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The Xifeng geothermal field is located in the Yangtze Craton, SW China, and is one of the
most representative low-temperature geothermal fields in China. Widespread thermal
anomalies, hot springs, and geothermal wells have been reported by previous studies.
However, the nature and forming mechanisms of the field remain poorly understood.
Element geochemical (ions, rare earth elements) and stable isotopic (D, O) composition of
hot springs, geothermal fluids, rivers, and cold springs from different locations of the Xifeng
geothermal field were analyzed in this study. The ions studies revealed that most samples
featured the Ca-Mg-HCO3 type, except Xifeng hot springs, and which were characterized
by the Ca-Mg-HCO3-SO4 type. Based on quartz geothermometers, the estimated
reservoir temperature was 77°C. The results of stable isotopes (D, O) manifest that the
Xifeng geothermal system was recharged by meteoric water at an elevation of 1,583m
from SW to NE. The research of rare earth elements (REE) revealed that their accumulation
characteristics and obvious positive Eu anomaly were inherited from host feldspar-bearing
reservoir dolomites through water-rock interactions. Combined with these observations,
geological setting, and previous studies, it was concluded that the formation of the Xifeng
geothermal field resulted from recharge, deep circulation, and secondary rising of the
meteoric water along the faults. First, meteoric water infiltrated to depth through faults and
crack zones. Second, the deep-infiltrated water was heated by radioactive heat, deep
heat, and tectonic frictional heat. Finally, as the warmed-up waters underwent
considerable deep circulation in the reservoir, it rose again along the main faults, and
mixed with groundwater near the surface. Taken together, we suggest that the Xifeng
geothermal system should be assigned as a faults-controlling, and deeply circulating
meteoric water of low-temperature category.
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INTRODUCTION

Geothermal resources are well developed in China and contribute
significantly to the global supply of total resources (7.9%; Wang
G. L. et al., 2017), while they are mainly produced as widespread
medium-low temperature types (Wang G. L. et al., 2017; Li and
Wang 2015). The occurrence of high-temperature types is limited
and mainly formed in South China, e.g., southern Tibet, western
Sichuan and Yunnan, as well as the south-east coastal area (Duo,
2003; Guo et al., 2007; Zhang et al., 2016; Guo et al., 2017a, b; Tian
et al., 2018; Cheng et al., 2021; Zheng et al., 2021). These
distribution characteristics mean that research on geothermal
resources in South China mainly focuses on the high-temperature
type, whereas studies on the medium-low type are limited.

South China has a significant geothermal potential and hosts
many world-famous geothermal fields, including high-temperature
Yangbajing, Tengchong, and Kangding, as well as low-temperature
Xifeng in Guizhou Province (Guo and Wang, 2012; Guo et al., 2014;
Li et al., 2018;Wang et al., 2018; Yang et al., 2018;Wang et al., 2019b;
Li J. et al., 2021). There are lots of hot springs, hydrothermal
manifestations, and geothermal wells located in the Xifeng
geothermal field, indicating great potential for exploration, and
utilized prospects (Yang et al., 2018; Figure 1B). Although
systematic exploration and utilization of Xifeng began in the
1950s, the scientific research on the overall field is poor, and
attributed to the single application mode of geothermal resources.
In recent years, with the increased need for renewable energy, a new
round of exploration work and scientific study has been conducted to

FIGURE 1 | (A) Tectonic framework of China and the location of the study area (modified fromChen et al., 2014). (B). Geological map of the Xifeng geothermal field,
showing major tectonic units, faults, and hot springs (modified from Song et al., 2014). (C) The stratigraphic column of the Xifeng geothermal field area (modified from
Long et al., 2017; Li et al., 2019).
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evaluate the potential of hydrothermal resources. Previous studies
have focused on single hot springs or geothermal wells mainly based
on hydrogeochemistry and geology (Li and Shen, 2014; Song et al.,
2014; Cai et al., 2018). However, comprehensive comparative
research on respective hot springs, geothermal wells, and related
rivers from the whole geothermal field have not been conducted,
meaning that the signature, evolution, and forming mechanisms of
the Xifeng geothermal field remain obscure.

In this study, representative hot springs, geothermal fluids, cold
springs, and related river waters were sampled for detailed element
geochemistry (ions, rare earth elements) and stable isotopes (D, O)
studies. This new comprehensive dataset allows us to confirm the

feature, evolution, and genesis of the geothermal fluids, which will
provide a favorable understanding of the formingmechanisms for the
Xifeng geothermal field, and similar geothermal fields in South China
and worldwide.

GEOLOGICAL TECTONIC AND
HYDROGEOLOGICAL SETTINGS

Geological Setting
The Xifeng geothermal field is situated in the central Guizhou
Province, southwestern China (Figure 1A). The geological

FIGURE 2 | Geological cross-section along section line A-A′ on the map in Figure 1B of the Xifeng geothermal field (modified from Wang H. S. et al., 2017; Cai
et al., 2018).

TABLE 1 | Geothermometry equations (in°C) for the cation and silica geothermometers used in this study.

Geothermometer Reference Equations

Na-K Fournier, (1979) T � 1,217/[log(Na/K)+1.483]−273.15
Na-K Truesdell, (1976) T � 856/[log(Na/K)+0.857]−273.15
Na-K Giggenbach and Goguel, (1988) T � 1,390/[log(Na/K)+1.75]−273.15
Na-K Tonani, (1980) T � 883/[log(Na/K)+0.78]−273.15
Na-K Nieva and Nieva (1987) T � 1,178/[log(Na/K)+1.47]−273.15
Na-K Arnórsson, (1983) T � 933/[log(Na/K)+0.993]−273.15
Na-K Arnórsson, (1983) T � 1,319/[log(Na/K)+1.699]−273.15
Na-K Michard et al. (1979) T � 908/[log(Na/K)+0.7]−273.15
K-Mg Giggenbach et al. (1983) T � 4,410/[14−log(K2/Mg)]−273.15
Na-K-Ca Fournier and Truesdell, (1973) T � 1,647/{log(Na/K)+b[log(Ca1/2/Na)+2.06]+2.47}−273.15,

where b � 4/3, if T < 100°C; b � 1/3, if T > 100°C
Quartz, no steam loss (conductive) Fournier, (1977) T � [1,309/(5.19−logSiO2)]−273.15
Quartz, maximum steam loss at 100°C (adiabatic) Fournier, (1977) T � [1,522/(5.75−logSiO2)]−273.15
Chalcedony (no loss of steam) Fournier, (1992) T � [1,032/(4.69−logSiO2)]−273.15
Chalcedony (maximum steam loss) Fournier, (1977) T � [1,264/(5.31−logSiO2]−273.15
α-Cristobalite Fournier, (1977) T � [1,000/(4.78−logSiO2)]−273.15
β-Cristobalite Fournier, (1977) T � [781/(451−logSiO2)]−273.15
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TABLE 2 | Measured parameters, major ion chemistry (mg/L), SiO2 (mg/L), Rare Earth Element (μg/L), and δD-δ18O composition of water samples from the Xifeng geothermal field.

Sample
NO.

BY-1 BY-2 BD-1 BD-2 MR-1 MR-2 ML-1 ML-2 XQ-1 XQ-2 XF-1 XF-2 XF-3 XF-4 NS-1 NS-2

PH 8.05 7.98 8.06 8.12 8.01 7.92 7.83 7.96 8.19 8.15 8.05 8 8.08 8.05 8.06 8.19
δ18OV-SMOW(‰) −7.5 −8.1 −8.2 −8.1 −7.8 −8.3 −7.4 −7 −6.5 −7 −8 −8.5 −8.3 −7.9 −9.2 −8.7
δDV-SMOW(‰) −51.1 −53.7 −54.1 −55.6 −56.2 −57.4 −48.3 −47.9 −45.9 −47.7 −56.3 −59.1 −58.8 −58 −65.6 −65.6
T(°C) 12 12 13 13 43 43 14 14 14 14 56 56 56 56 48 48
K+ 1.2 1.13 2.23 2.17 1.04 1.08 7.96 7.64 2.2 2.16 3.51 3.41 3.56 3.7 3.08 2.98
Na+ 1.86 1.81 4.66 4.71 4.27 4.33 16 15.9 1.67 1.68 11.7 11.8 11.8 12.3 2.29 2.12
Ca2+ 34.7 35.1 47.2 49 45.1 44.6 62.1 61.2 57.2 57.3 52.7 52.5 52.8 54.3 36.9 36.9
Mg2+ 14.3 14.3 20.2 20.7 26.2 26 25 24.9 19.1 19.3 21.1 20.9 21.1 21.6 22.1 22.1
HCO3

- 140 141 184 184 245 245 235 235 232 234 169 172 171 170 208 209
SO4

2- 20.5 20.8 39.6 40.4 17.6 16.6 41.5 40.1 16.5 16.6 88.4 91.5 88.3 91.4 10.7 10.4
Cl- 1.35 1.33 7.02 7.08 0.67 0.654 18.4 18 3.16 3.23 3.07 3.03 3.04 3.11 0.725 0.725
SiO2 4.68 4.61 6.54 6.58 20.43 20.46 5.89 5.93 6.34 6.23 39.71 39.92 39.85 38.82 15.39 15.79
La 0.01 0.005 0.008 0.005 0.006 0.006 0.013 0.01 0.022 0.018 0.082 0.006 <0.002 <0.002 0.002 0.003
Ce 0.012 0.011 0.013 0.013 0.002 <0.002 0.022 0.024 0.043 0.048 0.097 0.006 0.002 0.005 0.003 0.004
Pr 0.002 0.003 <0.002 0.002 <0.002 <0.002 0.002 0.002 0.006 0.005 <0.002 <0.002 <0.002 <0.002 <0.002 0.002
Nd 0.008 0.003 0.158 0.006 0.011 0.003 0.016 0.008 0.024 0.049 0.002 0.005 0.002 0.004 0.002 0.006
Sm <0.002 0.003 0.002 0.002 0.004 0.007 0.002 0.004 0.008 0.004 0.002 0.002 <0.002 <0.002 <0.002 0.002
Eu 0.007 0.004 0.004 0.012 0.027 0.03 0.016 0.006 0.005 0.002 <0.002 0.01 0.005 0.016 0.012 0.015
Gd 0.003 0.006 <0.002 0.004 0.002 0.005 0.011 0.013 0.005 0.005 0.003 0.005 <0.002 0.002 0.006 0.003
Tb <0.002 <0.002 <0.002 <0.002 <0.002 0.007 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
Dy 0.003 <0.002 <0.002 0.003 <0.002 <0.002 0.004 0.002 0.007 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004
Y 0.022 0.015 0.006 0.011 0.006 0.006 0.018 0.012 0.024 0.031 0.01 0.012 0.008 0.008 0.005 0.006
Ho <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002
Er 0.002 0.005 <0.002 0.002 <0.002 0.002 0.005 <0.002 0.003 <0.002 <0.002 0.002 <0.002 <0.002 <0.002 0.002
Tm 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
Yb 0.004 <0.002 0.007 0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002
Lu 0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
Total REE <0.083 <0.067 <0.214 <0.07 <0.074 <0.08 <0.119 <0.093 <0.157 <0.176 <0.214 <0.062 <0.039 <0.055 <0.048 <0.057
δEu >13.457 4.440 >9.418 19.978 44.950 23.878 16.063 3.918 3.723 2.106 <3.845 14.891 >11.772 >37.671 >16.312 28.836
δCe 0.619 0.655 >0.750 0.949 >0.133 0.133 0.995 1.238 0.864 1.167 >1.748 >0.400 0.231 0.577 >0.346 0.377
Sample type River River River River Hot

spring
Hot

spring
River River Cold

spring
Cold
spring

Hot spring Hot spring Hot spring Hot spring Well Well

Water type Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Ca-Mg-
HCO3-
SO4

Ca-Mg-
HCO3-
SO4

Ca-Mg-
HCO3-SO4

Ca-Mg-
HCO3-SO4

Ca-Mg-
HCO3

Ca-Mg-
HCO3

Notes: δEu � EuN/sqrt(SmN*GdN); δCe � CeN/sqrt(LaN*PrN); N�Post-Archean Shale normalized; LREE � La + Ce + Pr + Nd + Sm + Eu; HREE � Gd + Tb + Dy + Ho + Er + Tm + Yb + Lu.
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location is in the Guiyang Complex Tectonic Deformation Zone
related to the central Guizhou uplift within the Yangtze Craton in
South China (Figure 1A; Ling et al., 2015, 2017; Long et al., 2017;
Li et al., 2019, Li Y. Y. et al., 2021). The basement is made of
Meso-to Neoproterozoic metamorphosed marine sedimentary
rocks. The cover consists of Neoproterozoic (Sinian) to
Triassic marine sedimentary rocks and Jurassic terrestrial
sedimentary rocks, which underwent multiple Phanerozoic
tectono-thermal activities (Li et al., 2019; Li J. et al., 2021).

The stratigraphic succession of the Xifeng geothermal field
consists of, from bottom to top, the Sinian Qingshuijiang,
Nantuo, Doushantuo, and Dengying formations, lower
Cambrian Niutitang, Mingxinsi, Jindingshan, Qingxudong,
Gaotai, and Shilengshui formations and Loushanguan Group,
Permian Liangshan Qixia, Maokou, Wujiaping, and Changxing
formations, and Triassic Yelang and Maocaopu formations
(Figure 1C; Ling et al., 2015; Long et al., 2017; Li et al., 2019).
The Dengying, Qingxudong, Gaotai, and Shilengshui formations
and Loushanguan Group are made of carbonates, dominantly
dolomite. The Qingshuijiang and Nantuo formations consist of
sandstone intercalated with limestone and tillite, respectively. The
Doushantuo Formation is made of claystone. The Niutitang

Formation is comprised of shale, claystone, siliceous
phosphorite, and siltstone, and the Mingxinsi Formation
comprises sandstone, limestone, claystone, and shale. The
Jindingshan Formation consists of siltstone, sandstone, and
limestone. The Permian rocks consist of shale and mudstone
(Liangshan Formation), limestone (Qixia and Changxing
Formations), dolomite and limestone (Maokou Formation),
and claystone, sandstone, and limestone (Wujiaping
Formation). The Triassic rocks are made of limestone, shale,
and mudstone (Yelang Formation), and carbonate, i.e., limestone
and dolomite (Maocaopu Formation) (Ling et al., 2015; Ji, 2015;
Long et al., 2018, 2019).

The central Guizhou region experienced a series of tectonic
events from Sinian to late Cambrian, such as the Yunan
Movement (forming the central Guizhou uplift; Mei et al.,
2005; Ling et al., 2015; Long et al., 2017), Duyun and Guangxi
Movements (uplifting the central Guizhou; Yu and Wang, 1995;
Long et al., 2018), and Dongwu Movement as well as a late
Permian Emeishan mantle-plume eruption event (Zhou et al.,
2002; He et al., 2005; Jian et al., 2009). These tectonic activities
resulted in widespread folding and faulting in the study area,
especially the followed Indosinian orogeny, Yanshanian, and

FIGURE 3 | Piper diagram for all water sampled from the Xifeng geothermal field.
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Himalayan movements (Huang, 1945; Wang and Mo, 1995;
Carter et al., 2001; Chen, 2005; Reid et al., 2007; Li J. et al.,
2021), which controlled the distribution of geothermal resources.

Tectonic Setting
Faults are well developed in the study area due to multi-stage
tectonic activities, such as the Emeishan mantle-plume eruption,
Yanshanian orogeny, and Himalayan crust uplift movement
(Figure 1B). These faults are mainly thin-skinned with high
hydraulic conductivities and resulted in greater exploitation
potential relative to other geothermal fields in China. One of
the most important faults is the compresso-shear strike-slip
Baimadong fault, which is the main conduit and connects the
deep heat source (He et al., 2014; Li and Shen, 2014). The fault is
around 50 km long, ENE-trending and dipping to SE at angles of
75° towards 90°, and assigned to a regional large-scale deep fault
(Figure 1B; Zhang et al., 2017; Li et al., 2019, Li J. et al., 2021). In
addition, secondary Neoid active faults such as the Shaba,
Chaoyang, and Shitoutian faults are developed within the
tectonic system and act as heat transporting channels
(Figure 1B; Song et al., 2014). Among them, the Shaba fault is
NE-trending and dipping to SE at angle of 70°. The Chaoyang
fault is parallel to the Shaba fault with a length of ∼20 km, NE-
trending and dipping to SE at angles of 50° towards 70°. The
Shitoutian fault with a NW orientation dips to NE at angles of 75°

(Ji, 2015). The fault kinematics and orientations control the
distribution of geothermal resources in the study region.

Hydrogeological Setting
The Xifeng geothermal field covers an area of 102.7 km2 (Luo,
2020). Approximately 250 exploration and production
geothermal wells have been drilled in this area since the
1950s, and the deepest depth is 2,500 m (He et al., 2014;
Yang et al., 2018). Moreover, there are numerous hot springs
within this area, including the famous Xifeng hot spring. The
measured temperature ranges from 39 to 42°C in the
Baimadong area to 53–56°C in the Xifeng area (Luo, 2020).
The geothermal gradient of the study area is 2.5–3.0°C/hm
with the heat flow rate varying from 50 to 75 mW/m2 (Song
et al., 2014; Wang et al., 2019a). The Dengying Formation is
the main reservoir and the upper Jindingshan, Mingxinsi, and
Niutitang formations form the cap of the geothermal system
(Figure 2; He et al., 2014; Li and Shen, 2014; Song et al., 2014;
Cai et al., 2018).

SAMPLING AND STUDY METHODS

Water Sample and Analyses
Fieldwork was carried out in the Xifeng area for collecting samples
and obtaining relevant field data in April 2021. A total of 16 water
samples (six hot spring samples, two geothermal well samples, six
river samples, and two cold spring samples) at Xifeng were
collected for major ions, REE, and D-O isotope analyses.
Sample locations are shown in Figure 1B.

FIGURE 4 | Semi-logarithmic Schoeller diagram of all water from the Xifeng geothermal field.
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Time sensitive parameters were tested on site using a portable
water quality analyzer. Samples were stored in new 500 ml
polyethylene bottles that were rinsed with deionized water

twice before sampling. All mentioned hydrochemical analyses
of the water samples were performed in the Laboratory of Beijing
Research Institute of UraniumGeology. Samples used for analysis

FIGURE 5 | Ternary plot of Cl-SO4-HCO3 for samples of the Xifeng geothermal field (after Giggenbach, 1991).

FIGURE 6 | A 10 Mg/(10 Mg + Ca) vs 10 K/(10 K + Na) plot of thermal and cold springs of the Xifeng geothermal field, using a Na/K-Mg-Ca diagram (after
Giggenbach and Glover, 1992). Concentrations are in mg/L.
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of cations were acidified after collection through adding Suprapur
HNO3 to bring the pH to below 2. Analysis of major anions and
cations was conducted by using Dionex ICS 1100 ion
chromatography through Dionex ionpac AS-19HC and CS12A
(4 mm × 250 mm) columns, respectively. The analysis of rare
earth elements in water samples was documented using a Thermo
Scientific ELEMENT XR inductively coupled plasma mass
spectrometer (ICP-MS). The instrument was externally
calibrated using a multielement standard solution before ICP-
MS analysis. The analytical precision was better than 10% for
duplicate analysis of the samples. The composition of deuterium
(D) and oxygen (18O) isotopes of collected water samples was
analyzed by a MAT 253 mass spectrometer in a continuous flow
mode using a Gas-bench II preparation and introduction system.
Isotopic data are expressed in the delta (δ) notation as the per mil
(‰) deviation relative to the Standard Mean Ocean Water
(SMOW); the analytic precisions (1σ) are ±1.0 and ±0.1‰ for
δD and δ18O, respectively.

Geothermometry
Chemical geothermometers are helpful to estimate the reservoir
equilibrium temperature of the geothermal system by using the
distribution and relative contents of various chemical indicators
(i.e., dissolved silica, cation, gas, and isotopes; Das et al., 2021;

Saibi et al., 2021). Among them, temperature-dependent
solubility (silica) and ion-exchange reactions (i.e., Na-K, Na-
K-Ca) are the most applied (Das et al., 2021).

Various geothermometers can obtain different estimated
reservoir temperatures as each geothermometer documents the
last equilibrium of a specific chemical element and is directly
affected by processes of boiling, dilution, and precipitation.
Cation geothermometers (Na-K, K-Mg, and Na-K-Ca) and
silica geothermometers (quartz no steam loss, quartz
maximum steam loss, chalcedony no steam loss, chalcedony
maximum steam loss, α-cristobalite, and β-cristobalite) applied
in this study are shown in Table 1.

RESULTS

Ions Characteristics
The physico-chemical compositions of samples in this study are
shown in Table 2. All samples showed alkaline pH values. In
almost all the samples, the anions were dominated by HCO3

− and
the order of abundance was: HCO3

- > SO4
2- > Cl−. Among the

cations, the main ion was Ca2+, and the following order of
abundance was Ca2+ > Mg2+ > Na+ > K+. As shown in
the Piper (1944) diagram (Figure 3), the waters were mostly

FIGURE 7 | The distribution of ionic ratios in water samples of the Xifeng geothermal field, (A) HCO3
- vs Ca2+ + Mg2+; (B) Cl− vs Na+; (C) HCO3

- + SO4
2- vs Ca2+ +

Mg2+; and (D) SO4
2- vs Ca2+. BD represents samples labeled as BD-1 and BD-2; BY represents samples labeled as BY-1 to BY-4, ML represents samples labeled as

ML-1 andML-2; MR represents samples labeled asMR-1 andMR-2; NS represents samples labeled as NS-1 and NS-2; XF represents samples labeled as XF-1 to XF-4;
and XQ represents samples labeled as XQ-1 and XQ-2.
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the Ca-Mg-HCO3 type except the Xifeng hot spring water (Ca-
Mg-HCO3-SO4). Waters had a similar varied pattern for
concentrations of the cations and anions, except the high SO4

contents (88.3–91.5 mg/L, avg. � 89.9 mg/L) in the Xifeng hot
spring as illustrated in the Schoeller (1995) semi-logarithmic
diagram (Figure 4). The ternary plot of Cl-SO4-HCO3

(Giggenbach, 1991) was conducted to evaluate the type of
water mixed in thermal or non-thermal fluids, notably the
peripheral waters involved are shown in Figure 5. The
groundwater reacted with host rocks though the
unequilibrated state (Figure 6). The intercorrelation of ions
during the process of the water-rock reaction is shown in
Figure 7.

Rare Earth Elements
The REE signatures of geothermal fluids can be used to assess the
influences of water-rock interaction. REE composition of
sampled waters were analyzed in this study, and the results
are shown in Table 2. Four types of water appeared to have
similar PAAS-normalized REE patterns, which were featured by
heavy rare earth elements (HREE) enrichment compared to light
rare earth elements (LREE), and positive Eu anomalies
(Figure 8). The total rare earth elements (REE) contents in
the geothermal well fluids (∼0.048 to ∼ 0.057 μg/L), hot spring
waters (∼0.039–∼0.214 μg/L), river waters (∼0.067 to ∼0.214 μg/
L), and cold spring waters (∼0.157 to 0.176 μg/L) were relatively
low. The δCe values were 0.346–0.377, 0.133–0.577, 0.619–0.238,
and 0.864–1.167, and δEu values were 16.312–28.836,
3.845–44.950, 3.918–19.978, and 2.106–3.723 for waters of the
geothermal well, hot spring, river, and cold spring, respectively.

Hydrogen and Oxygen Isotope
Compositions
Hydrogen and oxygen isotopic compositions of sampled waters
in this study are shown in Table 2. The measured δDv-SMOW

values ranged from −65.6 to −65.6‰ (avg. � −65.6‰, n � 2),
−59.1 to −56.2‰ (avg. � −57.6‰, n � 6), −55.6 to −47.9‰ (avg. �
−51.8‰, n � 6), and −47.7 to −45.9‰ (avg. � −46.8‰, n � 2) for
the geothermal well, hot springs, river, and cold spring waters,
respectively. The measured δ 18Ov-SMOW values were −9.2 to −8.7
(avg. � −8.95‰, n � 2), −8.5 to −7.8‰ (avg. � −8.13‰, n � 6),
−8.2 to −7‰ (avg. � −7.71‰, n � 6), and −7 to −6.5‰ (avg. �
−6.75‰, n � 2) for the geothermal well, hot spring, river, and cold
spring waters, respectively.

DISCUSSION

Source of Major Ions in the Geothermal
Waters
Since most sampled waters were assigned to the Ca-Mg-HCO3

type (Figure 3), this bicarbonate and Ca-Mg dominated feature
can be attributed to the interaction with reservoir rocks, which are
mainly Sinian dolomites. Ca2+, Mg2+, and HCO3

− were sourced
from the dissolution of dolomites following the equation of

CaMg(CO3)2(dolomite) + 2H2CO3 � Ca2+ +Mg2+ + 4HCO3
−

(1)

As illustrated in Figure 6, the water-rock interaction is a
dominant process in thermal and cold springs of the Xifeng

FIGURE 8 | Post-Archean Australian Average Shale (PAAS) REE diagrams for water samples from the Xifeng geothermal field. For the values shown as ranges
(<0.002), the maximum values (0.002) are used for plotting.
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geothermal field, although water is not equalized with the host
reservoir rocks. Water-rock reactions can be further evidenced by
the δ18O results of geothermal waters, which deviate 2‰ of units
from LMWL (Figure 11; Taylor, 1977). Additionally, most REE
concentrations of sampled waters were above the detection limits
(Table 2), indicating that REE in the samples were not derived
from meteoric waters (Lewis et al., 1994). The positive Eu
anomaly (triggered by the interaction between water and
feldspar-bearing rocks or the physicochemical conditions;
Sverjensky, 1984; Şener et al., 2017) supports the opinion that
REE in the samples were inherited from feldspar-bearing
dolomites through the water-rock interaction since the
temperatures of geothermal fluids were much lower than
200°C (Figure 8; Sverjensky, 1984).

The characteristics of major ions and their intercorrelation can
be used to deduce the geochemical processes caused by the water-
rock reaction that the groundwater encounters along its flow path
(Adams et al., 2001). According to Eq. 1, the dissolution of

dolomite would produce a (Ca2+ +Mg2+)/HCO3
- molar ratio of 1:

2 (Han et al., 2013; Belkhiri and Narany, 2015). However, the
ratios of (Ca2+ + Mg2+)/HCO3

− were lower than 0.5 (Figure 7A),
indicating that other sources of HCO3

- were involved in the
geothermal fluids (e.g., silicate weathering), whereas the deficit in
contents of Ca2+ and Mg2+ should be influenced by other
hydrochemical processes (e.g., ion-exchange reaction), rather
than the sole dissolution of dolomite. The affection of silicate
weathering can also be inferred from the high values of Ca2+/
Mg2+ (>1) in this study (Katz et al., 1997). Moreover, the Na+/Cl−

molar ratios of the thermal waters were much higher than 1,
further confirming the fact that the excess Na+ was sourced from
silicate weathering (Figure 7B; Bob et al., 2015). The plots for
most samples were well above the 1:1 line of (HCO3

− + SO4
2−)/

(Ca2+ + Mg2+) (Figure 7C), implying the occurrence of ion
exchange. It is clear that the contents of Ca2+ and SO4

2− in
natural water commonly depended on the dissolution of gypsum
and precipitated processes, as shown in the equation of CaSO4

FIGURE 9 | Ternary Na-K-Mg (mg/L) diagram for water samples from the Xifeng geothermal field.
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+ 2H2O � Ca2+ + SO4
2− + H2O (Das et al., 2021). However, with

influence of silicate weathering, the ratio of Ca2+ versus SO4
2−was

high than 1, except samples collected from the Xifeng hot spring
(Ca2+/SO4

2− < 1; Figure 7D). The high SO4
2− in the Xifeng hot

spring may be due to the dissolution of other sulphate minerals
during the deeper and long-duration circulation from high-
elevation SW towards low-elevation NE in the study area
(Figure 4; Song et al., 2014).

Geothermal Reservoir Temperature
The Giggenbach Na-K-Mg ternary diagram is used for
categorizing waters as full equilibrium, partial equilibrium,
or immaturity compared with reservoir rocks (Giggenbach,
1991; Giggenbach and Goguel, 1988). As shown in Figure 9,
all the sampled waters were plotted in the field of immature
waters, indicating none of them were in full or partial
equilibrium with the host rocks or may have mixed with
shallow groundwater. It is established that only the waters
with features that were fully or partially equilibrated with the
host rocks can be used to obtain reliable reservoir
temperatures; immature waters produce less reliable results
which are usually not regarded as the real reservoir
temperatures. Hence, cation geothermometers were not
appropriate for the sampled waters in this study. This can
be further evidenced by geo-thermometry results obtained
through different Na-K geothermometers, which showed
higher estimated reservoir temperatures than that of the
Na-K-Ca and K-Mg geothermometers (Table 3). The
inconsistent results of geothermometers containing Ca and/
or Mg with that of Na-K are attributed to the mix of shallow
groundwaters and/or surface waters (Figure 5; García-Soto
et al., 2016). This mix made the reliability of silica-based geo-
thermometry stronger than cation geothermometers
(Pandarinath, 2011; Pandarinath and Domínguez-
Domínguez, 2015; Saibi et al., 2021). The reliability of
silica-based geo-thermometry can be further supported by
Figure 10, which shows that the thermal and cold springs of
the Xifeng geothermal field were near to the equilibrated curve
of chalcedony + quartz (Giggenbach, 1991). Given that the
temperatures calculated by chalcedony and cristobalite
geothermometers were much lower than the real
temperatures of the hot spring and wellhead, reservoir
temperatures generated though the quartz (conductive and
adiabatic) geothermometers were the most reliable (García-
López et al., 2014). The quartz (conductive and adiabatic)
geothermometers gave the average estimated reservoir
temperature of 77°C. The depth of the geothermal reservoir
is around 2.57 km in the Xifeng geothermal field, assuming a
temperature gradient of 3°C/100 m (Song et al., 2014).

Source and Recharge of the Geothermal
Fluid
Oxygen-18 (18O) and deuterium (D) contents in sampled waters
from the Xifeng geothermal field were analyzed to confirm the
source and circulation mechanism of geothermal fluids. On the
δ18O-δD diagram (Figure 11), most samples were plotted close toT

A
B
LE

3
|C

at
io
n
an

d
si
lic
a
ge

ot
he

rm
om

et
ry

of
ho

t
w
at
er
s
fro

m
th
e
Xi
fe
ng

ge
ot
he

rm
al

fie
ld
.

S
am

p
le

N
O
.

T
(N

a-
K
)①

T
(N

a-
K
)②

T
(N

a-
K
)③

T
(N

a-
K
)④

T
(N

a-
K
)⑤

T
(N

a-
K
)⑥

T
(N

a-
K
)⑦

T
(N

a-
K
)⑧

T
(K

-
M
g
)⑨

T
(N

a-
K
-

C
a)

⑩

Q
ua

rt
z,

no
st
ea

m
lo
ss

(c
o
nd

uc
tiv

e)
⑪

Q
ua

rt
z,

m
ax

im
um

st
ea

m
lo
ss

at
10

0
° C

(a
d
ia
b
at
ic
)⑫

C
ha

lc
ed

o
ny

(n
o
lo
ss

o
f

st
ea

m
)⑬

C
ha

lc
ed

o
ny

(m
ax

im
um

st
ea

m
lo
ss

)⑭

α
-C

ri
st
o
b
al
ite

⑮
β-
C
ri
st
o
b
al
ite

⑯

M
R
-1

30
7.
37

30
9.
16

31
4.
99

36
0.
55

29
2.
27

30
7.
65

29
7.
25

41
8.
19

13
.5
1

−
2.
81

64
.2
4

69
.6
6

32
.1
9

42
.8
6

15
.0
5

−
29

.0
8

M
R
-2

31
0.
25

31
3.
28

31
7.
57

36
5.
29

29
5.
09

31
1.
41

29
9.
81

42
3.
67

14
.1
8

−
1.
84

64
.3
0

69
.7
2

32
.2
6

42
.9
2

15
.1
1

−
29

.0
2

XF
-1

33
3.
57

34
7.
34

33
8.
41

40
4.
58

31
7.
95

34
2.
33

32
0.
49

46
9.
36

36
.6
8

28
.3
2

91
.3
6

93
.5
0

60
.7
1

67
.4
5

41
.2
1

−
4.
87

XF
-2

32
8.
69

34
0.
12

33
4.
07

39
6.
23

31
3.
17

33
5.
81

31
6.
18

45
9.
62

36
.2
2

27
.7
6

91
.5
9

93
.7
0

60
.9
5

67
.6
6

41
.4
3

−
4.
66

XF
-3

33
4.
31

34
8.
45

33
9.
07

40
5.
86

31
8.
68

34
3.
33

32
1.
15

47
0.
85

36
.9
5

28
.7
0

91
.5
1

93
.6
3

60
.8
7

67
.5
9

41
.3
5

-4
.7
3

XF
-4

33
3.
92

34
7.
87

33
8.
73

40
5.
19

31
8.
30

34
2.
81

32
0.
81

47
0.
07

37
.4
6

29
.5
1

90
.3
6

92
.6
3

59
.6
5

66
.5
5

40
.2
3

−
5.
77

N
S
-1

62
5.
48

90
2.
36

58
4.
19

10
82

.6
3

60
5.
11

80
6.
36

56
6.
83

13
16

.2
5

33
.8
0

18
.2
1

53
.8
8

60
.4
3

21
.4
8

33
.4
5

5.
20

−
38

.1
0

N
S
-2

63
8.
38

93
4.
13

59
4.
45

11
23

.7
4

61
7.
84

83
0.
84

57
7.
20

13
71

.4
2

33
.1
9

16
.9
0

54
.7
8

61
.2
3

22
.4
0

34
.2
6

6.
04

−
37

.3
2

N
ot
es
:T

(N
a-
K
)①

(F
ou

rn
ie
r,
19

79
);
T(
N
a-
K
)②

(T
ru
es
de

ll,
19

76
);
T(
N
a-
K
)③

(G
ig
ge

nb
ac

h
an

d
G
og

ue
l,
19

88
);
T(
N
a-
K
)④
(T
on

an
i,
19

80
);
T(
N
a-
K
)⑤

(N
ie
va

an
d
N
ie
va
,1

98
7)
;T

(N
a-
K
)⑥

(A
rn
ór
ss
on

,1
98

3)
;T

(N
a-
K
)⑦

(A
rn
ór
ss
on

,1
98

3)
;T

(N
a-
K
)⑧

(M
ic
ha

rd
et
al
.,
19

79
);
T(
K
-M

g)
⑨
(G
ig
ge

nb
ac

h
et
al
.,
19

83
);
T(
N
a-
K
-C

a)
⑩
(F
ou

rn
ie
ra

nd
Tr
ue

sd
el
l,
19

73
;w

he
re

b
�4

/3
,i
fT

<
10

0
° C
;b

�1
/3
,i
fT

>
10

0
° C
);
Q
ua

rt
z,
no

st
ea

m
lo
ss

(c
on

du
ct
iv
e)

⑪
(F
ou

rn
ie
r,
19

77
);
Q
ua

rt
z,
m
ax
im
um

st
ea

m
lo
ss

at
10

0
° C

(a
di
ab

at
ic
)⑫

(F
ou

rn
ie
r,
19

77
);
C
ha

lc
ed

on
y
(n
o
lo
ss

of
st
ea

m
)⑬

(F
ou

rn
ie
r,
19

92
);
C
ha

lc
ed

on
y
(m

ax
im
um

st
ea

m
lo
ss
)⑭

(F
ou

rn
ie
r,
19

77
);
α
-C

ris
to
ba

lit
e⑮

(F
ou

rn
ie
r,
19

77
);
β-
C
ris
to
ba

lit
e⑯

(F
ou

rn
ie
r,
19

77
).

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 78294311

Li et al. Genesis, Xifeng Geothermal Field

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 10 | SiO2 concentration vs temperature plot for the samples of the Xifeng geothermal field. The amorphous SiO2 solubility curve is from Fournier and
Truesdell (1974) and chalcedony + quartz solubility is from Giggenbach (1991).

FIGURE 11 | Plot of δD vs δ18O values of water samples collected from the Xifeng geothermal field.
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the local meteoric water line (LMWL: δD � 8.83 δ18O+ 22.15,
Zhang et al., 2005) and global meteoric water line (GMWL: δD
� 8 δ18O+ 10, Craig, 1961), indicating a common meteoric
water origin. This is in accordance with results of the PAAS-
normalized REE patterns (Figure 8) and variable
characteristics of ions (Figure 4), which showed a similar
source of geothermal fluids.

Craig (1961) established the δD and δ18O values of
precipitation relating to altitude effect, and proposed that
meteoric water derived from higher elevation is gradually
lighter. In Figure 11, the slightly depleted δD and δ18O values
of geothermal waters compared to those of local river waters
testify that the recharge elevation of the former is higher than that
of the latter. Generally, the recharge elevation of groundwater can
be calculated in terms of the following formula:

H � δ18Ogw − δ18O1w

grad18O
+ h (2)

In Eq. 2, H (m) � recharge elevation; δ18Ogw � oxygen isotope
value of groundwater; δ18Olw � oxygen isotope value of local
meteoric water; grad18O (‰/km) � isotope elevation gradient of
meteoric water, and h (m) � elevation of the local meteoric
sampling point. The most depleted δ18O value (−9.2‰) in the
geothermal samples was regarded as the δ18Ogw to minimize the
positive isotopic shift effect in this study. The average oxygen
isotope value (−7.7‰) of surface meteoric water obtained in this
study was used as δ18Olw. Hence, the recharge elevation was
calculated to be 1,583 m as the δ18O vertical gradient in Guizhou
was assumed to be −3.1‰/km (Yu et al., 1984), and with the

elevation of local meteoric sampling point at 1,100 m. Combined
with the geological setting, this result is reasonable as the
sampling elevation is around 1,250 m for the samples collected
from southwest and 750 m for those from northeast and
southeast of the geothermal field.

Forming Mechanisms for the Xifeng
Geothermal Field
The formation of the Xifeng geothermal field resulted from
recharge, deep circulation, and secondary rising meteoric
water along the faults. Based on the topographic features and
geological conditions (Figures 1, 2), we propose the basic
conceptual model for the genesis of the Xifeng geothermal
system, as illustrated in Figure 12 and discussed.

Results of stable isotopes and geology revealed that the
local meteoric water from the surrounding mountains seemed
to infiltrate to depth through faults and crack zones and were
the dominant recharge source for the geothermal system.
Sedimentary rocks of Lower Cambrian Jindingshan,
Mingxinsi, and Niutitang formations overlie the Upper
Sinian Dengying reservoir units and act as cap rock
(Figure 1C). Moreover, the black shale of the lower
Cambrian Niutitang Formation in South China is well
known to be enriched in radioactive heat-producing
uranium elements, which are 10 and 6–20 times the
content compared with that of crustal sedimentary rocks
and the crust, respectively (Coveney and Nansheng, 1991;
Ni et al., 2012; Pi et al., 2013; Yang et al., 2013; Pagès et al.,
2018; Li et al., 2019). At Xifeng, the average U, Th, and K

FIGURE 12 | Genetic model of the Xifeng geothermal field.
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contents for the black shale of the Niutitang Formation is
32.61 (μg/g), 13.25 (μg/g), and 1.86 (%), respectively (Chen
2005; Pi et al., 2013). Generally, the radioactive heat
production can be calculated via the formula of A � 0.01ρ
(9.52CU + 2.56CTh + 3.48CK) (Rybach, 1976). Where A (μW/
m3) refers to radioactive heat production, ρ (g/cm3) is the rock
density, CU (μg/g), CTh (μg/g), and CK (%) are the U, Th, and
K concentrations, respectively. Thereby, the heat production
potential of the lower Cambrian Niutitang Formation in the
study area is calculated to be 9.57 μW/m3 with the rock
density of 2.728 (Zhao et al., 1995). This value is higher
than the average heat production of the continental crust
(∼1 μW/m3; Waples, 2001) and can be regarded as an effective
radiogenic heat source (Paternoster et al., 2017). Hence,
except for the role of cap rock, the Niutitang Formation
also served as a heat source due to the producing of
radioactive heat (Figure 12). Furthermore, since the multi-
period (especially in Yanshanian and Himalayan) active
strike-slip of the Baimadong fault and Neoid active faults
(e.g., Shaba, Chaoyang, and Shitoutian faults; Figure 1B) are
well developed within the tectonic system of the Xifeng
geothermal field, the tectonic frictional heat is speculated
to act as a supplementary heat source due to the
mechanical friction produced along the faults during
deformation (Mase and Smith, 1987; He et al., 2014; Song
et al., 2014; Zhu, 2016). Moreover, these deep large scale faults
also connect to the deep earth and act as a heat transporting
channel for deep heat (Figure 12; He et al., 2014; Li and Shen,
2014; Song et al., 2014; Li et al., 2019, Li J. et al., 2021). The
existence of acid magmatic intrusion material under the
central Guizhou uplift can be considered as the deep heat
source, evidenced by the available geophysical information
(Zhang et al., 2017).

Once the meteoric water was warmed up, it would interact
with the host rocks. The interaction between water and
Sinian dolomites is the dominant process for the
formation of Ca-Mg-HCO3 type waters in the Xifeng
geothermal field. Moreover, the silicate weathering and
ion exchange are also responsible for the formation of
geothermal fluids in the Xifeng area. As to the Ca-Mg-
HCO3-SO4 type in the Xifeng hot spring, it may be due to
the dissolution of other sulphate minerals during the deeper,
and long-duration circulation from high-elevation SW
(i.e., 1,250 m, Baimadong area) towards low-elevation NE
(i.e., 750 m, Xifeng area) in the study area (Figure 12; Song
et al., 2014). This is consistent with the results of recharge
elevation and geological setting.

Then finally, as the deep-infiltrated waters experienced
considerable deep circulation, the geothermal fluids rose again
along the main ENE-SE, NE-SE, and NW-NE faults. Moreover,
the ascending geothermal fluids were mixed with cold
groundwater in the subsidiary fractures near the surface
(Figure 5; Giggenbach, 1991). The tectonic and stratigraphical
features at the study area are favorable for the formation of
abundant geothermal resources.

CONCLUSION

The geothermal fluids in the Xifeng geothermal field are hosted
in dolomite from the Sinian Dengying Formation, and are
capped by sedimentary rocks of the lower Cambrian
Jindingshan, Mingxinsi, and Niutitang formations.
Radiogenic heat, deep heat, and tectonic frictional heat
serve as heat sources for the formation of the large
geothermal system. The reservoir temperature is estimated
to be 77°C. D-O isotopic studies indicate that the Xifeng
geothermal system is recharged by meteoric water from
higher elevations at 1,583 m from SW to NE. It is the
water-dolomite interactions that lead to the formation of
the alkaline Ca-Mg-HCO3 type geothermal fluids. This is
consistent with the research results of the REE, whose
accumulation characteristics and positive Eu anomaly are
inherited from host feldspar-bearing dolomites through the
water-rock interaction. The high SO4 in the Xifeng hot spring
are attributed to the deeper and long-duration circulation of
waters from SW towards NE. Ternary relationships among
major anions indicate that a mix of cold groundwater to the
ascending geothermal fluids occurred when they migrated
along the main faults near the surface. Taken together, the
Xifeng geothermal system should be assigned as a faults-
controlling and deeply circulating meteoric water of low-
temperature category.
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