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The flow field obtained from streamline simulation reflects key properties of the reservoir,
such as the distribution of the remaining oil and the location of channels. However, in the
three-dimensional streamline field, the advantages of streamline simulation are limited.
Because numerous streamlines interfere with each other and distribute in a sophisticated
way, it is really difficult to infer the connectivity between wells and the flow characteristics of
the reservoir. To make a more effective and visualizable description of the flow field, the
three-dimensional streamline field has to be simplified. In this paper, principal component
analysis (PCA) is applied to parameterize the streamline attributes and reduce the
dimensionality of the flow field. After dimension reduction, the principal components of
the streamline field can be analyzed by the clustering method. In the clustering procedure,
the mainstream lines are selected according to the clustering center, thereby intuitively
illustrating the properties of the reservoir. Through experimental verification, the proposed
method can characterize the streamlines of the flow field more efficiently and reflect the
inter-well connectivity more clearly than the commercial numerical simulator.
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INTRODUCTION

At present, most onshore oil fields in China have entered the later development stage after long-term
water injection development. The average comprehensive water cut of oil fields is high, and the oil
production rate decreases gradually. Therefore, the development effect deteriorates year by year,
making it difficult to meet the requirements of stable production. Besides that, most offshore oil fields
are in the stage with a low water-oil ratio, which is the golden period of injection–production
adjustment to increase the production potential. Hence, it is necessary to adjust the spreading
coefficient of the flow field to control water and oil production. The streamline simulation is one of
the most feasible methods for dominant flow characterization. In recent years, streamline simulation
has attracted more and more attention (Mesbah et al., 2019; Wang et al., 2020; Morse and Mahesh,
2021; Namdari et al., 2021; Zhang et al., 2021). However, discrete streamline distribution cannot
accurately represent the actual flow field, limiting its effective application to the oil field. Therefore, it
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is urgent to develop a flow field description technology to realize
the visualization of the main flow area, thus improving the
effectiveness of the streamline simulation method.

The features of the streamline field for actual reservoirs are
more complex than other fields, since the number of streamlines
is large and these lines cross together. Thus, the simplification of
the streamlines is of vital importance for the clear visualization of
the flow field. The main methods to simplify the streamline field
are feature analysis and classification, which group the
streamlines based on similar attributes of streamlines.
Nevertheless, due to the large number of streamline features
generated by the streamline numerical simulator, it is difficult to
give an effective evaluation of these features. Currently, the
evaluation of streamline similarity is mainly based on
Euclidian distance, while the characterization of the flow field
is still difficult by only using the selected geometric features. A
new visualization method was proposed, which is for
streamlining in Euclidean three-dimensional space (Rossl and
Theisel, 2011). The AHC clustering method (Yu et al., 2011) was
used to cluster the streamline and evaluated its clustering
efficiency, which pointed out that the AHC method is more
efficient than the Euclidean distance-based clustering method for
streamline clustering. Streamline similarity, evaluated based on
streamline curvature and bending characteristics, was more
comprehensive than the previous distance evaluation
(McLoughlin et al., 2012). Considering the curvature and
other factors of the curve, accurate and fast clustering
methods should be developed. The streamline data were
analyzed by the clustering method, and the streamline sets
with the same geometric characteristics were divided into a
class. Three clustering methods, namely K-means, hierarchical
clustering, and spectral clustering, were used to effectively classify
the chaotic streamline, which provided a favorable reference for
further visualization of the streamline (Qi, 2015). The dynamic

time regularization algorithm and the mean minimum distance
between adjacent points were used to measure the similarity of
streamlines, simplify the flow field, and improve the visualization
(Lintao); and through streamline normalization and regular-
polyhedron projection, high-dimensional features of each fiber
tract are computed and fed to the IDEC clustering algorithm for
clustering, which also provide qualitative and quantitative
evaluations of the IDEC clustering method and QB clustering
method (Xu et al., 2021). A streamline numerical simulation
method (Hu and Lihui, 2018) was presented, which calculates the
average attribute of streamlines and then applies a clustering
method to identify the flow field of the water–drive reservoir.
Furthermore, the FlowNet was presented, a single deep learning
framework for clustering and selection of streamlines and stream
surfaces (Han et al., 2018).[9] The approach based on the idea of
cluster centers was proposed, which are characterized by a higher
density than their neighbors and by a relatively large distance
from points with higher densities. This idea forms the basis of a
clustering procedure in which the number of clusters arises
intuitively, outliers are automatically spotted and excluded
from the analysis, and clusters are recognized regardless of
their shape and of the dimensionality of the space in which
they are embedded (Rodriguez and Laio, 2014). The flow field
characterization indicators were screened based on the logical
analysis method, using the analytic hierarchy process (AHP) to
evaluate the potential of the flow field (Pandeng; Qi, 2009; Yupei,
2011; Zheng, 2014). It was discovered that multiple displacements
are ineffective in the water flooding process of the flow field and
the surface flux is defined as the ratio of flux to the area of
displacement (Qiaoliang et al., 2014).

The dimension reduction method aims to alleviate the curse of
dimensionality in machine learning. The dimension reduction
algorithms transform the high-dimensional space of the original
data into low-dimensional space by mathematical methods.

FIGURE 1 | Streamline attribute dimension reduction.
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Generally speaking, the simplest spatial transformation method is
the linear transformation. Through the linear projection matrix,
d, dimensional samples in high-dimensional space can be
transformed into d’′ dimensional samples. When the
projection vector of the projection matrix is orthogonal to
each other, it is an orthogonal transformation. The
transformed data should be a linear combination of the
original data. Principal component analysis (PCA) (Mika
et al., 1998) is a basic linear dimension reduction method,
which is easily implemented to reduce the dimension of the
original data. It is an appropriate dimension reduction algorithm
for the reservoir flow field.

Cluster analysis is an unsupervised learning algorithm in
machine learning, which studies the intrinsic characteristics
between samples for classification. The main clustering
methods can be divided into three categories: the prototype-
based method, the density-based clustering method, and the
hierarchical clustering method. The prototype-based
clustering method is initialized with a group of prototypes
and then optimizes the prototypes through iterations. These

algorithms include K-means clustering algorithms and
Gaussian mixture model clustering algorithms. Density-
based clustering algorithms include the density-based spatial
clustering of applications with noise algorithm (DBSCAN).
Hierarchical clustering algorithms include the bottom-up
approach and the top-down approach. The streamline field
can be accurately grouped by these clustering algorithms based
on streamline features.

The rest of this paper is organized as follows: Section 2 and
Section 3 give detailed information and steps about the
proposed method; the experimental results and discussion
are given in Section 4, and Section 5 is about the
conclusion of this paper.

STREAMLINE FEATURE DIMENSION
REDUCTION

In recent years, streamline numerical simulation has gained
increasing popularity in the oilfield. Compared with the black
oil numerical simulation, the streamline numerical simulation
model has faster calculation speed, stronger convergence, and
better adaptability of the time step. In addition, in the streamline
numerical simulation, the relevant characteristics of the flow field
are output in the streamline manner, which is conducive to the
visual characterization and quantitative analysis of the flow field.
There are three main steps of using three-dimensional
streamlines to simulate the reservoir development process.
Firstly, use implicit equations to solve the pressure distribution
in porous media. Secondly, use explicit equations to obtain the
saturation distribution. Finally, obtain streamline trajectory
information. Different from the finite difference numerical
simulation, the fluid in the streamline numerical simulation
moves along the streamline, and the pressure is solved on the
basic grid to obtain the pressure equipotential surface, and then
the streamline field is solved.

The streamline information directly extracted by the streamline
numerical simulator is complex. The three-dimensional streamline
field has complex streamline distribution. A streamline field
contains multiple streamline lines, while a streamline contains
multiple streamline points. Each streamline point also has many
attributes. Therefore, a complete description of a streamline field
requires many features; but it is not practical to use too many
features to describe the streamlines in the actual process. To
generate an accurate description of the streamline field, it is
necessary to reduce the dimensionality of the streamline
properties without losing the main features of the streamline
field. Principal component analysis (PCA) [17] is a commonly
used linear dimensionality reduction method, which is simple to
calculate and can be easily restored from low-dimensional to high-
dimensional space. Thus, it is selected to reduce the characteristic
dimension of streamline and reconstruct the flow field in this
paper. The process of the PCA dimension reduction algorithm
used in this paper is as follows:

1) After the standardized processing of the data set, for each
evaluation attribute: ~xij � xij−�xj

sj
;

FIGURE 2 | Flow chart of the streamline PCA dimension reductionmatrix
construction.
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2) The characteristic covariance matrix of streamline is
calculated according to cov(X,Y) � 1

n−1∑
n
i�1(xi − �x)(yi − �y);

3) The eigenvalue and eigenvector of the covariance matrix are
obtained according to Av � λv;

4) The eigenvalues are sorted and the principal component
contribution is calculated according to the eigenvalues;

5) The first K feature vectors are selected to form the projection
matrix: M � [p1, p2, p3, ..., pk−1, pk];

6) Calculate the principal component vector according to the
projection matrix: Y � MXY � MX,

where �xj is the mean of the jth indicator for all samples; sj is
the standard deviation of the jth index; A denotes the
characteristic covariance matrix; λ and v are the eigenvalues of
the covariance matrix and the eigenvectors respectively; M is the
projection coefficient matrix composed of the first k eigenvectors;
pk is the transpose vector corresponding to the kth eigenvector; X
is the original data; and Y is the data after dimensionality
reduction.

In general, if the cumulative contribution of principal
components is higher than 95%, the most important
dimensions can be transformed without losing too much
accuracy; 95% is called the cumulative contribution threshold.
The corresponding projection matrix can be constructed based
on this threshold. The contribution of principal components of
the sample is calculated as follows:

c � ∑d′
i�1λi

∑d
i�1λi

(1)

Where c is the contribution of the main components, λi is the ith
eigenvalue.

1) Principal component analysis matrix

For the streamline field, each streamline can be regarded as a
sample with a series of points with different attributes, such as
coordinates, saturation, velocity, and so on. The number of
features of the streamline is determined by the number of
streamline points and the attribute information. The principal
component analysis can be used to reduce the dimension of
streamline attributes.

Principal component analysis (PCA) first requires the
construction of the matrix of original data. In the process of
dimension reduction, each streamline is regarded as a sample.
When PCA is applied, the original matrix of samples needs to
be constructed. There are N points on the streamline, and each
point has its X, Y, and Z coordinates. If considering the
saturation and the flying time, each point possesses five
attributes. For a streamline, there are 5N characteristics.
Because of different points for different streamlines, PCA
cannot deal with this kind of sample. The characteristics of
all streamlines should be consistent. Therefore, it is necessary
to construct the matrix of the sample as shown in Figures 1, 2.
After collecting all streamlines, the maximum number of
points of all streamlines can be obtained. The number of
features of the original matrix is set according to the
streamline with the largest features. The covariance matrix
of the original sample is obtained after standardization. The

FIGURE 3 | Principal component selection and flow field reconstruction accuracy.
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eigenvalues are obtained after the Eigen decomposition. The
eigenvectors of the largest eigenvalues form the projection
matrix, and the transformed matrix can be obtained according
to the projection matrix.

2) Streamline field reconstruction and principal component
selection

General selection of the number of principal components is
determined by the cumulative contribution of the principal
components. For the flow field, as shown in Figure 3, the
optimal selection of principal components should consider the
reconstruction accuracy of the flow field. The reconstruction
accuracy is high, which means that the principal components
are selected appropriately. According to the selected principal
components, the projection matrix maps the high dimensional
problem to a low dimensional problem. Generally, when the
reconstruction accuracy reaches 90%, the reconstruction of the
flow field can be considered accurate. The reconstruction error
can be calculated using Eq. 2:

E � ∑
k

i�1

∣∣∣∣p′i − pi

∣∣∣∣∣∣∣∣pi

∣∣∣∣
(2)

where p′i is the reconstructed data, and pi is the original data.
The optimal number of principal components is selected based

on the cumulative contribution of principal components and the
accuracy of flow field reconstruction. When the cumulative
contribution rate of principal components reaches 95% and
the reconstruction accuracy reaches 90%, the number of

FIGURE 4 | The flow field in clustering.

FIGURE 5 | Determining the best cluster number by the Elbow method.
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principal components is considered to be the best, and each
streamline can be represented by these characteristics.

STREAMLINE CLUSTERING AND FLOW
FIELD SIMPLIFICATION

Streamlines have many advantages that other conventional
reservoir description methods do not have. As mentioned
above, streamlines appear complex because they have a
large number of features. According to the streamline
features selected by PCA, the clustering algorithm and the
cluster number are selected to classify different streamlines
without losing much accuracy of the streamline field. It can
simplify the streamline field and improve the visualization of
the flow field. Different clustering methods have different
adaptabilities to streamlines in different flow fields, so the
effects of the clustering method should be analyzed. Therefore,
certain rules are needed to select an appropriate clustering
algorithm and the cluster number, which is significant for a
reasonable description of the flow field.

1) K-means clustering algorithm: K-means is an iteration
algorithm based on Euclidean distance. The calculation
speed of K-means is fast. However, the number of
clustering must be specified in advance. The iteration of
the K-means minimizes the sum of squares of errors. For
flow field clustering, K-means has low clustering complexity.
The parameters of K-means can be modified based on the
clustering result, such as the clustering number (K value). So it
has good adaptability in flow field streamline clustering.

2) Gaussian mixture model method: The Gaussian mixture
model clustering method adopts mean value and variance
and uses the probability model to initialize the prototype. It
presents the shape of the cluster as an ellipse, not a circle, to
improve the accuracy of clustering. The disadvantage of the
Gaussian mixture model method is the complexity of the
calculation. Figure 9 shows the streamline field diagram of the
Egg model [18] using the Gauss-expectation clustering
method. The Egg model is a synthetic reservoir model
consisting of 101 relatively small three-dimensional
realizations. The model has eight water injectors and four
oil producers. It has been applied in numerous publications to
demonstrate a variety of aspects related to computer-assisted
history matching and production optimization.

3) Density-based clustering method: This clustering algorithm
performs clustering based on the sample distribution. The
advantage of this algorithm is that it does not need to specify
the cluster number. However, to determine the
“neighborhood” required by the density-based clustering
algorithm, the radius of the circle and the minimum
number of points in the circle need to be given.

4) Hierarchical clustering method: The hierarchical clustering
algorithm divides samples at different levels and calculates the
similarity of each node. Then this algorithm establishes a
sample tree and connects each node step by step according to
the similarity principle. For example, AGNES bottom-up

hierarchical clustering algorithm regards the initial sample
as a single cluster and searches for the nearest cluster in each
step until the preset cluster number is reached. In the
streamline field, the advantage of the hierarchical clustering
method is that it does not need a random cluster center at the
beginning. As a range-based clustering method, its calculation
speed is fast. However, the limitation that the number of
clusters cannot be specified restricts its application in flow
field clustering.

For the streamline field, the reasonable clustering method
and the selection of cluster number plays a decisive role in the
clustering of the flow field. It also has an important significance
for the description of the flow field. It is necessary to first
determine the clustering number according to the elbow
method and the contour coefficient method, and then
evaluate the best clustering number and the effect of
different clustering methods using the contour
coefficient value.

FIGURE 6 | Mainline selection.
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The streamline clustering can effectively improve the
visualization of the flow field and accurately describe the flow
field. The first step of the clustering of the flow field is the
selection of cluster numbers. According to the sum of squared
errors (SSE), the clustering effect under different cluster numbers
can be determined. With the increase of the cluster number
(which is the k value for the K-means clustering method), the sum
of squared errors keep decreasing. However, in terms of the
purpose of clustering, the number of clusters cannot increase
indefinitely. In this paper, the elbow method is used to determine
the optimal cluster number combined with the sum of squared
errors.

The formula of the sum of squared errors for the streamline
clustering is shown in Eq. 3:

SSE � ∑
k

i�1
∑
p∈Ci

∣∣∣∣p −mi

∣∣∣∣2 (3)

where p is the streamline feature belonging to the class Ci; mi is
represented as the average streamline characteristic of the class Ci;
and k is the total cluster number of streamlines.

According to the principle of the “elbow method”, the mean
square errors for different cluster numbers are calculated. When

the sum of squared errors changes significantly, the
corresponding cluster number can be regarded as the best
cluster number. As shown in Figures 4, 5, when the number
of clusters is less than four, the error decreases quickly. When the
number of clusters exceeds four, the error decreases very slowly. It
is unnecessary to increase the number of clusters; so it can be
inferred that the optimal number of clusters is four.

As an important index to measure the dissimilarity among
clusters, the contour coefficient is of great significance in
evaluating the clustering effect. For each sample involved in
clustering, the contour coefficient of the sample can be
calculated according to the contour coefficient method.
According to the formula of the contour coefficient, the
contour coefficient should be between −1 and 1. The closer
the contour coefficient is to 1, the higher the clustering
accuracy of the sample. Otherwise, the closer it is to −1, the
more the sample should be divided into other classes.
Therefore, the contour coefficient of the sample reflects the
classification effect of the sample. In this paper, the mean value
of the contour coefficient is calculated for all samples to
measure the effect of clustering according to the formula.
The calculation of the streamline clustering contour
coefficient is as follows:

FIGURE 7 | Main streamline selection of injection and production units.
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1) The average distance between the streamline sample i and
other streamline samples in this class is calculated, denoted as
a(i), representing the dissimilarity of this class for the
streamline samples i;

2) Calculate the average distance between the streamline sample i
and all samples of other classes k, denoted as b(i)k to represent
the degree of dissimilarity between the sample i and the class k,
denoted as b(i) � min({b(i)1, b(i)2,/, b(i)k});

3) The contour coefficient of the sample is calculated according
to the formula: s(i) � b(i)−a(i)

max{a(i),b(i)};
4) The average contour coefficient of all samples is calculated as

the standard to measure the effect of the clustering.

The streamline field of the Egg model is clustered by the
K-means algorithm. The average contour coefficient is calculated,
which is 0.89. The average contour coefficient of hierarchical
clustering is 0.61. The average contour coefficient of the Gaussian
mixture model method is 0.84. For simple flow fields with few
features, the K-means clustering method is adopted to achieve
high computational efficiency; for flow fields with complex

features, the Gaussian mixture model method can be adopted
to improve the accuracy of clustering.

There is a problem with the reasonable layout of directly
extracted streamlines in the flow field. Too few streamlines
may cause the visual image that misses the information of a
certain part in the flow field space, while too many and too
dense streamlines may cause visual confusion. To obtain the
streamline with a high degree of visualization and reflect the
characteristics of the flow field, we can start with the streamline
generation algorithm. Then, we can use mathematical methods
to simplify the generated streamline field without losing many
features. Through clustering the streamlines, the flow field can
be simplified and the main streamlines can be selected.

The main streamlines have long been defined as the dominant
streamline of the flow field. However, for flow field description,
the main streamlines are not only the dominant streamlines but
also the streamlines that can represent the characteristics of the
flow field. According to the dimension reduction and clustering
results, the streamlines in the cluster center can be selected as the
main streamlines of the flow field. The main streamlines

FIGURE 9 | Streamline simplification based on clustering.

FIGURE 8 | The redrawn streamline field.
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represent the streamline field area as the result of flow field
simplification.

As shown in Figure 6A, according to the result of PCA, a
reasonable cluster number and the clustering method are selected
for the streamline field. The red dots represent the cluster centers,
the plus signs represent different samples, and the ellipses with
different colors represent different classes. All samples in the
same ellipse belong to the same class. Then, as shown in
Figure 6B, streamline points are mapped from low dimension
to high dimension to reconstruct streamlines, and the center of
the cluster is taken as the main streamline in the flow field. Four
red lines are the cluster centers of four categories, and the lines of
the same color belong to the same category.

The injection–production unit including injection wells and
production wells is the basic unit of reservoir production. The
connection relationship reflects the production status of the
reservoir. The streamlines between injection and production units
are analyzed for feature dimensionality reduction. The description
and simplification of the reservoir flow field are of great significance.
As shown in Figure 7, the clusters can be analyzed between
injection–production units according to streamline characteristics.
The main streamlines can be selected from the cluster center, which
represents the relationship between injection–production units and
simplifies the description of the flow field.

RESERVOIR EXAMPLE

The depth of the reservoir of CB22F area is about 1,400 m, the
porosity of formation sand is about 33.3%, the permeability of gas
measurement is 1,379 × 10–3 μm2, and the viscosity of crude oil is
about 30–70 mPa·s at formation pressure and temperature of
65°C. The upper part of the Chengdao Zhuangguan Formation is
mainly composed of sand-mudstone; the lower layer is muddy.
The thickness is about 450 m. The upper part of Chengdao
Oilfield is fluvial sedimentary by analyzing the characteristic
morphology of this area.

Streamline is the basis of the flow field, and streamline points
constitute the streamline. By extracting the coordinates of streamline
points after the streamline simulation, the reconstructed streamline
field diagram can be drawn. As shown in Figure 8, data is extracted
from the results of the streamline simulation of the CB22F area, and
the three-dimensional flow field can be redrawn according to the
location attributes of the extracted streamlines.

All streamlines of the CB22F streamline field are extracted,
and cluster analysis is carried out according to streamline
attributes. All similar streamlines are clustered into one
category. As shown in Figure 9, the cluster center of this class
is taken as the selection standard for the main streamlines. For the
complex flow field, only the main streamlines are retained to

simplify the flow field. Before the characterization and
simplification of the flow field, the streamline distribution of
the streamline field is messy. Meanwhile, the visualization degree
is extremely low, and the connection relationship between the
injection and production units is not clear. With the help of the
dimension reduction and clustering methods, the main
streamlines of the chaotic streamline field are selected for
simplification. In Figure 9, the connection relationship of the
streamline field is much clearer using our method.

CONCLUSION

The flow field can reflect many important attributes that affect the
production of the reservoir, such as the remaining oil
distribution, oil displacement energy distribution, and high-
permeability channels. Therefore, research on the changes of
the flow field is important for reservoir development. However,
the flow field of actual reservoirs is extremely complicated and it
is difficult to effectively characterize the flow field. These
challenges motivate the research of this paper. In this paper,
PCA is used to reduce the dimension of streamline features,
which achieves an accurate representation of streamlines without
losing many features. Based on the streamline features from the
dimension reduction, the clustering method is applied to simplify
the flow field. The streamlines with different characteristics in the
flow field are divided, and the main streamlines are selected
among the injection–production units. The visualization of the
streamline field is greatly improved and the interference
phenomenon of the complicated streamlines is relieved.
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