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A landslide susceptibility map (LSM) is the basis of hazard and risk assessment, guiding
land planning and utilization, early warning of disaster, etc. Researchers are often overly
keen on hybridizing state-of-the-art models or exploring new mathematical susceptibility
models to improve the accuracy of the susceptibility map in terms of a receiver operator
characteristic curve. Correlation analysis of the causal factors is a necessary routine
process before susceptibility modeling to ensure that the overall correlation among all
factors is low. However, this overall correlation analysis is insufficient to detect a high local
correlation among the causal factor classes. The objective of this study is to answer three
questions: 1) Is there a high correlation between causal factors in some parts locally? 2)
Does it affect the accuracy of landslide susceptibility assessment? and 3) How can this
influence be eliminated? To this aim, Wanzhou County was taken as the test site, where
landslide susceptibility assessment based on 12 causal factors has been previously
performed using the frequency ratio (FR) model and random forest (RF) model. In this
work, we conducted a local spatial correlation analysis of the “altitude” and “rivers” factors
and found a sizeable spatial overlap between altitude-class-1 and rivers-class-1. The
“altitude” and “rivers” factors were reclassified, and then the FR model and RF model were
used to reevaluate the susceptibility and analyze the accuracy loss caused by the local
spatial correlation of the two factors. The results demonstrated that the accuracy of LSMs
was markedly enhanced after reclassification of “altitude” and “rivers,” especially for the RF
model–based LSM. This research shed new light on the local correlation of causal factors
arising from a particular geomorphology and their impact on susceptibility.
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INTRODUCTION

The landslide susceptibility map represents the spatial probability
of landslide occurrence, is the basis for landslide hazard and risk
assessment (Fell et al., 2008; Pellicani et al., 2017), and is used in
practice for land planning (Cascini 2008; Chen et al., 2019),
quantitative risk analysis (Chen et al., 2016; Yan et al., 2020), early
warning systems (Segoni et al., 2018; Rosi et al., 2021), etc. In the
past several decades, hazard susceptibility assessment has always
been a hot spot for research on all kinds of regional scales,
including local-scale (Yang J. et al., 2019), basin-scale (Bueechi
et al., 2019; Huang et al., 2021a), and national-scale (Bălteanu
et al., 2020). The relationship between existing landslides and
their causal factors is modeled to obtain the landslide probability
for the whole study area, which is the basic framework of
landslide susceptibility. The internal geological and external
environmental factors are the main incentives of landslides,
characterized by altitude, slope, aspect, lithology, curvature,
human engineering activities, rivers, traffic, etc. (Xiao et al.,
2019). In recent years, to improve the accuracy of
susceptibility evaluation, lots of new statistical (Segoni et al.,
2016; Reichenbach et al., 2018) and machine learning methods
(Catani et al., 2013; Lagomarsino et al., 2017; Huang et al., 2020),
or multiple mixed-matching models (Rossi et al., 2010; Shirzadi
et al., 2017; Huang et al., 2021b), have been introduced in
susceptibility mapping.

After the susceptibility calculation, a receiver operator
characteristic (ROC) curve is always required for accurate
analysis (Xiao et al., 2020). The model with the highest AUC is
considered the best model suitable for this test site (Canavesi et al.,
2020; Sun et al., 2020) and, at the same time, provides a reference for
other research areas. Researchers are overly keen on hybridizing
state-of-the-art models (Schicker and Moon, 2012; Kornejady et al.,
2018; Luo and Liu, 2018) or exploring new mathematical
susceptibility models (Chen et al., 2017; Yang Y. et al., 2019;
Paryani et al., 2020; Wu et al., 2020), often ignoring the
interrelationships between causal factors. It is a well-known fact
that each study area has its specific geomorphological features. By
analyzing the correlation of the causal factors, factors with high
overall correlation were excluded (Liu et al., 2019; Mind’je et al.,
2020; Zhao and Chen, 2020). However, the remaining causal factors
may be highly correlated in some micro-topography parts, which
cannot be detected by the overall correlation analysis and have not
beenmentioned in the literature. Given this, several issues need to be
discussed: Is there a high correlation between causal factors in some
parts locally? Does it affect the accuracy of landslide susceptibility
assessment? How can this influence be eliminated?

In Wanzhou County, Chongqing, China, the Yangtze River
flows through the entire area from southwest to northeast,
causing many landslides along both sides of the Yangtze River
(Yang et al., 2017; Wang et al., 2019; Huang et al., 2021; Wang
et al., 2021). Both sides of the Yangtze River are highly susceptible
to landslides, and the region is characterized by low elevation and
proximity to rivers (Yang et al., 2018; Deng et al., 2021; Hu et al.,
2021; Wang et al., 2021). Therefore, it is necessary to explore
whether “altitude” and “rivers” factors are highly correlated in the
region and their influence on susceptibility mapping.

This study aims to show that local spatial correlation on causal
factors could exist and reduce the accuracy of susceptibility
mapping. We conducted a local spatial correlation analysis on
the “altitude” and “rivers” in the study area to discuss their valid
contribution to susceptibility, taking Wanzhou County as an
example. The “altitude” and “rivers” were reclassified; then, the
frequency ratio (FR) model and random forest (RF) model were
used to reevaluate the susceptibility and analyze the accuracy loss
caused by the local spatial correlation of these factors. The results
shed new light on local correlations of factors arising from a
particular geomorphology and their impact on susceptibility.

TEST SITE DESCRIPTION

Wanzhou County is located in the Three Gorges Area of the
Yangtze River basin (Chongqing Municipality, southwestern
China) between 107° 55′ 22″–108° 53′ 25″ E and 30° 24′
25″–31° 14′ 58″ N, covering an area of approximately
3,457 km2 (Figure 1).

The study area extends into the subtropical humidmonsoon zone
and features a mild climate with abundant sunshine and mean
annual precipitation of 1,191.3 mm, mainly concentrated fromMay
to September (about 90% of the yearly rainfall). During summer, the
rain is characterized by short and intense rainstorms (up to 100mm/
day). The Yangtze River runs throughout the study area from
southwest to northeast, and 93 large and small streams form a
complex surface runoff network. The elevation gradually decreases
from east to west, forming a hilly landscape, with an overall step-like
morphology formed by multilevel fluvial terraces, which resulted
from the combination of repeated tectonic uplift stages and the
Yangtze River erosion. According to the information provided by
Chongqing Natural Resources Bureau, more than 600 landslides
were identified in the study area. Since the impoundment of the
Three Gorges Reservoir in 2003,many dormant landslides have been
reactivated, mainly triggered by water level fluctuation and rainfall.
The well-known Anlesi Landslide, Caojiezi Landslide, and Taibaiyan
Landslide are all ancient landslides with a volume of more than
10million cubic meters, and they all developed in subhorizontally
dipping sandstone and mudstone interbedded strata.

The bedrock lithology encompasses sandstones, mudstones,
shales, and limestones (Table 1), with nearly horizontal
stratifications. Extending from both sides of the Yangtze River,
the outcropping bedrock mainly increases in age from Triassic to
Jurassic (2.3–137 Ma), with sporadic Permian (299–252 Ma) and
Quaternary bedrock (from 2.5 Ma). The middle Jurassic
Shaximiao Group, consisting of alternating layers of sandstone
and mudstone, is the most widely distributed geological unit.

INPUT DATA AND METHODOLOGY

Modeling Algorithms
1) Frequency ratio (FR) model.

The frequency ratio model is a relatively simple statistical
model (Kumar and Anbalagan, 2015). Each factor is classified
according to a specific method, and the contribution degree of
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each factor category is calculated based on statistical analysis. The
contribution degree set of all factors is the Landslide Susceptibility
Index (LSI), and the formula is

FR � S1/A1

S/A
(1)

LSI � ∑FR (2)

where S1 is the landslide area within the classification, S is the area
within the classification, A1 is the total landslide area of the study
area, and A is the total area of the study area.

2) Random forest (RF) model.
The random forest model is a nonparametric multivariate

technology based on ensemble learning algorithm. This
technology was proposed by Breiman and was widely used in
various research fields because of its excellent performance,
including landslide disaster susceptibility evaluation (Breiman,
1996a, 1996b; Breiman, 2001). Random forest model is

considered to be a relatively effective method in classification,
regression, and unsupervised learning. It contains some
classification numbers for prediction, and this classification
tree is randomly generated by using “bagging” to generate
multiple independent training sets. The main advantages of
this model are as follows: It is suitable for analyzing nonlinear
variables without considering multicollinearity and has strong
robustness to outliers; it can deal with high-dimensional data,
take into account discrete data and continuous data, and has no
fixed standardization requirements for the input data set; the data
processing speed is fast and can obtain the variable importance
sorting; and compared with other models, it has a strong anti-
noise ability.

Input Data and Methodology
Twelve landslide susceptibility causal factors of Wanzhou
County and two models, namely, frequency ratio (FR) and
random forest (RF), are used in this research. The selected

FIGURE 1 | Location of study area (the coordinate system used is Xi’an 80). (A) Location of Wanzhou County, Chongqing, in China; (B) the topography map and
landslide distribution in Wanzhou County.

TABLE 1 | Lithology and stratigraphic system in the study area.

Stratum code System Series Group Main lithology

J3s Jurassic Upper Suining Red purple quartz sandstone with interbedded mudstone
T3xj Triassic Upper Xujiahe Light gray lithic sandstone and silty shale
J3p Jurassic Upper Penglai Gray white quartz sandstone with interbedded shale
T2b Triassic Middle Badong Limestone and sandy mudstone
T1j Triassic Lower Jialingjiang Limestone and dolomite, karst breccia, and dolomite limestone
J1z Jurassic Lower Zhengzhuchong Gray quartz sandstone with interbedded shale
J1-2z Jurassic Middle-lower Ziliujin Shale sandwiching quartz sandstone and limestone
J2x Jurassic Middle Xintiangou Gray yellow feldspar sandstone with interbedded mudstone
J2xs Jurassic Middle Xiashaximiao Gray purple feldspar sandstone with interbedded mudstone
J2s Jurassic Middle Shaximiao Alterative layers of purple red mudstone and feldspar sandstone or siltstone
P2 Permain Middle Maokou Gray bioclastic limestone
T1d Triassic Lower Daye Limestone, shale, and dolomite limestone
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12 causal factors are altitude, slope, aspect, plan curvature,
profile curvature, Stream Power Index (SPI), bedding
structure, lithology, land use, geological structure, rivers,
and roads. In the past, we have done many studies on
susceptibility assessment, including the susceptibility
mapping of Wanzhou County based on these two models
and 12 factors (for more details, see the article by Xiao et al.,
2019). The classification and frequency ratio contribution of
the factors are shown in Table 2. The receiver operator
characteristic (ROC) curves were used to test the accuracy
of the susceptibility results, with 72.8 and 79.9% accuracy
under the FR model and RF model, respectively.

In the study area, massive landslides were induced by the
Yangtze River, heavily skewing the landslide distribution toward
lower altitudes. The altitude range of the study area is
120–1,656 m, divided into six classes: 120–350, 350–500,
500–700, 700–900, 900–1,100, and 1,100–1,656 m (Table 3).
According to their scale, the water systems were divided into
three types: I) the main stem of the Yangtze River, II) secondary
tributaries of the Yangtze River, and III) seasonal streams. The
influence of the river on landslide development is related to the
type of river and the distance from the slope to the river. The
rivers factor was divided into five classes by distance to each water
system shown in Table 4.

TABLE 2 | Classification and frequency ratio of the causal factors used in landslide susceptibity.

Factor Class PLTL PDTD FR Factor Class PLTL PDTD FR

Altitude 1 0.44 0.15 2.98 Lithology 1 0.17 0.16 1.06
2 0.29 0.24 1.19 2 0.05 0.07 0.71
3 0.15 0.28 0.53 3 0.03 0.06 0.50
4 0.08 0.16 0.51 4 0.02 0.06 0.29
5 0.04 0.12 0.31 5 0.00 0.04 0.11
6 0.01 0.06 0.20 6 0.03 0.03 0.95

Slope <6 0.14 0.14 1.02 7 0.03 0.03 0.83
6–14 0.24 0.20 1.17 8 0.18 0.09 2.03
14–21 0.27 0.24 1.11 9 0.05 0.07 0.78
21–28 0.20 0.22 0.90 10 0.43 0.38 1.13
28–37 0.12 0.15 0.78 11 0.00 0.00 0.00
>37 0.04 0.05 0.82 12 0.00 0.00 0.00

Aspect F 0.07 0.06 1.30 Land use 1 0.13 0.08 1.69
N 0.13 0.13 0.99 2 0.00 0.00 3.83
NE 0.11 0.11 0.99 3 0.01 0.01 1.14
E 0.10 0.10 1.03 4 0.26 0.39 0.67
SE 0.11 0.12 0.93 5 0.25 0.22 1.17
S 0.10 0.12 0.87 6 0.16 0.05 3.63
SW 0.10 0.11 0.97 7 0.01 0.00 3.37
W 0.13 0.11 1.20 8 0.17 0.25 0.66
NE 0.14 0.15 0.91 Geological structure 1 0.27 0.16 1.66

Stream Power Index (SPI) <500 0.97 0.96 1.01 2 0.09 0.09 1.07
500–2,250 0.03 0.03 0.78 3 0.01 0.04 0.17
2,250–7,000 0.00 0.00 0.81 4 0.09 0.19 0.48

>7,000 0.00 0.00 0.69 5 0.13 0.11 1.18
Plan curvature <−0.01 0.37 0.38 0.96 6 0.41 0.41 1.00

−0.01–0.01 0.19 0.16 1.15 Rivers 1 0.39 0.24 1.62
>0.01 0.44 0.45 0.98 2 0.13 0.13 1.01

Profile curvature <−0.01 0.42 0.43 0.97 3 0.17 0.17 1.00
−0.01–0.01 0.14 0.12 1.24 4 0.17 0.16 1.03

>0.01 0.44 0.45 0.97 5 0.14 0.29 0.47
Bedding structure BS1 0.06 0.04 1.40 Roads 1 0.06 0.06 1.01

BS2 0.12 0.15 0.83 2 0.05 0.05 1.03
BS3 0.07 0.04 1.59 3 0.05 0.05 1.07
BS4 0.22 0.19 1.17 4 0.05 0.04 1.10
BS5 0.30 0.28 1.08 5 0.04 0.04 1.05
BS6 0.12 0.14 0.85 6 0.75 0.76 0.98
BS7 0.10 0.16 0.67

PLTL, percentage of landslide in total landslide; PDTD, percentage of domain in total domain.

TABLE 3 | Classification of altitudes.

Class 1 2 3 4 5 6

Altitude/m 120–350 350–500 500–700 700–900 900–1,100 1,100–1,656
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In the previous susceptibility evaluation, the Spearman
correlation coefficient between altitude and rivers was only
−0.14 (Table 5), indicating that overall the correlation
between these two factors was low. The altitude-class-1 zone
(less than 350 m) has the highest frequency ratio contribution
(Table 2), attributed to the rivers’ effect in the initial analysis.
The water level of the Yangtze River reservoir fluctuates between
145 and 175 m, affecting slopes mostly below 350 m, thus
exhibiting a tendency for landslides to be distributed at
different altitudes. After in-depth consideration of the causal
factors in the study area, it was found that river development is
highly related to topographic elevation, so there may be a
considerable spatial overlap between the altitude-class-1 zone
and rivers-class-1 zone.

Therefore, there are three possible issues: Is there a high
correlation between altitude-class-1 and rivers-class-1 zones;
Does it affect the accuracy of landslide susceptibility assessment;
and How can this influence be eliminated? Exploring and
answering the three issues are the main research objectives of
this study. The research idea includes the following steps:

- First, altitude-class-1 and rivers-class-1 were divided into
three zones: a, b, and c. As shown in Figure 2, “a” is the
common area for altitude-class-1 and rivers-class-1, and “b”
and “c” are separate areas for altitude-class-1 and rivers-
class-1, respectively. The frequency ratios of landslides in
zones a, b, and c were counted and compared with altitude-
class-1 and rivers-class-1 to reflect the actual contribution of
the two factors. This step can answer the question of whether
there is a high correlation between altitude-class-1 and
rivers-class-1 regions.

- The altitude and rivers factors were reclassified, and then the
susceptibility of Wanzhou County was re-evaluated. The
altitude was divided into seven classes, where classes-2 to
6 remained the same, and class-1 was split into class-1a and
class-1b. The rivers factor was divided into six classes, where
classes-2 to 5 were left as they were, and class-1 was split into
class-1a and class-1c. Altitude-class-1a and rivers-class-1a are,
spatially, the exact same area. Susceptibility was reassessed
using FR and RF models based on reclassified altitude and
rivers and the original ten other causal factors. This step can be
considered a preliminary stage to directly illustrate the impact
on the accuracy of the susceptibility evaluation while
providing quantitative data for analysis in a further step.

- Quantitative and pixel-by-pixel analysis of susceptibility
maps: The receiver operator characteristic (ROC) curve
was used to verify the accuracy of the susceptibility
results, and pixel-by-pixel for going through where the
susceptibility map changed after factor reclassification.

RESULTS

Figure 3 presents a visual inspection that clearly exemplifies the
distribution of landslides in altitude-class-1 and rivers-class-1
areas. The dark gray “a” zone represents the common area for
altitude-class-1 and rivers-class-1, while the blue “c” and orange
“b” are the separate areas for altitude-class-1 and rivers-class-1,
respectively. All landslides in the study area are superimposed on
the map in black rasters, showing the differential distribution of

TABLE 4 | Classification of rivers.

Class River types

I II III

1 0–450 m 0–300 m 0–150 m
2 450–750 m 300–500 m 150–250 m
3 750–1,200 m 500–800 m 250–400 m
4 1,200–1800 m 800–1,200 m 400–600 m
5 >1800 m >1,200 m >600 m

TABLE 5 | Spearman correlation coefficients of causal factors.

Factor Altitude Slope Aspect Plan Profile SPI Rivers Roads Lithology GS BS Land use

Altitude 1.00
Slope 0.20 1.00
Aspect 0.09 0.14 1.00
Plan 0.04 0.05 −0.05 1.00
Profile −0.05 −0.01 0.03 −0.32 1.00
SPI 0.02 0.06 0.07 −0.18 0.06 1.00
Rivers −0.14 −0.02 −0.01 0.00 0.00 −0.01 1.00
Roads −0.08 −0.04 −0.02 0.00 0.00 −0.01 0.03 1.00
Lithology −0.13 −0.13 −0.05 0.00 0.01 −0.02 0.00 0.04 1.00
GS 0.01 −0.09 0.00 0.00 0.00 0.00 0.04 0.04 0.26 1.00
BS −0.05 0.08 −0.12 0.00 0.01 −0.02 −0.01 0.01 −0.07 −0.06 1.00
Land use −0.01 0.01 0.00 0.00 0.00 −0.01 0.00 −0.02 −0.01 −0.01 0.01 1.00

FIGURE 2 | Reclassification of altitude-class-1 and rivers-class-1.
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landslides in areas a, b, and c. We can see at a glance that the
landslides in the gray area are less than those in the dark gray and
the blue areas. As a quantitative comparison, landslide frequency
ratio statistics were performed for each a, b, or c area (Table 6).
The data show that the frequency of landslide distribution in
areas a, b, and c varies greatly. The landslide frequency ratio in
the common area a is 2.72, the landslide frequency ratio in
altitude-class-1 rises from 2.98 to 3.49 after removing area a,
and the landslide frequency ratio in rivers-class-1 plummets from

1.41 to 0.46 after removing area a. It can be tentatively inferred
that the common area of altitude-class-1 and rivers-class-1 to
some extent influences the judgment of the actual contribution of
altitude and rivers factors to landslide development. That is, the
initially calculated landslide frequency ratios of altitude and rivers
are not entirely reliable.

“Altitude-class-1” was reclassified into “altitude-class-1a” and
“altitude-class-1b,” while “rivers-class-1” was divided into
“rivers-class-1a” and “rivers-class-1c.” Table 7 shows the
original classes and new classes, concluding the percentage of
domain in the total domain and frequency ratio contribution of
each class. At the same time, a Coxcomb chart (Figure 4) clearly
expressed all the information in Table 7. The arc of the sector
represents the PDTD of each class, and its radius stands for the
FR value. The red stripes represent the original class-1, and the
reclassified areas 1a and 1b (1c) are indicated in blue and green,

FIGURE 3 | Spatial distribution of altitude-class-1 and rivers-class-1.

TABLE 6 | Frequency ratios of altitude-class-1 and rivers-class-1.

Altitude-class-1 Rivers-class-1 a B c

Frequency ratio 2.98 1.41 2.72 3.49 0.46

TABLE 7 | Reclassification of the altitude and distance to rivers factors.

Factor Original class PDTD (%) FR New class PDTD (%) FR

Altitude 1 14.61 2.98 1a 9.68 2.72
1b 4.93 3.49

2 24.19 1.19 2 24.19 1.19
3 27.52 0.53 3 27.52 0.53
4 16.42 0.51 4 16.42 0.51
5 11.53 0.31 5 11.53 0.31
6 5.74 0.20 6 5.74 0.20

Rivers 1 22.96 1.41 1a 9.68 2.72
1c 13.27 0.46

2 12.26 1.01 2 12.26 1.01
3 15.84 1.00 3 15.84 1.00
4 16.69 1.03 4 16.69 1.03
5 32.26 0.47 5 32.26 0.47

PDTD, proportion of domain in the total domain.
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respectively, to reflect the contribution of each area to landslide
development by the length of the sector radius.

It is evident from Figure 4 that the landslide frequency
distribution in class-1 is not uniform, especially for the
“rivers-class-1” area: “Rivers-class-1a” far exceeds the average
contribution of “rivers-class-1.” In contrast, the true gift of
“rivers-class-1c” is minimal. It follows that a reclassification of
the area was absolutely necessary to better reflect the contribution
of causal factors to landslides. To verify the effects of reclassifying
“altitude-class-1” and “rivers-class-1,” the 12 causal factor system
of the previous susceptibility assessment in Table 2 was used in
the landslide susceptibility assessment in this test. Except for
altitude and rivers, the remaining ten causal factors continued the
previous classification.

The LSM of Wanzhou County was recalculated using the FR
model and RF model based on improved factors; then, the area
under the receiver operating characteristic (ROC) curve (AUC)
was applied to evaluate the accuracy of each result. The ROC
curve mainly reflects the change of the number of landslides in

each susceptibility interval from high to low. As shown in
Figure 5, after reclassification of altitude-class-1 and rivers-
class-1, the accuracy of LSM based on the FR model was
improved by 0.5% (72.8–73.3%), and the accuracy of LSM
based on the RF model was significantly improved by 5.1%
(79.9–85.0%).

The LSMwas divided into 10 zones with 10% spacing according
to the susceptibility value (i.e., the landslide probability of
occurrence), and pixel-by-pixel counted the number of landslide
pixels and all pixels in each region, respectively. It is evident that
the number of landslide points is directly proportional to the
susceptibility value (Figure 6A). For the two models, the
percentages of landslides in the range of the top 20% interval of
the occurrence probability were improved 8.1% (FR model,
18.10–26.2%) and 24.87% (RF model, 24.2–48.98%),
respectively. In contrast, pixels were primarily located in zones
with susceptibility value below 40% (Figure 6B).

The susceptibility value was divided into five zones by equal
interval: very low (0–20%), low (20–40%), moderate (40–60%),
high (60–80%), and very high (80–100%). The landslide statistics
of different susceptibility levels are shown in Table 8 and
Figure 7. The frequency ratio value for the very high
susceptibility areas varied considerably. The frequency ratio
value based on the FR model increased from 4.09 to 4.64, and
the value based on the RF model increased from 4.10 to 7.23.

The above results demonstrated that the accuracy of the very
high susceptibility zone was markedly enhanced after
reclassification of “altitude-class-1” and “rivers-class-1,”
especially for the RF model–based LSM.

DISCUSSION

The two LSMs based on the RF model are shown in Figure 8.
Although the improved LSM has a 5.9% higher AUC, it is not
easy to see the difference when comparing these two graphs
with the naked eye. A visual comparison of the two maps was
made, and their values were subtracted to define their
differences (Figure 9). Since the raster value of each
susceptibility map is between 0 and 1, the value of the

FIGURE 4 | Coxcomb chart of PDTD and FR. (A) Altitude; (B) rivers.

FIGURE 5 | Accuracy analysis of susceptibility assessment.
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comparison map could potentially range from − 1 to 1. A simple
visual inspection of Figure 9 reveals that there are apparent
differences between the two susceptibility maps. The value
range of Figure 9 is −0.9731–0.9482, with pure blue
representing −1, pure red representing 1, and a gradual

blue–yellow–red transition between −1 and 1. Most
importantly, the differences between the two LSMs are not
evenly distributed, and some spatial patterns of rivers can be
recognized in the comparison map.

Concerning the method proposed by Xiao et al. (2020) for
understanding and interpreting the different results of LSM,
the values of the comparison map were interrupted at ±0.5 and
divided into three classes, namely, “underestimation” (UN),
“approximation” (APR), and “overestimation” (OV). Table 9

FIGURE 6 | Distribution of points versus the landslide probability of occurrence. (A) Landslide points; (B) all pixels in the domain.

TABLE 8 | Accuracy statistics for each suscepbitity level.

Susceptibity level PLTL (%) PDTD (%) Frequency ratio value
(PLTL/PDTD)

FR Very low 6.70 24.00 0.28
Low 23.30 40.40 0.58
Moderate 23.20 19.20 1.21
High 20.70 10.00 2.07
Very high 26.20 6.40 4.09

FR (improved) Very low 5.70 19.80 0.29
Low 21.70 39.20 0.55
Moderate 26.40 25.30 1.04
High 28.20 11.80 2.39
Very high 18.10 3.90 4.64

RF Very low 9.70 37.40 0.26
Low 16.10 30.60 0.53
Moderate 22.20 18.10 1.23
High 27.80 8.00 3.48
Very high 24.20 5.90 4.10

RF (improved) Very low 0.78 26.66 0.03
Low 6.69 30.02 0.22
Moderate 16.89 23.19 0.73
High 26.66 13.36 2.00
Very high 48.98 6.77 7.23

PLTL, percentage of landslide in total landslide; PDTD, percentage of domain in total
domain.

FIGURE 7 | Landslide frequency ratio for each susceptibility level.
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shows the range of values and percentages for each
classification. 97.13% of the comparison map pixels are
located in the APR region, and only scattering pixels are
UN or OV.

To explore the critical class of the rivers factor that led to
differences between susceptibility maps, a simple count of the UN
and OV points for each class of rivers was performed (Table 10).
In the statistics of Table 10, rivers-class-1a only accounts for

FIGURE 8 | Landslide susceptibility map. (A) RF model (before); (B) RF model (after).

FIGURE 9 | Comparison map of original and improved LSM based on the RF model.

TABLE 9 | Classification of comparison map.

Comparison Value Classification Percentage (%)

“RF”–“RF (improved)” −0.9731–0.9482 Underestimation −0.9731–−0.5 1.00
Approximation −0.5–0.5 97.13
Overestimation 0.5–0.9482 1.88
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9.68% of the total area, but it contains 26.53% of UN pixels.
Meanwhile, rivers-class-1c accounts for only 13.27% of the total
area, but it has 38.16% OV pixels.

In the original RF model–based susceptibility assessment, rivers-
class-1 was not differentiated into area 1a and area 1c. This statistical
result indicates that the susceptibility value in rivers-class-1a is
underestimated, and rivers-class-1c is overestimated in the
original LSM. The deviation of the susceptibility results is exactly

the same as that in the factor contribution analysis (Table 7;
Figure 4B). The landslide contribution in the rivers-class-1a area
was underestimated, where the calculated susceptibility values were
underestimated. For rivers-class-1c, both landslide contribution and
susceptibility value were overestimated. After reclassifying the rivers
factor, the RF model improved the LSM accuracy in the rivers-class-
1 area, thus improving the accuracy in the high susceptibility area
and the whole area.

TABLE 10 | Simple statistical properties of UN/APR/OV pixel distribution across each class of the rivers factor.

Class PDTD (%) Percentage of UN
pixels in each

class (%)

Percentage of APR
pixels in each

class (%)

Percentage of UN
pixels in each

class (%)

1a 9.68 26.53 9.42 15.02
1c 13.27 4.86 12.90 38.16
2 12.26 10.97 12.40 6.51
3 15.84 19.78 16.02 4.47
4 16.69 22.40 16.83 6.06
5 32.26 15.36 32.38 30.08

PDTD, percentage of domain in the total domain.

FIGURE 10 | Spatial location of underestimations and overestimations in relation to rivers-class-1. (A) Whole study area; (B) typical region; (C) typical region.
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Rivers-classes-1a and 1c are visually inspected and explicitly
represented in Figure 10 concerning the UN or OV pixels. In
Figure 10A, the rivers-class-1a area is marked in yellow, the rivers-
class-1c area is indicated in blue, and the other classes are uniformly
noted in light gray. UN andOVpixels are displayed in black and red,
respectively, scattered sporadically throughout the study area.
Zooming in on the two regions of Figures 10B,C, one can
clearly see that the red OV pixels tend to be distributed on class-
1c, again in agreement with the statistical properties of Table 10.

Previous studies of landslide susceptibility have included
correlation analysis of the causal factors, but only for each
causal factor as a whole. The study in this work demonstrated
the existence of a high local correlation between classifications of
altitude and rivers. In other words, the high local correlation of
factor classifications cannot be detected by the overall correlation
analysis. In this study, the conjecture about altitude and rivers
comes entirely from the in-depth knowledge of the topography and
river system in the study area. On the basis of this conjecture, a
local correlation analysis and a quantitative study of its effect on the
accuracy of LSM were performed. The results show that the high
local correlation of altitude and rivers factors does exist and truly
affects the accuracy of LSM.Meanwhile, a simple reclassification of
factors can eliminate this effect and improve the accuracy of LSM.

CONCLUSION

This study shows that the local correlation of causal factors could
exist and reduce the accuracy of susceptibility assessment. A simple
method of factor reclassification was proposed to improve the
accuracy of LSM effectively. Taking Wanzhou County as the test
site, where landslide susceptibility assessment was based on 12 causal
factors, the FR model and RF model were previously completed. In
this work, we conducted a local spatial correlation analysis of the
“altitude” and “rivers” factors and found a large spatial overlap
between altitude-class-1 and rivers-class-1. “Altitude-class-1” was
reclassified into “altitude-class-1a” and “altitude-class-1b,” while
“rivers-class-1” was divided into “rivers-class-1a” and “rivers-
class-1c,” where “altitude-class-1a” was spatially identical to the
“rivers-class-1a” area. The FR model and RF model were used to
reevaluate the susceptibility. The area under the receiver operating
characteristic curve (AUC) was applied to evaluate the accuracy of
each LSM. The results demonstrated that the accuracy of LSMs was
markedly enhanced after reclassification of “altitude-class-1” and
“rivers-class-1,” especially for the RFmodel–based LSM. A pixel-by-
pixel comparison of the two LSMs based on the RF model was
performed and visually inspected with rivers-class-1. In previous
susceptibility mapping, the calculated susceptibility value in the
rivers-class-1a area tends to be underestimated, and the opposite

is seen for the rivers-class-1c area. This research shed new light on
the local correlation of causal factors arising from a particular
geomorphology and their impact on susceptibility.

Finally, the following points can be summarized for the cases
in this study.

- The overall correlation between the altitude and rivers factor
is low, but there is a considerable spatial overlap between
altitude-class-1 and rivers-class-1. The presence of this
common overlap area has led to the underestimation and
overestimation of the contribution of altitude-class-1 and
rivers-class-1 to landslides, respectively, in previous
susceptibility assessments.

- The accuracy of the LSMs was improved by 0.5% (FR model)
and 5.1% (RF model) after reclassification of “altitude-class-1”
and “rivers-class-1,” respectively, especially for the accuracy of
the very high susceptibility zone of the RF model–based LSM.

- Since the FRmodel does not consider the weight coefficients of
the causal factors, the FR model–based LSM is not sensitive
enough to the reclassification of the altitude and rivers factors.
The RF model performs better not only in modeling the
relationship between causal factors and landslides but also
in distinguishing the differences of each factor class.
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