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Late Cenozoic drying of the Asian inland has not only exerted a profound impact on the
regional environment but also affected global climate as an important source of global
atmospheric dust. Continuous and accurately dated sediment records from the Asian
interior are pivotal to a better understanding of the evolutionary history of Asian inland
drying and the associated driving mechanisms. In this study, we present a continuous
record of climate change in the Asian interior spanning the past 7.3 Myr, reconstructed by
the redox evolution of a paleolake in the western Qaidam Basin, NE Tibetan Plateau. The
paleolake redox conditions are linked to the oxygen concentration of lake bottom water
and lake level, and were revealed by the manganese (Mn) concentration in the carbonate
fraction (leached by the diluted acetic acid) of the carbonate-rich lacustrine sediments
retrieved from two drill-cores (SG-1 and SG-1b). The reconstructed regional climate in the
western Qaidam Basin shows long-term fluctuations, consistent with the secular evolution
of the coeval global climate, especially the sea surface temperature variation in the high
latitude North Atlantic. Three transitions of the paleolake hydrochemical system occurred
at 6.2, 5.3, and 2.6 Ma, with a short drying stage at 6.2–5.3 Ma and prolonged Quaternary
drying since 2.6 Ma. We argue that drying of the Asia interior has been dominantly forced
by global cooling, in particular, the high-latitude cooling of the Northern Hemisphere.
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INTRODUCTION

As the largest temperate arid region, the Asian inland has attracted broad interest due to its strong
impacts on regional and global climate change. The Asian inland drying is generally regarded as a
coupling consequence of land-sea-atmosphere interaction, which could be dated back to the early
Eocene (e.g., Li et al., 2018) and significantly enhanced since the late Oligocene-early Miocene (Guo
et al., 2002; Sun et al., 2010a; Lu et al., 2019; Sun et al., 2020b). The driving mechanism appears to
correspond closely with the uplift of the Tibetan Plateau (e.g., Manabe and Terpstra, 1974; Kutzbach
et al., 1989; An et al., 2001; Guo et al., 2002), the retreat of the Para-Tethys Sea (Ramstein et al., 1997;
Fluteau et al., 1999; Zhang et al., 2007; Meijer et al., 2019), and global cooling with Cenozoic
development of bipolar glaciations and continental ice sheets (e.g., Ding et al., 2005; Dupont-Nivet
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et al., 2007; Sun et al., 2014; Li et al., 2018; Fang et al., 2019) or a
combination of them (e.g., Guo et al., 2002; Lu et al., 2019).
Especially during the Neogene-Quaternary, the regional drying
and eolian dust activity have been greatly enhanced in the
Asian interior (e.g., Rea et al., 1998; Guo et al., 2002; Sun and
Liu, 2006; Kent-Corson et al., 2009; Sun et al., 2010a; Zhuang
et al., 2011; Li et al., 2014; Guo et al., 2018; Jia et al., 2021).
However, intensive tectonic activity since the late Oligocene-
Early Miocene in the northern Tibetan Plateau and the Central
Asian orogenic belt (Li et al., 2014; Lu et al., 2018; Wang et al.,
2020; Yang et al., 2021 and reference therein) yields much
coarser lithology with frequent changes in sediment facies in
basin sequences, which hinders a better understanding of the
full range of aridification and its driving force using the basin
sediment records.

The Qaidam Basin, an inland arid area in the northeast
Tibetan Plateau, is dominantly under the influence of the
middle-latitude westerlies, with its southeast corner being
impacted by the East Asian monsoons (Figure 1), thus
providing the ideal area to reveal tectonic-climate linkages in
terms of aridification of the Asian interior. The up to 10–15 km
thick Cenozoic fluvial-lacustrine deposits in the basin contain
crucial information on the evolution of the paleoenvironment
and paleoclimate in the basin. Previous studies reconstructed the

regional climate evolution using a variety of proxy records, e.g.,
pollen (Lu et al., 2010; Miao et al., 2011; Cai et al., 2012; Miao
et al., 2016; Koutsodendris et al., 2019; Jia et al., 2021), biomarker
(Zhuang et al., 2014; Zhuang et al., 2019; Sun et al., 2020c; Wu
et al., 2019; Wu et al., 2021), clay minerals (Fang et al., 2016; Ye
et al., 2016; Ye et al., 2018; Fang et al., 2019; Ye et al., 2020), and
geochemical records (e.g., Zhuang et al., 2011; Yang et al., 2013a;
Yang et al., 2013b; Yang et al., 2014; Yang et al., 2015; Yang et al.,
2016; Song et al., 2017; Bao et al., 2019; Han et al., 2020; Song
et al., 2020). However, the late-Miocene-Quaternary is a
transition period of the Qaidam Basin from a dominant fresh-
brackish lake environment inmid-Miocene to a widely spread salt
lake and dry land in the Quaternary (e.g., Guo et al., 2018).
Continuous, high-resolution and well-dated lake sediment
records are pivotal to revealing the transformation of regional
climates.

We present a long-term hydrochemical record of the western
Qaidam paleolake covering the past ∼7.3 Myr, based on analysis
on two accurately dated drill-cores (SG-1 and SG-1b). Dissolved
manganese (Mn) concentration in lake water reacts strongly to
changes in redox conditions of lake bottom water and the lake
level fluctuations in a closed basin (Yang et al., 2013a). Dissolved
Mn in lake water can be incorporated in the authigenic carbonate
minerals, thus leaving the hydrochemical imprint into the past

FIGURE 1 | (A) Topographic map of the Tibetan Plateau and Central Asia indicating the Qaidam Basin area. (B) Map of the Qaidam Basin and adjacent region
showing the surrounding mountains, major structures, and the study area (modified from Zhang et al., 2012a). (C)Geologic map of the study area in the western Qaidam
Basin showing the locations of the SG-1b and SG-1 drill-sites (red asterisks) (modified from Zhang et al., 2012b).
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sediment archives. Previous studies have revealed that Mn in
carbonates (diluted acetic acid dissolved fraction) of SG-1 lake
sediments (2.8–0.1 Ma) in the western Qaidam Basin is a sensitive
indicator of paleolake evolution and regional climate (Yang et al.,
2013a). We thus integrated new data of carbonate Mn
concentration from the SG-1b core (7.3–1.6 Ma) with the
previous SG-1 Mn records to reconstruct a continuous history
of paleolake and climate evolution in the western Qaidam Basin
since 7.3 Ma.

MATERIALS AND METHODS

The Qaidam Basin, with an average elevation of 3000 m, forms
the largest inland basin on the northeastern Tibetan Plateau. The
basin is surrounded by the East Kunlun Shan to the south, the
Qilian Shan to the northeast, and the Altyn Mountain to the
northwest (Figure 1). The closed basin contains more than
10,000 m thick Cenozoic fluvial and lacustrine deposits derived
from the surrounding mountains (Xia et al., 2001). The western
Qaidam Basin has a hyper-arid environment, with mean annual
precipitation less than 100 mm and potential evaporation greater

than 2000 mm, and the surface is covered with a strongly
indurated decimeter-thick salt crust.

The SG-1b drilling campaign was performed at the top of the
Jianshan Anticline in the western Qaidam Basin, 100 km
northeast of Lenghu Town, and about 20 km east of the SG-1
borehole (Zhang et al., 2014a, Figure 1). The drilling extended
723m in depth with an average recovery rate of 93%. The
sedimentary sequence is mainly featured by deep-water, fine-
grained lacustrine sediments comprising clay, clay-silt, siltstone,
and calcareous mudstone (Zhang et al., 2014b). From 723 to
232 m, the sediments are characterized by well-bedded grey and/
or blue-grey clay or mudstone. The sediments in the upper 232 m
are characterized by grey (or dark grey) and blue-grey clay, clay-
silt, and siltstone, with small amounts of gypsum crystals or thin
gypsum layers (Figure 2, Zhang et al., 2014a; Lu et al., 2015). The
SG-1b drill-core was dated at about 7.3–1.6 Ma with
magnetostratigraphy (Zhang et al., 2014b), refined by orbital
tuning in the period of 3.3–2.1 Ma (Kaboth-Bahr et al., 2020).
The sediment accumulation rate in the SG-1 core is almost three
times higher than in the SG-1b core (Figure 2), probably because
the SG-1 drill-site is located close to the depocenter while the SG-
1b core was recovered on an anticline (Zhang et al., 2014a).

FIGURE 2 | (A) SG-1b core lithology and magnetostratigraphy (after Zhang et al., 2014b). (B) Variations in mean grain size fractions in the SG-1b (derived from Lu
et al., 2015). (C) Photographs of selected sliced cores between 723 m and 0 m (∼7.3–1.6 Ma). (D) Depth–age plot for the cores SG-1 (Zhang et al., 2012b) and SG-1b
(Zhang et al., 2014a) based on the correlation of the polarity sequence with the geomagnetic polarity timescale of Gradstein et al. (2004).
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Leaching experiments of loess suggest that 1M acetic acid
(HOAc) mainly dissolves the Mn (II) of carbonate rather than
manganese oxide (Liu et al., 2002; Liang et al., 2009). Meanwhile,
leaching experiments of soil and loess show that the dissolution of
clay by 1MHOAc is very weak (Yang et al., 2000; Liu et al., 2002).
We thus used the 1M HOAc to leach the sediments in order to
obtain the Mn(II) concentrations in the lacustrine sediments. We
didn’t use a two-step procedure (water and HOAc leaching) like
in the previous study of the SG-1 core (Yang et al., 2013a);
instead, we used 1M HOAc leaching to directly react with bulk
sediment. Therefore, the carbonate fraction and water-soluble
salts are both incorporated in the HOAc leachates of the
sediments. One reason for the modified leaching procedure is
that only a small amount of gypsum occurred in the upper part of
the SG-1b core, while evaporite minerals are abundant in the SG-
1 core. Another reason is that multiple leaching experiments
showed that a negligible amount of Mn exists in the water-soluble
salts of the lacustrine sediments (Yang et al., 2016). Accordingly,
diluted acetic acid leaching in our study can extract Mn only from
carbonates, which could be well compared with the Mn
concentration in the SG-1 core (Yang et al., 2013a).

A total of 619 bulk samples of the SG-1b core were selected for
geochemical analysis. Samples were oven-dried at 40°C and
ground into fine powder (<200 mesh). Approximately 0.5 g of
each sample was leached by 10 ml 1M HOAc at room
temperature for 24 h to extract Mn in the carbonate fraction
of the samples. Concentrations of Mn, Ca, Mg, and Sr in the acetic
acid leachate were analyzed by inductively coupled plasma-
optical emission spectrometry (ICP-OES) (Leeman Labs

Prodigy-H). Replicate analyses showed a relative standard
deviation for all cations of less than 2%. All of the above
treatments and measurements were conducted at the Institute
of Tibetan Plateau Research, Chinese Academy of Sciences (ITP-
CAS), Beijing. To obtain the major minerals (especially carbonate
minerals in the core), we chose seven representative samples of
SG-1b core for X-ray diffraction (XRD) analysis using a Rigaku
D/MAX-2000 diffractometer (Cu, Kα, 1.5406 Å, 40 kV, 100 mA,
3–35°, step 0.02°, 10°/min) at the Micro Structure Analytical
Laboratory, Peking University.

RESULTS

The XRD results show that major minerals in the sediments of
SG-1b core include quartz, albite, orthoclase, carbonate minerals
(calcite, aragonite, dolomite, and ankerite), mica or illite, and
chlorite (Figure 3). There is a minor amount of evaporite
minerals, e.g., halite, gypsum, and celestite in the core except
for abundant gypsum and halite observed in sample 1.1 m at the
top of the SG-1b core.

Figure 4 shows the results of Mn, Ca, Mg, and Sr
concentrations from the HOAc leaching of the SG-1b core
sediments (data can be found in Supplementary Material).
The concentration of Ca in acetic acid leachates (CaHOAc)
mainly represents the calcium carbonate and some Ca-bearing
salt minerals (e.g., gypsum) content in the sediments. The small
amount of gypsum that only occurs in the upper 232 m suggests
that a small amount of Ca is likely from the calcium sulfate.
Consequently, the measured Ca concentrations reflect the
calcium carbonate content below 232 m and an upper limit of
the calcium carbonate content above 232 m. The average CaHOAc

is around 10.43%, with slight fluctuations throughout the drill-
core, yielding a rough estimate of 25% CaCO3 in the SG-1b core
sediments. CaHOAC shows no long-term trend and remains at a
relatively high level. The Mg/Ca and Sr/Ca ratios generally
remain at ∼0.08 and 0.0085, respectively, and only fluctuate in
some layers (Figure 4). MnHOAc values range from 40.7 μg/g to
1315.6 μg/g, with an average of 366.8 μg/g. The MnHOAc variation
reveals an upward decrease above ∼240 m and a long-term
relative stable content with several fluctuations below ∼240 m
(Figure 4). The Mn/Ca ratios present a likewise variation as the
Mn content along the whole core.

DISCUSSION

Mn in Carbonate as a Redox Proxy
Manganese is a metallic element reacting sensitively to changes in
reduction-oxidation (redox) conditions. Redox conditions of
bottom water in a closed lake are generally associated with the
lake level. In arid regions, the lake level in a closed catchment is
highly sensitive to changes in rainfall (Narisma et al., 2007).
Numerous studies have studied the redox behaviour of Mn in
lakes (e.g., Dean et al., 1981; Davison, 1993; Hamilton-Taylor and
Davison, 1995; Wetzel, 2001). In brief, Mn (II) is soluble in
reduced phases while Mn (IV) is insoluble in oxidized phases,

FIGURE 3 | X-ray diffraction patterns of sedimentary minerals from
representative samples of the SG-1b core. Note that mica minerals and illite
are marked as illite.
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both of which are the main valence states of manganese in lake
environment and readily converted into each other in the vicinity
of a redox boundary (Davison, 1993;Wetzel, 2001). However, Mn
(IV) is easily reduced but Mn (II) is not readily oxidized, which
can lead to a large field of stability for dissolved Mn (II)
(Maynard, 2004). Moreover, Mn sulfide is very soluble in
reducing environment (Algeo and Maynard, 2004), and
dissolved Mn is not readily taken up by any organic or
mineral phase (Huerta-Diaz and Morse, 1992). The above Mn
properties result in a diffuse and homogeneous distribution of
Mn (II) throughout the lake water body (Hamilton-Taylor and
Davison, 1995), thus providing an ideal tool to reflect the lake
hydrochemistry in a broad area. The Mn (II) can be sequestered by
carbonate formation from low Eh to slightly oxic conditions
(Calvert and Pedersen, 1993; Hild and Brumsack, 1998; Caplan
and Bustin, 1999; Stevens et al., 2000; Maynard, 2004; Tribovillard
et al., 2006). Hence, Mn concentration in carbonate is sensitive to
lake-water redox conditions linked to the oxygen content of the
bottom water and water depth (e.g., Schaller and Wehrli, 1997;
Stevens et al., 2000). Mn concentration in carbonate has
successfully been used in the SG-1 core to address the lake
redox conditions and regional climate at long-term and glacial-
interglacial scales (Yang et al., 2013a; Yang et al., 2016).

Controlling Factors
Provenance change along with detrital Mn input unlikely controls
MnHOAc variations. Mn-rich bedrocks, such as rhodochrosite- or
pyrolusite-rich rocks, are not found in the surrounding
mountains of the western Qaidam Basin (RGMRGD, 1985).

Exposed rocks in the catchment area are variable, with many
intermediate and acid rocks. These are mainly grey gneiss,
siliciclastic rocks, dolostone, quartzite, phyllite, marble,
carbonatite, peridotite, serpentinite, augite, diorite, and granite
of Precambrian to Early Cretaceous ages (Zhang, 1987; Wang
et al., 2008). Carbonate analyses of the nearby Lenghu and
Ganchaigou lacustrine sediments show that the average
proportions of detrital carbonates to total carbonates are 11
and 13%, respectively (Hanson, 1999; Graham et al., 2005).
Therefore, any Mn signal inherited from detrital carbonates
should be relatively small. The lack of Mn-rich rocks in the
catchment suggests that the provenance change that
potentially follows regional uplift in the western Qaidam
Basin cannot exert a dominant control on Mn
concentration in lake water and carbonates, although
anticline development following the uplift since 3.6 Ma
could alter the clastic sedimentation (Lu et al., 2015).

Diagenesis of carbonate minerals can significantly alter Mn
concentrations in carbonates during recrystallization. The Mn
partitioning coefficients for sedimentary carbonate minerals are
larger than 1, and Mn is thus preferentially incorporated into
crystals rather than solutions (Brand and Veizer, 1980; Rimstidt
et al., 1998). Lithological investigation of the SG-1 core (Wang
et al., 2012) and the SG-1b core (Lu et al., 2015; Lu et al., 2021)
didn’t show an obvious diagenetic imprint for carbonate
minerals. Carbon and oxygen isotopic results from
sedimentary carbonates in the SG-1 core (Han et al., 2014)
and in Neogene lacustrine strata from adjacent areas, such as
Lenghu and Laomangnai (Kent-Corson et al., 2009), demonstrate

FIGURE 4 | Depth profiles of Mn, Ca, Mg, and Sr variations of acetic acid leachate (HOAc) in the SG-1b core. (A)Ca concentrations in the HOAc leachate (CaHOAc);
(B) The ratio of 1000*Mn/Ca in the HOAc leachate; (C)Mn concentrations in the HOAc leachate (MnHOAc); (D) The ratio of Mg/Ca in the HOAc leachate; (E) The ratio of
1000*Sr/Ca in the HOAc leachate; (F) Mean grain size from Lu et al. (2015); (G) Observed magnetic polarity sequence of the SG-1b core and its correlation with the
Geomagnetic Polarity Time Scale (GPTS, Gradstein et al., 2004) (Zhang et al., 2014a). The lithology column is simplified according to Zhang et al. (2014b). Thin lines
indicate the raw data for (A–F). Bold solid lines in the records provide 13-point running averages for (A–F).
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that the carbonate minerals are only diagenetically altered to a
minor degree if any.

The high contents of carbonate minerals in the SG-1b core
suggest that, similar to the SG-1 core (Yang et al., 2013a), the
paleolake water was saturated with calcium carbonate. It means
that sufficient bicarbonate existed in the paleolake during which
Mn concentrations in carbonate phases will be in proportion with

dissolved Mn in lake water, thus not relying on the amount of
carbonate. It can be supported by the similar changes between
Mn/Ca ratio and Mn concentrations (Figure 4). Furthermore,
despite the location difference of the two cores within the basin
sedimentation system (Zhang et al., 2014b), the well-matched
MnHOAc variations and concentrations in the overlapped
duration (2.8–1.6 Ma) of the two cores also confirm a

FIGURE 5 | IntegratedMnHOAc record of the SG-1b and SG-1 drill-cores since 7.3 Ma in the QaidamBasin compared with other records. (A)Global marine benthic
foraminiferal δ18O record (‰) (Zachos et al., 2001). (B) Alkenone-derived sea surface temperature (SST) record from the North Atlantic Ocean at ODP Site 982 (Herbert
et al., 2016). (C) Stacked high latitude SST anomalies in North Hemisphere (Herbert et al., 2016). (D) MnHOAc record over the past 7.3 Myr (raw data, grey lines for the
SG-1b core and light blue-green lines for the SG-1 core; red and black lines are 100- and 400-kyr smoothing of the raw data, respectively). (E) Artemisia content of
the SG-1b and SG-1 cores (Koutsodendris et al., 2019). (F) Summer monsoon index in the Chinese Loess Plateau (Sun et al., 2010b). (G)Mass accumulation rate (MAR)
of eolian dust at Site 885/886 in the northern Pacific Ocean (Rea et al., 1998).
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homogeneous dissolved Mn distribution throughout the lake
water body. Based on these observations, MnHOAc in the SG-
1b core (7.3–1.6 Ma, this study) and in the SG-1 core
(2.8–0.1 Yang et al., 2013a) could be integrated to reconstruct
the evolution of dissolved Mn concentrations in the paleolake of
the western Qaidam paleolake since 7.3 Ma (Figure 5).

Dissolved Mn concentration in the paleolake is mainly
supplied by weathering of Mn-bearing minerals from the
source area and further modulated by the lake bottom water
redox conditions. To be more specific, as Yang et al. (2013a)
proposed, the high MnHOAc concentration in the integrated
record represents an increased input of dissolved Mn and Mn
oxide-hydroxide from the source area with an intense reducing
capacity that transformed Mn oxide-hydroxide to dissolved
Mn(II). This scenario reflects a high lake level, probably with
a stable thermocline and oxygen-deficient bottom water in a
warm and humid climate. Conversely, the low MnHOAc

concentration represents a decreased input of dissolved Mn
and Mn oxide-hydroxide from the source area with a
weakened reducing capacity that transformed Mn oxide-
hydroxide to dissolved Mn(II). This scenario thus indicates a
low lake level together with a less developed thermocline,
probably well mixed and oxygen-deficient bottom water in a

cold and dry climate. In this sense, the MnHOAc concentrations
present long-term fluctuations of regional climate.

Driving Mechanism
Comparisons of the integrated MnHOAc record from the SG-1b
core (this study) and SG-1 core (Yang et al., 2013a) with the
benthic δ18O record (Zachos et al., 2001) and alkenone sea-
surface temperatures (SST) of the North Atlantic Ocean (Herbert
et al., 2016) show that the variation of MnHOAc is in general
agreement with the global change and the climate of the high-
latitude Northern Hemisphere (Figure 5). This becomes evident
from the scatter plot of theMnHOAc record with benthic δ18O and
OPD 982 Site SST (Figure 6). The integrated MnHOAc record is
especially more synchronous with the North Atlantic Ocean SST
(Figure 5), suggesting that the reduction of westerlies moisture
caused by high-latitude cooling of the Northern Hemisphere
directly affects the aridification of the Qaidam Basin. In
addition, cooling in the Northern Hemisphere could also lead
to cooler and drier conditions in the Qaidam Basin through
enhancement of the Siberian High (Porter and An, 1995; Fang
et al., 1999). A cooler and drier climate would reduce catchment
Mn input from the catchment and elevate the oxygen content in
lake bottom water, thus collectively leading to a decline in
contents of dissolved Mn in lake water and MnHOAc in
carbonate. However, it should be noted here that cooling since
the late Miocene occurred synchronously in both hemispheres
(Herbert et al., 2016). Given the close relationship among the
high-latitude SST (especially in the North Atlantic), the
formation of deep water, and the deep water δ18O (e.g.,
Zachos et al., 2001; Lozier, 2010), we here don’t distinguish
the high latitude cooling in the North Hemisphere from a
global context.

In order to detect possible nonlinear dynamical transitions in
the regional climate record in the Qaidam Basin and to facilitate
an evaluation of the underlying regulating driving mechanism(s),
we performed a recurrence analysis (Marwan et al., 2007) of the
MnHOAc time series (Figure 7). The recurrence plot is a binary
plot, in which periodic processes are expressed as areas with
higher-density points (i.e., longer lines and less isolated
recurrence points), while chaotic/stochastic climate
fluctuations are expressed by only isolated recurrence points
or very short lines. Transition/shifts between different states
can capture key transitions of system regime. The recurrence
analysis has been successfully used to determine the climate state
transitions using high-resolution proxy records, e.g., the
Cenozoic climate (Westerhold et al., 2020) and the Quaternary
climate in the Qaidam Basin (Han et al., 2020). The result of
recurrence analysis of the integrated MnHOAc record shows three
major transitions at 6.2 Ma, 5.3 Ma, and 2.6 Ma. Compared with
the dry/wet cycles as suggested by the MnHOAc record (Figure 7),
the 6.2 Ma marks the initiation of a short drying stage between
6.2–5.3 Ma, which accords with the concomitant rise in benthic
δ18O and decline in SST in North Atlantic (Figures 5A,B). The
5.3 Ma change, i.e., at about the Miocene/Pliocene boundary, is a
transition stage from the prior drying stage to the subsequent
wetting stage in the Qaidam Basin, which is consistent with global
warming at that time (Figure 5). The system change at the

FIGURE 6 | Cross-plots of the MnHOAc content in the SG-1 and SG-1b
cores with the SST in ODP Site 982 (A) and benthic δ18O (B) since 7.3 Ma
(ages are indicated by colour code). Power fits (LnY�BX + A) of MnHOAc versus
SST and δ18O, yield correlation coefficients of 0.707 for (A) and −0.707
for (B), respectively (p < 0.0001). SST and δ18O data were interpolated at the
same resolution as MnHOAc.
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Pliocene/Quaternary boundary (2.6 Ma) marks the onset of
prolonged and extensive Quaternary drying in the Qaidam
Basin, which is contemporaneous with the intensification of
the North Hemisphere glaciation. The three major transitions
determined by the recurrence analysis thus indicate the major
dry/wet changes in the Asian interior. All these transitions well
match the global climate and the high latitude climate of the
North Hemisphere, implying that global change modulated the
Asian inland climate since 7.3 Ma at long-term scales.

Further spectral analysis of the MnHOAc concentrations shows
significant periodicities at 23, 41, 100, and 405 kyr (Figure 8),
which are consistent with the orbital cycles in benthic δ18O record
(Zachos et al., 2001) and in OPD 982 Site SST (Lawrence et al.,

2009). In particular, the enhanced eccentricity band at 405 and
100 kyr during the Quaternary compared with the dominant
obliquity band before 2.7Ma (Figure 8) confirms an orbital
change at the Mid-Pleistocene Transition (MPT, 1.2-0.8Ma) from
∼40 to ∼100 kyr (e.g., Clark et al., 2006). Therefore, global change and
northern hemisphere high latitude processes could modulate the
Asian inland climate at orbital time scales, which is also supported
with other studies of high-resolution Quaternary records in the SG-1
core (e.g., Han et al., 2020).

The MnHOAc results also record a dramatic environmental
turnover from ∼3.6 to 2.6Ma, during which the regional climate
shifted from the dominant wetting stage to the prolongedQuaternary
cooling (Figure 5). This climate turnover since 3.6Ma could be

FIGURE 7 | Plots of MnHOAc 100-kyr sliding window means (top) and recurrence analysis of MnHOAc variation (bottom) for the integrated SG-1 and SG-1b data,
showing major climate transitions during the past 7.3 Myr. Red arrows show the three major transitions at around 6.2 Ma, 5.3 Ma and 2.6 Ma, which correspond to the
major boundaries between dry and wet stages as suggested by the MnHOAc data in the upper panel. The blue arrow marks the beginning of the Pliocene drying since
∼3.6 Ma.
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witnessed by the rise in the Artemisia content of the pollen record
(Koutsodendris et al., 2019) (Figure 5E) and the rise in eolian
accumulation rate in the North Pacific (Rea et al., 1998). This
3.6Ma-event is a widely observed drying event in East and
Central Asia (Ge et al., 2013), but corresponds to an East Asian
monsoon enhancement as shown by the summer monsoon index in
the Chinese Loess Plateau (Figure 5F, Sun et al., 2010b; Nie et al.,
2014; Ye et al., 2018). This Asian inland drying coupled with East
Asian wetting is a typical environmental impact of the uplift of the
northern Tibetan Plateau (e.g., An et al., 2001; Zhang R. et al., 2012;
Tada et al., 2016). There is abundant observational evidence of the
tectonic movements in the northern Tibetan Plateau at ∼3.6Ma. The
anticline development since 3.6Ma was also suggested by the grain-
size records of the SG-1b core (Lu et al., 2015). During 3.6–2.6Ma,
huge conglomerate layers widely formed in the basins at the
northeastern edge of the Tibetan Plateau, such as the Qaidam
basin (Fang et al., 2003), Linxia basin (Fang et al., 2003), Guide

basin (Fang et al., 2005a), Jiuxi basin (Fang et al., 2005b). Hence, the
rapid drying at ∼3.6Ma in this study is probably caused by the
Tibetan Plateau uplift superimposed on the global cooling.

In addition, the westward retreat of the Para-Tethys Sea seems
unlikely to affect the regional drying in the Qaidam Basin since
7.3 Ma, although it is thought to have caused the Asian interior
aridification from the middle Eocene to the Eocene-Oligocene
transition at ∼34–33Ma based on evidence from the Xining, Tajik,
and Tarim Basins (Bosboom et al., 2014; Carrapa et al., 2015; Sun
et al., 2016; Kaya et al., 2019; Meijer et al., 2019; Sun et al., 2020a)
and the modelling work (see Ramstein et al., 1997; Zhang et al.,
2007). The Para-Tethys and the Neo-Tethys seas before the late-
Miocene has retreated to a place (e.g., Zhang et al., 2014a; Sun et al.,
2021) that cannot have a significant impact on the Qaidam Basin.
In particular, themoisture barrier of themid-latitude westerlies has
established before the late-Miocene, for example, the Pamir uplift
(e.g., Blayney et al., 2019; Wang et al., 2020).

FIGURE 8 | Spectral analysis of the carbonate Mn record after 2.7 Ma (A) and before 2.7 Ma (B). Green and blue dashed lines are 90 and 95% significance levels,
respectively.
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CONCLUSION

The integrated MnHOAc records since 7.3 Ma from the two deep
drilling cores (SG-1b and SG-1) in the Qaidam Basin revealed
the evolution of Qaidam paleolake and regional
paleoenvironmental change during the late Cenozoic. The
region climate exhibited long-term fluctuations, similar to the
global change, especially the North Atlantic high latitude sea
surface temperature. Three transitions of the paleolake
hydrochemical system occurred at 6.2, 5.3, and 2.6 Ma, which
deliminate a short drying stage at 6.2–5.3 Ma and a prolonged
Quaternary drying stage since 2.6 Ma. This Quaternary drying
may be related to the enhanced aridification of the Asian
interior since 3.6 Ma. We argue that the drying history has
been caused by global cooling, in particular, the high-latitude
cooling of the Northern Hemisphere with some contributions
from the growth of the northern Tibetan Plateau at 3.6 Ma.
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