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In this study, we used the cumulative distribution function transform to conduct a bias
correction for simulations from different regional climate models (RCMs) driven by one
global climate model (HadGEM2-ES). We divided the historical period into two time-
frames, i.e., the calibration period and the validation period. These two periods are
1986–1998 and 1999–2011, respectively. We then choose the period from 1986 to
2005 as the calibration period. The data for the future 2006–2098were revised and used to
explore future climate change under the RCP8.5 scenario. The difference before and after
bias correction were compared. The results show that the cumulative distribution function
transform method can improve the simulation accuracy of RCM in terms of the average
precipitation and seasonal precipitation can improve in north arid regions. For extreme
precipitation and different rainfall levels, the root mean squared errors of most indexes are
reduced by about 60–80% in China, and the correlation coefficients are close to 1. For
future precipitation, the bias correction method could reduce the overestimation of RCM
simulations, but cannot change trends of precipitation variation. Compared with the
simulations before bias correction, the predicted future precipitation indicates some
differences in different regions. After correction, the spread of the precipitation and the
most extreme precipitation indexes was smaller than those before correction. The
predicted future daily precipitation intensity was also smaller. The reduction of drought
days in the arid areas is more than before the correction, and the increase days of R50 in
the southern regions is larger than before the correction.
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INTRODUCTION

With global warming, the number of extreme precipitation events
has continued to increase around the world (Donat et al., 2016).
In China, extreme precipitation events have occurred frequently
in recent years and caused numerous losses in terms of lives and
property. Therefore, a better understanding of future variation
trends in extreme precipitation is important. To effectively
predict extreme precipitation events, researchers usually study
future precipitation changes by using climate models, including
global climate models (GCMs) and regional climate models
(RCMs).

Some previous studies have used GCMs to predict climate
change (Leng et al., 2020; Wang et al., 2020; Zhang et al., 2020b).
However, due to the relatively low resolution of GCMs, there are
large biases compared with observations, and it is difficult to
accurately predict precipitation at a smaller regional scale (Zhang
et al., 2017; Chen et al., 2018; Yu et al., 2018). In particular, China
is located in East Asia and affected by the East Asian monsoon,
and it has a unique terrain with numerous mountains, resulting in
a complex and changeable climate. Therefore, there is uncertainty
about GCMs climate prediction in China (Hui et al., 2018a; Hui
et al., 2018b). Several studies have shown that high-resolution
data can improve the precipitation simulation (Shi et al., 2017;
Bucchignani et al., 2018; Xu et al., 2018; Fu et al., 2021).
Therefore, the dynamic downscaling method is always used to
obtain future precipitation trends at a regional scale more
accurately.

Currently, RCMs have high resolution and are frequently used
to simulate precipitation changes at a regional scale. Previous
studies have shown that after dynamic downscaling, RCMs can
effectively capture regional precipitation characteristics (Jiang
et al., 2020; Tong et al., 2020; Fu et al., 2021; Qin et al., 2021).
Fu et al. (2021) found that the Regional Climate Model version 4
(RegCM4) performs better than GCMs in simulating spatial
details when studying climate change on the Tibetan Plateau
(TP) and its surrounding areas and that the simulations from the
RegCM4 are more consistent than those of GCMs. To project
extreme precipitation between 2041 and 2060 in eastern China,
Dong et al. (2020) applied the results from two GCMs to drive the
weather research and forecasting model as part of the Providing
Regional Climates for Impacts Studies (PRECIS). The results
showed that RCMs after downscaling show better performance
than GCMs in simulating extreme precipitation. Xiang-ling et al.,
2020 used the results from one GCM to drive the RegCM4.4 to
study extreme precipitation in Xinjiang, and the results showed
that the RegCM4.4 could reproduce the spatial distribution of
extreme precipitation in Xinjiang. Hui et al. (2018a) used two
GCMs to drive two RCMs and predicted future precipitation, and
found that extreme precipitation events will continue to increase.
Bao et al. (2015) found that as the resolution increases, the
simulated precipitation is more accurate when using one GCM
to drive the weather research and forecasting model.

The regional climate data after dynamic downscaling are
accompanied by certain systematic errors. Thus, it is necessary
to conduct error correction. There are two main error sources.
First, the errors in the GCMs are transferred to the RCMs after

dynamic downscaling. Second, RCMs have systematic errors in
themselves. These errors lead to a large bias of extreme
precipitation indexes. Several studies have shown that when
the improvement from optimizing the model parameterization
schemes is limited, using the bias correction method to correct
RCM results with dynamic downscaling could reduce systematic
errors. For example, Zhou et al. (2014) found that after bias
correction, the proportion of grid points where simulated daily
precipitation deviations from the observation exceeded 100% was
reduced to 1%. In addition, the spatial correlation of extreme
indexes between the simulations and the observations was
significantly improved. Tong et al. (2020) employed two
correction methods, quantile mapping, and quantile delta
mapping, to revise RCM results, and found that the quantile
delta mapping performed relatively better. Both bias correction
methods effectively improved the reliability of predicting future
precipitation. Wang et al. (2019) applied a single dynamic
downscaling method and a hybrid statistical-dynamical
downscaling method to simulate the temperature in the
coastal areas of Finland. The results demonstrated that the
simulated temperature from the hybrid statistical-dynamical
method is more accurate than dynamic downscaling results.
Wu et al. (2021) used the cumulative distribution function
transform (CDF-t) method to correct GCM results and found
that the CDF-t improved the results from GCM simulations, with
more precipitation days and a lower amount of precipitation. By
using daily precipitation and temperature observations from 1961
to 2005, Yang et al. (2019) evaluated four bias correction
methods, i.e., the bias-correction and spatial downscaling, bias-
correction and climate imprint, bias correction constructed
analogs with quantile mapping reordering, and CDF-t. These
results suggested that all four methods performed well in
improving the accuracy of climate models for simulating
extreme precipitation.

In previous studies on error correction, some studies have
sought to revise GCMs (Yang et al., 2018; Zhang et al., 2020a),
and others have undertaken to correct one RCM driven by the
data from one GCM (Wang et al., 2019). However, less
attention has been paid to bias correction for multi-RCMs
driven by GCM with CDF-t. To date, there have been few
analyses on whether the correction effects are affected by
different RCMs. In this study, the CDF-t method was used
to correct the model data during a historical period in the past
(1999–2011) and in the future, during the middle (2036–2065)
and late (2066–2095) 21st century. One GCM (HadGEM2-ES)
drives three different RCMs, with REMO, RegCM4, and
PRECIS applied in this research. We use these data to study
the performances of each model in terms of extreme indexes
and average precipitation before and after the correction in the
historical period, and we employ the revised RCMs to predict
future extreme precipitation changes in China.

The remainder of this paper is organized as follows. Data and
Methods briefly introduces the data and methods. Results
provides the characteristics of the simulated historical
precipitation and predicted future precipitation. Finally,
Conclusion and Discussion presents the conclusions and
discussion.
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DATA AND METHODS

The observation data used in this study are from the CN05.1
dataset. The CN05.1 dataset is a gridded dataset from more than
2,400 stations in China and contains historical meteorological
data such as precipitation and temperature from 1961 to 2011,
with a horizontal resolution of 0.25°(Wu and Gao, 2013). At
present, this data set is widely used for model validation.

The RCMs used in this study are the REMO, the PRECIS, and
the RegCM4, with a horizontal resolution of 25 km under the
CORDEX-EA-II frame work. The data from the HadGEM2-ES
are used to drive the REMO (HdRO), PRECIS (HdPE), and the
RegCM4 (HdRE). HadGEM2-ES has good performance for
simulating the climate in East Asia (Chen and Sun, 2015;
Jiang et al., 2015). REMO can be download from https://esg-
dn1.nsc.liu.se/projects/esgf-liu/.

The performance of RCMs used in this research was driven by
reanalysis data in the simulation of precipitation over China, and
the distribution of mean and extreme precipitation was evaluated.
Some studies (Xu and Richard, 2004; Wang et al., 2012) have
found that PRECIS driven by reanalysis dataset can better
simulate climate change on the ground, especially extreme
precipitation and seasonal changes. However, PRECIS
simulates more precipitation in China, especially in the
southern region. REMO is driven by reanalysis data and has
also been evaluated in previous studies (Zhang, et al., 2005; Xu
et al., 2016; Xu et al., 2018; Remedio et al., 2019; Pang et al., 2021).
REMO can reproduce the mean climatology well, such as annual
and seasonal precipitation. Even though it has a wet bias for most
of China and a dry bias for Southern China in Summer. The
seasonal mean precipitation simulated by RegCM4 which is
driven by reanalysis data also performs well (Gao et al., 2016;
Yu et al., 2019), although the annual precipitation simulated by
RegCM4 in Northeast China is still relatively large. All the RCMs
driven by reanalysis data have performed well when simulating
precipitation to date, meaning we can project the mean and
extreme precipitation in the future by using these three regional
climate models (i.e., RegCM4, PRECIS, and REMO) driven by
CMIP5 GCMs.

The GCMs that provide the driving field have performed
relatively well in previous studies for simulating the
precipitation in China. The RCMs used in this study have a
high resolution and are based on the Coordinated Regional
climate Downscaling Experiment, which provides better results
for simulating precipitation in East Asia. To analyze the
simulation performances of models, The study area was
divided into eight sub-regions (Hui et al., 2018a, Hui et al.,
2018b; Jiang et al., 2020) including northwest (NW, 35°–45°N,
78°–99°E), Tibetan Plateau (TP, 28°–35°N, 80°–99°E), eastern
northwest (ENW, 34°–42°N,99°–110°E), southwest (SW,
24°–34°N, 99°–110°E), northeast (NE, 42°–52°N, 115°–132°E),
north (N, 35°–42°N, 110°–122.5°E), southeast (SE, 27°–35°N,
110°–122.5°E), and south (S, 21°–27°N, 110°–120°E).

Due to the systematic errors of the simulated precipitation, the
bias correction method CDF-t is required to correct the errors.
This method was first used by Michelangeli and showed a good
data correction effect (Michelangeli et al., 2009). It was later used

in many other studies to correct precipitation data and showed
outperformance (Gao et al., 2016; Wu et al., 2018; Yang et al.,
2018; Yang et al., 2019). This method assumes a function T that
makes the simulated CDF close to the observed CDF in the
historical period. This method also assumes that the function T is
still valid for the simulated future CDF, and it is applied to the
simulated future CDF to revise RCM simulations.

RESULTS

Evaluation of Historical Precipitation
Before using model data to predict future extreme precipitation, it
is necessary to use observation data to evaluate the performances
of RCMs and bias correction methods for simulating
precipitation. This section shows the improvement of the bias
correction method for simulating several precipitation indexes
compared with the RCMs.

Mean Precipitation in the Historical Period
To evaluate the corrected precipitation, we compare the
simulated annual precipitation from each model before and
after correction with the observations during 1999–2011
(Figure 1). The spatial distribution of observed annual
precipitation (Figure 1A) in the historical period (1999–2011)
shows more precipitation in the south and less precipitation in
the north. In terms of the three RCMs (REMO, PRECIS,
RegCM4) (Figures 1B–E) driven by HadGEM2-ES, the
precipitation is underestimated in the southern humid regions,
and it has a general trend of overestimation at the national scale.
Some research has found that the annual precipitation on the
eastern edge of the Qinghai-Tibet Plateau has been overestimated
by HadGEM2-ES, and for the southwest border of China. The
HadGEM2-ES is more likely to overestimate the precipitation in
Northeast China. After dynamical downscaling, the biases from
HadGEM2-ES are taken into the RegCM4 and the RegCM4
further aggravates the bias of annual precipitation in
Northeast China. The other studies on GCM and RCM
assessments had the same conclusion (Flato et al., 2013; Bao
et al., 2015). Some studies (Gao et al., 2016; Yu et al., 2019) also
used a reanalysis dataset called “perfect boundary condition” to
drive RegCM4, and the annual precipitation simulated by
RegCM4 in Northeast China is still relatively large. The
reasons for this could be due to the positive vorticity deviation
in the lower levels of Northeast China (Hui et al., 2018a), or they
could be related to the deficiency of parameterization scheme of
physical processes. The ensemble-average precipitation of RCMs
(ENS) presents underestimation in the south and the northwest,
and overestimation in other regions, especially in parts of the TP.
The deviations of the results from three RCMs driven by GCM
may be caused by the GCM themselves. In addition, systematic
errors in the RCMs can lead to simulation biases.

In order to correct the above systematic errors, the bias
correction method, CDF-t, is used, and the corrected results
are evaluated with the observations (Figures 1F–I). In general,
the corrected data of the RCMs are closer to the observations than
before correction. After correction, the biases between the
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simulations of each RCM and the observations are between
±0.4 mm·day−1 compared with ±3.2 mm·day−1 before
correction, the biases are significantly reduced.

Figure 2 shows the seasonal cycle of precipitation (mm day−1)
from the RCM simulations and the ENS before and after
correction during the historical period (1999–2011). There are
large biases between simulations of each model and the
observations in the TP, SE, and S, while the biases in the N
region are relatively small. Before the correction, for the peak
values of the average monthly precipitation, the biases between
the RCM simulations and the observations are large. In addition,
the maximum monthly precipitation occurs in different months.
For example, in the S region (Figure 2H), only RegCM4 and the
observations peak simultaneously in June, while the months with
the peak values of the simulations from other models are different
from that of the observations. This finding may be related to the
complexity of precipitation characteristics in the southern
regions. The corrected RCM results are improved. Firstly, the
excessive-high peaks of simulated precipitation are reduced. For
example, in the N region (Figure 2F), the precipitation peak of
the RegCM4 before correction is about 6.5 mm·day−1, higher than
the observed peak of about 4 mm·day−1. After correction, the
precipitation peak value is closer to the observations.

We also calculated the root mean squared errors (RMSEs)
between the observations and the simulations from the five

models before and after correction in the eight sub-regions.
The results suggest that the bias of the corrected RCM
simulations is significantly reduced. Especially in the NW and
TP regions, all simulations have been significantly improved,
with the RMSE reduced. After the bias correction, the HdRE
simulations have been improved in all regions, indicating that the
correction effect on HdRE simulations is significant. For the
other models, the correction effect is not as significant as that of
the HdRE, but there are also obvious improvements in some
regions. The corrected ENS shows that the RMSE decreases
significantly in the arid and semi-arid areas but the
improvement is not significant for the humid areas where the
precipitation characteristics are complex. In terms of the
correlation coefficients, since the correlation coefficients
between the simulations and the observations are relatively
high before correction, the improvement by the CDF-t
method is relatively limited. However, the correlation
coefficients for most model simulations in the NW and TP
regions have been significantly improved. Therefore, it can be
concluded that the data correction has a limited improvement in
the relatively small RMSE and relatively high correlation
coefficients, and the improvement effect is different for
different RCMs. However, the NW and TP regions have
significant improvements in both the RMSE and correlation
coefficients.

FIGURE 1 | Spatial distributions of the observational annual precipitation (A) and biases between observations and simulations from RCMs before correction (B–E)
and after correction (F–I).

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7713844

Xie et al. High-Resolution Ensemble Projection of Precipitation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 2 | Seasonal cycle of monthly precipitation for the simulations and observations in eight sub-regions (A–H). The dashed lines with a box indicate the
corrected simulations, and the solid lines with a circle denote the simulations before correction. The X-axes are the months, and the Y-axes represent the precipitation
amount.
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FIGURE 3 | Precipitation probability distributions of the observations and simulations in eight sub-regions of China before and after correction (A–H). Blue and red
columns represent the simulations before and after correction, respectively. Green columns indicate the observed values.
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FIGURE 4 | The spatial distributions of observed extreme precipitation indexes (A,D,G,J,M). The spatial distributions of the biases of the extreme precipitation
indexes between observations and simulations before (B,E,H,K,N) and after correction (C,F,I,L,O). The extreme precipitation indexes include the SDII (A–C), the light
rain (D–F), the medium rain (G–I), the heavy rain (J–L), and the R50 (M–O).
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FIGURE 5 | Same as Figure 4, but for the extreme precipitation indexes of the R95p (A–C), the CDD (D–F), the CWD (G–I), the R25 (J–L), the Rx5day (M–O), and
the Rx1day (P–R).
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Figure 3 shows the precipitation probability distribution of
each ENS before and after correction. It can be seen that before
correction in the western arid areas, the precipitation probability

of the ENS has large underestimations for precipitation of
1–5 mm but significant overestimations for precipitation
greater than 5 mm. For heavy rain greater than 50 mm in

TABLE 1 | Definitions of extreme precipitation indexes.

Indexes Definitions Units

wds Number of days with daily precipitation ≥1 mm in a year day
pr Mean precipitation mm·day−1
R95p Annual total precipitation when daily precipitation>95th percentile of precipitation mm
SDII Daily precipitation intensity mm·day−1
Rx1day Maximum daily precipitation mm
Rx5day Annual maximum consecutive 5-day precipitation mm
Light rain Precipitation days with daily precipitation ≥1.0 mm and <10 mm day
Medium rain Precipitation days with daily precipitation ≥10.0 mm and <25 mm) day
Heavy rain Precipitation days with daily precipitation ≥25.0 mm and <50 mm day
R50 Precipitation days with daily precipitation ≥50.0 mm day
R25 Precipitation days with daily precipitation ≥25.0 mm day
CDD Maximum number of consecutive days with precipitation <1 mm day
CWD Maximum number of consecutive days with precipitation ≥1 mm day

FIGURE 6 |RMSE of mean precipitation (A–C), extreme precipitation (D–F), drought indexes (G,H) and precipitation days (I–M) before and after correction in eight
sub-regions and China.
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humid areas, there are overestimations. After correction, the
precipitation probability at most precipitation levels in the
most studied area is extremely close to the observed values,
demonstrating that the CDF-t method can effectively correct
precipitation biases simulated by the RCMs.

Historical Extreme Precipitation
As well as the mean precipitation, it is crucial to assess the
simulation performances of each RCM on extreme
precipitation. Figures 4, 5 show the biases of the 11
precipitation indexes between the observation and the
ensemble mean for the five RCMs before and after correction.
The precipitation indexes are the Rx5day, the Rx1day, the R95p,
the R25, the R50, the SDII, the CDD, the CWD, the light rain, the
medium rain, and the heavy rain, as shown in Table 1. For
Rx5day, Rx1day, and R95p, the spatial distributions of
observations show more extreme precipitation in the south
and less in the north. In addition, the results of the ensemble
mean before correction show an overall overestimation, but an
underestimation in southern China and some areas of
northwestern China. The Rx1day is severely overestimated by

about 40 mm in southern coastal areas, but it is underestimated in
parts of the northwest areas. The Rx5day is underestimated in
parts of the south and northeast areas. However, the R95p is
seriously overestimated. After correction, the biases of the R95p
are reduced to ±15 mm in west China, much lower than before
correction (±120 mm). The biases in east China are reduced to
±30 mm. The biases of the Rx1day are reduced to ±5 mm after
correction in west China and ±10 mm in east China. Biases of the
Rx5day are also reduced from ±56 mm to ±28 mm. Therefore,
RCMs have been significantly improved in simulating extreme
precipitation after correction.

In terms of the indexes R25, R50, light rain, medium rain,
heavy rain, and SDII, there are large improvements after
correction. The bias of light rain days is reduced from
±40 days to ±15 days after correction. The bias of medium
rain days is reduced from ±24 days to about ±6 days,
especially in the TP areas. Moreover, the bias of heavy
rain days is reduced from ±12 days to about ±3 days, and
the bias for R50 also have been reduced. The biases correction
effect of the CDD and CWD are not as large as the other
indexes. In addition, the CDD is underestimated in the

FIGURE 7 | The reduction ratios of the RMSE of mean precipitation (A–C), extreme precipitation (D–F), drought indexes (G,H) and precipitation days (I–M) by
using bias correction methodology (CDF-t).
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northern arid areas, and overestimated in the southern areas,
with no significant difference before and after correction.
Moreover, the CWD is significantly underestimated for
the TP.

Figures 6, 7 present the RMSEs of the extreme precipitation
indexes and their reduction ratio after correction. After
correction, the errors of different indices in each sub-region
have been reduced. In general, most of the indices have
improved less in eastern China than in western China. This
could be because climate change in eastern China is complicated
and it is difficult to achieve the expected results and reduce errors
through bias correction methods. For CDD and CWD, the overall
reduction in each region is less than that of other indices, and the
same trend can also be found in the correlation coefficient. In
terms of the correlation coefficients (Figure 8), The correlation
coefficients of CDD and CWD are smaller than those of other
indexes. The correlation coefficients of the CDD and CWD are
between 0.6 and 0.8. However, the correlation coefficients of
other indexes are quite close to 1, indicating that the data
correction method brings a significant improvement in the
spatial correlation. The improvement of CDF-t on the RMSE
and CORR of CDD and CWD is not as great as other indices.
Maybe the ability of CDF-t to correct drizzle needs to be
improved (Yang et al., 2019). As a driving model, HadGEM2
has an overestimation of the wet days in China (Jiang et al., 2020).
The overestimation of GCMmay also be transmitted to the RCM,
which leads to the error that CDD and CWD are higher and cause
lower CORR. However, the CDF-t’s ability to improve drizzle is
not strong, which leads to lower CORR and RMSE improvement
after correction than other indices. The fact that only limited (or
no) improvements are found for CDD is consistent with the
theoretical analysis of Dosio (2016). They also found that indices
based on the duration of events are hardly affected by bias

adjustment because bias adjustment does not alter the
temporal structure of the original data.

To analyze the consistency of the simulated extreme
precipitation indexes among the RCMs, Figure 9 provides the
standard deviations of the simulated indexes before and after
correction in eight sub-regions of China during the historical
period. These extreme precipitation indexes are simulated by
different RCMs (difRCM) driven by the same GCM. We can see
that the revised historical simulation results are more consistent
in most regions between different indices. Therefore, the
correction method can improve the simulation effect.

Prediction of Future Precipitation
In the previous section, the simulation errors of average and
extreme precipitation in the historical period before and after
correction were analyzed. The results demonstrate that bias
correction is beneficial to improving the simulation results,
with relatively smaller errors compared with a single
dynamical downscaling. We then chose the period from 1986
to 2005 as the calibration period, and the data for the future were
revised. We used the simulations after bias correction to predict
future precipitation and found that the method was credible.

Projection of Future Mean Precipitation
Figure 10 show the variations of precipitation in the late 21st
century compared with the historical period. The ensemble mean
precipitation (Figures 10G,H) indicates that the precipitation
slightly decreases in parts of the south and inland areas. The
future precipitation trends are similar before and after correction.
However, the range of precipitation reduction in inland areas of
China after the correction is smaller than before the correction. In
the TP area, the precipitation after the correction is more than
that before the correction. Overall, the future precipitation in
China shows an increasing trend.

Future Extreme Precipitation
Figure 11 shows the changes of 11 extreme precipitation indexes
(Rx5day, Rx1day, R95p, R25, R50, SDII, CDD, CWD, light rain,
medium rain, and heavy rain) in the late 21st century. The Rx5day,
the Rx1day, the R95p, and SDII all show increasing trends in the late
21st century in most parts of China both before and after correction,
with more increases in the south and relatively less increase in the
north. The Rx1day shows no significant difference in future changes
before (Figure 11B) and after correction (Figure 11A). For the
Rx5day in most regions after correction, the predicted precipitation
slightly decreases compared to before the correction. For R95p, the
future precipitation growth in the S is bigger after correction
(Figure 11E) than before correction (Figure 11F). The SDII in
the southern region predicted by the revised ensemble mean
precipitation (Figure 11K) is lower than that before correction
(Figure 11I).

The drought indexes used in this study are CWD and CDD.
The CDD indicates that the main future changes will be that
drought days decrease in arid areas but increase in humid areas.
In addition, the number of drought reduction days in the
northern arid regions were less before correction (Figure 11H)
than after correction (Figure 11G). The future changes of CWD

FIGURE 8 | Correlation coefficients of 13 precipitation indexes before
and after correction. The letters “rev” indicates the revised simulations, and the
letters “org” denote the simulations before correction.
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FIGURE 9 | Standard deviations of extreme precipitation indexes from different RCMs driven by the same GCM (difRCM) in eight sub-regions before (rev) and after
correction (org).
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show that in the central region and the fringe areas of the TP, the
number of consecutive precipitation days decreases compared
with the historical period. Note that in the central region, the area
with the decreased CWD is smaller after correction (Figure 11I)
than before correction (Figure 11J). However, in general, the
number of drought days will decrease in the future in northern
arid areas, and the drought situation in the south will be severe.

In this study, the indexes indicating precipitation days with
different precipitation levels include the R25, the R50, the light
rain, the medium rain, and the heavy rain. The future
precipitation days of light rain decrease in the south and
increase in the north. The precipitation days of medium rain
show the same trend as the light rain. However, the precipitation
days of heavy rain generally increase in China, with a decrease
only in some areas along the southern coast. Both the R25 and the
R50 show an overall increase. However, the predicted results are
different before and after correction for these indexes. The
corrected light rain days in the western region are more than
before correction. For the medium rain, the reduced number of
days in the southern region is more after correction, but the area
with the increased projections in the TP is smaller than that
before correction.

To quantitatively characterize the future climate change in each
region, we calculated the changes in future precipitation in eight sub-
regions. Figure 12 shows the changes of 11 extreme indexes before
and after correction in eight sub-regions of China in the late 21st
century. During the late 21st century, from Figures 12A–D, it can be
found that extreme indexes, Rx1day, Rx5day, R95p, and SDII show
increasing trends before and after correction in each sub-region,
especially in the south. For the drought indexes, the CDD changes in
theNWandTP areas are different (Figure 12E), and the reduction of
the simulated CDD after correction is greater than that before
correction. The results of the ensemble mean precipitation
indicate that in the TP region, the CDD decreases by about
3 days before correction and about 8 days after correction. For
different precipitation levels, the precipitation days of light rain

and medium rain generally increase in the north and decrease in
the south. The precipitation days of the R50 increase significantly in
all regions. The precipitation days with different precipitation levels
have the same change trend in all regions before and after correction.
However, the precipitation days of heavy rain in the southern region
increases significantly compared to that before correction.

Figure 13 shows the interannual variations of the observed
precipitation and the simulations before and after correction from
1986 to 2098. The results show that most of the simulated indexes
after correction are closer to the observations in the historical period
(1986–2005), while there are large biases before correction. This
finding reflects the effectiveness of the correction method. Moreover,
the change range of the simulations reduces after correction
compared with that before correction, suggesting that the
correction method can reduce systematic errors. The interannual
variations of the various simulations before and after correction show
that the precipitation has an increasing trend. Moreover, the
interannual variation trend of the precipitation days is not
significant, but the SDII has an obvious increasing trend.
This situation suggests that the precipitation and the SDII
will continue to increase in the future. For the extreme
precipitation indexes, Rx5day, Rx1day, and R95p all show
increasing trends. In terms of the future precipitation days
with different precipitation levels (light rain, medium rain,
heavy rain, and R50), the precipitation days change of light
rain is not significant, the precipitation days of medium rain
have not significant change trends, and the precipitation days of
heavy rain and R50 will increase significantly. For the CDD and
CWD, the biases of the ensemble mean after correction are
large, which is consistent with the result that the CDF-t method
performs poorly in verifying the CDD and CWD.

Figure 14 presents the standard deviation of the simulated
indexes from the difRCM before and after correction in eight
sub-regions. The projections from the difRCM have a relatively
higher consistency in predicting future climate change after
correction, but compared with the historical simulation, the

FIGURE 10 | Change rates of precipitation in the late 21st century compared with the historical period before (B,D,F,H) and after correction (A,C,E,G).

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 77138413

Xie et al. High-Resolution Ensemble Projection of Precipitation

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


consistency is relatively poor. For different precipitation levels,
the predicted precipitation days of heavy rain, R50, and R25,
difRCM does not perform well in the S region after correction.

In terms of the Rx5day, Rx1day, and R95p, the projections from
the difRCM after correction are generally consistent in most
regions.

FIGURE 11 | Future changes of 11 indexes from the ensemble mean precipitation of RCMs in the late of the 21st century compared with the historical period before
(B,D,F,H,J,L,N,P,R,T,V) and after correction (A,C,E,G,I,K,M,O,Q,S,U).
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CONCLUSION AND DISCUSSION

In this study, the CDF-t method was used to conduct a bias
correction for the simulations from three RCMs (PRECIS,
RegCM4, and REMO) driven by the HadGEM2-ES. We have
divided the historical period into two different periods, i.e., the
calibration period and the validation period. These two periods
are 1986–1998 and 1999–2011, respectively. We then choose the
period from 1986 to 2005 as the calibration period, and the data
for the future 2006–2098 period was revised. After verifying the
corrected historical simulations with the observations, the future
precipitation changes in eight sub-regions of China were
predicted and the differences of consistency of estimates
before and after correction were analyzed.

In the historical period (1999–2011), the biases between the
observations and simulations reduce greatly after correction,
reflecting the effectiveness of the correction method in
reducing systematic errors. The RCM simulations improve
significantly after correction, with the simulated precipitation
biases ranging between ±0.4 mm·day−1. Compared with
±3.2 mm·day−1 before correction, the biases were significantly
decreased. After correction, the seasonal cycle of precipitation

significantly reduced RMSE in arid and semi-arid regions
compared with before correction. The precipitation
probabilities of each precipitation level was consistent with the
observations. Moreover, biases and correlation coefficients of all
extreme precipitation indexes were improved. However, the
improvements for the CDD and CWD are not as significant as
other indexes. The consistency of the difRCM of model data was
good after correction.

The average precipitation and extreme precipitation will
increase in the future. However, after correction, the predicted
precipitation indices will reduce compared with the projections
before correction, even though the increasing trend remains
unchanged. The average precipitation and the daily
precipitation intensity show an increasing tendency in the
future. The increasing tendency in extreme precipitation is
greater than the average precipitation. Meanwhile, the future
precipitation days of heavy rain and R50 will increase
significantly. Moreover, drought events in southern China will
increase, and extreme precipitation events will also increase, while
the drought in northern arid areas will decrease. There are also
some differences in the predicted ensemble mean precipitation
before and after correction. Specifically, the predicted future

FIGURE 12 | Change ratios of extreme precipitation (A–D), drought indexes (E,F) and precipitation days (G–K) in the late 21st century (2066–2095).
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precipitation intensity and extreme precipitation events in the
southern region after correction are lower than the results before
correction, and the reduction of the drought in the north is
greater than the results before correction. For the projections of
heavy rain, the increase in the southern region is also greater than
before correction. The prediction consistency between each
model after the correction was better than before the correction.

Despite these findings, there are still several questions
remaining in relation to this study. Firstly, only the
RCP8.5 scenario was selected for the climate change study.
Thus, the future climate change analysis may not be
comprehensive enough, and the RCP4.5 or RCP2.6
scenarios should be added to future studies. Secondly,
only one bias correction method was used to correct the

FIGURE 13 | Interannual variations of mean precipitation (A–C), extreme precipitation (K–M), drought indexes (I,J) and precipitation days (D–H). The red shaded
areas are the change range of simulations after correction, and the blue shaded areas present the change range of simulations before correction.
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RCM data. Hence, different correction methods will be
adopted in further study. Finally, the climate models
selected in this study are not enough, which limits the

increase in accuracy of the ensemble projections. In the
future, more climate models can be selected to predict
future climate change.

FIGURE 14 | Same as Figure 9, but for the late 21st century.
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