, spatially heterogeneous climate-
conflict relationships may be obscured by the spatially
aggregated data. Some areas may have experienced a higher
level of conflict while others did not for a given change in
regional average temperatures. In a related way, spatial
aggregation of the conflict record may have masked the
impact of climate on conflict levels. Prior to the First World
War, conflicts often only involved two main groups. Potentially,
combining these events into a single series makes it harder to
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adequately model the conflict generating process because not all
groups included in the aggregate dataset were equally likely to
engage in conflict with the other groups represented in the
dataset. For example, France would have been less likely to go
to war with Poland, in part because they share no borders. In
aggregate, then, differences between the likelihood of conflicts
between pairs of combatants could average out the impacts of
climate, which were also spatially aggregated in our analysis.
Essentially, the likelihood that any given pair—or “dyad”—would
have actually engaged in violent conflict cannot be controlled for.
A dyad approach has, for this reason, become common in
research on modern international conflict and politics (Croco
and Teo, 2005; Gleditsch et al., 2014; Schmidt et al., 2021). In a
dyad study, the unit of analysis is conflict in a given time interval
between specified pairs of potential combatants. That way,
locally-specific climate effects can be compared to conflicts
between groups where at least one of the groups is certainly
affected by the given climate variable and the groups in question
formed a plausible dyad in the first place.

The fifth potential explanation is that the model we used is too
simplistic to account for climate–conflict dynamics. Climate-
change driven resource shortages may be involved in conflict
levels in more complex ways than can be evaluated with linear or
even broken-stick models. Resource shortages, for example, could
be both a cause and consequence of conflict. A crop shortfall
could put additional pressure on a leader, affecting their decision-
making vis-a-vis engaging in conflict. But at the same time,
launching and sustaining conflicts consumes resources. In the
Late Medieval period, it would not have been uncommon for
bands of soldiers to extract resources from the area they happened
to be moving through or positioned in (Howard, 2009; Alfani,
2010). With enough troops or a long enough campaign, the draw
on local resources would have been significant. Even without bad
weather, then, local shortages could arise as a consequence of
conflict. Additionally, war often would have disrupted trade,
which would remove a key resource buffer—local shortfalls
could not be compensated by buying goods from elsewhere
(Howard, 2009). In more recent periods, conflict still drained
resources, but supplies were centrally coordinated rather than
having soldiers simply pillage what they needed from locals.
Nevertheless, conflict is costly and can draw down a society’s
resources, increasing the risk of critical shortages with or without
additional shocks from bad weather. This dynamic creates a
feedback that could be hard to detect empirically even at an
annual resolution and may require more complex statistical
models. Along similar lines, it may be necessary to take into
account additional mediating variables—e.g., population size,
carrying capacity, political history—before the impact of climate
change on conflict levels can be detected (Schmidt et al., 2021).
Climate change including extreme events like the Little Ice Age may
only impact conflict levels when a society is near its effective carrying
capacity, which is a function of technology, population size, and the
ability of socioeconomic institutions to buffer shortages (Alfani,
2010; Alfani and Ó Gráda, 2018). Without including interactions
between these potential mediators and the climate covariate, the
impact of climate change on conflict levels may be obscured by all of
the other factors driving variation in the latter.

The final plausible possibility we have identified is that the
scarcity mechanism may simply be insufficient for explaining
long-term variations in conflict levels. This could be true
irrespective of whether the scarcity is driven by average or
extreme environmental conditions. Humans often fight for
social, political, and economic reasons having little to do
directly with resource shortages. The aforementioned Wars of
the Roses are a prime example. The wars are generally thought to
have erupted out of contentions over rival claims to the English
throne (Hicks, 2012). Resources undoubtedly played a role, of
course. In a sense, the throne is the ultimate resource (access to
power, influence, and wealth) and resources were required to take
it. But, the elite houses who wanted it had sufficient wealth that
scarcity was unlikely to be a proximate motivating factor. If
anything, engaging in the conflict over the crown created
opportunity costs and resulted in financial losses, not to
mention incurring the risk of imprisonment and
death—“When you play the game of thrones, you win or die”,
declared Cersei Lannister (Martin, 1996). Thus, while the crown
was a prized, scarce resource, desire for it was not needs-based.
Instead, actors fought for this resource out of greed, and it was
largely insensitive to the weather—a drought or flood would not
have changed the crown’s availability. A simple scarcity
mechanism might, therefore, be insufficient to explain the
conflicts, at least where “scarcity” refers only to crop yields or
abstractly to economic resources.

We are left, then, with the puzzle we started with: How is it that
significant climate changes apparently had no impact on second
millennium CE European conflict incidence? The short answer,
we think, may be that conflict happened mostly for other reasons,
as we just explained. But, the other explanations we discussed
above suggest a few avenues for future research. One of these is to
examine the impact of other climate variables, such as rainfall.
Another possibility is to look at additional mediating variables
such as population size and political histories. A third avenue is to
disaggregate the climate and conflict data into regional datasets.
Lastly, future research could potentially involve more complex
statistical models designed to include feedback between resources
and conflict levels; computer simulations and purely
mathematical models may be useful in this regard.

Even if climate change did have no impact on conflict
incidence, it is worth highlighting that other dimensions of
conflict may have been affected. The frequency of warfare is
only one dimension of conflict within and between human
groups. Others include conflict onset, duration, category, and
magnitude. Each of these dimensions will be harder to evaluate
than simple incidence. Onset and duration are probably the
easiest to explore if precise start and end dates are available
for each conflict. Evaluating different categories of conflict, say
rebellion versus inter-state warfare, would involve more detailed
historical research, but it may be possible to achieve a high level of
confidence about the categorizations. Magnitude, unfortunately,
would be much harder to measure for historical conflicts since
any appropriate metric, like number of battle deaths, will
probably be hard to estimate for pre-modern periods. Despite
these potential challenges, though, research into the impact of
climate change on these other dimensions of conflict over the
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long-term would be informative and important. If a relationship
between climate change and one of these other dimensions was
found, the fact that incidence appears to be unaffected would be
less puzzling—such a finding would mean that intuitively
appealing explanations like the scarcity mechanism may hold,
just not in the most obvious way.

Despite not answering the question that motivated our
study, our results have implications for our understanding
of the impact of extreme events on society. Climatological
extremes may have impacted societies in particular ways
without those impacts reverberating to every potential
domain. There is evidence, for instance, that the cold of the
Little Ice Age was recognised as intense and anomalous by
people who experienced it firsthand. The historical record
contains references to water bodies freezing unexpectedly
along with frequent mentions of crop failures, famines, and
farms being deserted during this period (e.g., Holopainen and
Helama, 2009; Alfani, 2010; Lockwood et al., 2017; Alfani and
Ó Gráda, 2018; Athimon and Maanan, 2018). So, it seems safe
to assume there were impacts. And yet our study has revealed
that extreme temperature deviations had no clear impact on
regional conflict levels. We can, therefore, infer that while
extreme climate events likely did have some impact on
European societies during the second millennium, the
effects were circumscribed and contingent. An implication
of this is that context matters in the analysis of the impact
of extreme climatic events, possibly as much as the extreme
nature of the events themselves. What makes a climatic event
extreme for human societies may have more to do with its
ultimate effects than its intrinsic character.
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