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Computationally-feasible
uncertainty quantification in
model-based landslide risk
assessment

Anil Yildiz*, Hu Zhao and Julia Kowalski

Methods for Model-based Development in Computational Engineering, RWTH Aachen University, Aachen,
Germany

Introduction: Increasing complexity and capacity of computational physics-based
landslide run-out modelling yielded highly efficient model-based decision support
tools, e.g. landslide susceptibility or run-out maps, or geohazard risk assessments.
A reliable, robust and reproducible development of such tools requires a thorough
quantification of uncertainties, which are present in every step of computational
workflow from input data, such as topography or release zone, to modelling
framework used, e.g. numerical error.

Methodology: Well-established methods from reliability analysis such as Point
Estimate Method (PEM) or Monte Carlo Simulations (MCS) can be used
to investigate the uncertainty of model outputs. While PEM requires less
computational resources, it does not capture all the details of the uncertain output.
MCS tackles this problem, but creates a computational bottleneck. A comparative
study is presented herein by conducting multiple forward simulations of landslide
run-out for a synthetic and a real-world test case, which are used to construct
Gaussian process emulators as a surrogate model to facilitate high-throughput
tasks.

Results: It was demonstrated that PEM andMCS provide similar expectancies, while
the variance and skewness differ, in terms of post-processed scalar outputs, such
as impact area or a point-wise flow height. Spatial distribution of the flow height
was clearly affected by the choice of method used in uncertainty quantification.

Discussion: If only expectancies are to be assessed then one can work with
computationally-cheap PEM, yet MCS has to be used when higher order moments
are needed. In that case physics-based machine learning techniques, such
as Gaussian process emulation, provide strategies to tackle the computational
bottleneck. It can be further suggested that computational-feasibility of MCS used
in landslide risk assessment can be significantly improved by using surrogate
modelling. It should also be noted that the gain in compute time by using
Gaussian process emulation critically depends on the computational effort needed
to produce the training dataset for emulation by conducting simulations.
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landslides, debris flows, natural hazards risk assessment, susceptibility maps, numerical
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1 Introduction

Computational landslide run-out models can predict the spatial
evolution of depth and velocity of the failed mass, which is crucial
for landslide risk assessment and mitigation, especially for flow-like
landslides due to their rapid nature (Cepeda et al., 2013; McDougall,
2017). Utilising computational landslide run-out models for model-
based decision support requires a well-defined, transparent and
modular setup of the complete computational value-chain. Such a
chain consists of many links, including a digital representation of the
topography, the underlying physics-based process model, a numerical
solution scheme, the approach to parameter calibration along with the
training data it relies on, and concepts used for sensitivity analyses
and uncertainty quantification. Challenges in the technical realisation
of such integrated workflows have been successfully addressed in
the past (Dalbey et al., 2008; Aaron et al., 2019; Sun X. P. et al., 2021b;
Zhao et al., 2021; Aaron et al., 2022; Zhao and Kowalski, 2022). It
will be of crucial importance in the future to increase the efficiency,
sustainability and, hence, acceptance of such orchestrated workflows
for landslide risk assessment by improving their robustness, reliability
and computational-feasibility.

It will be particularly important to assess the reliability of
landslide risk assessment by quantifying and managing uncertainties
throughout the workflow. This is a challenging task, which requires
to consider and structure the landscape of uncertainties affecting
various steps of the decision-making process. Relevant uncertainty
originates from uncertain model input—such as the digital
elevation model representing the topography (Zhao and Kowalski,
2020) or release area and volume—and rheological parameters
(Quan Luna et al., 2013). Furthermore, process uncertainty can
result from numerical modelling schemes (Schraml et al., 2015)
or calibration methods (Aaron et al., 2019; 2022). All relevant
uncertainties in the computational workflow include aleatoric aspects
due to the intrinsic randomness of the process, as well as epistemic
uncertainty that is of systemic nature, and might be due to a lack
of data. A comprehensive, integrated uncertainty analysis within
a georisk assessment framework is an important reminder of the
limitations of the knowledge about processes involved, and the need
to improve data collection and quality (Eidsvig et al., 2014).

Different methods of reliability analysis have been used in
the recent decades both in geohazards research and its practical
implementation, to assess the output uncertainty in landslide run-
out models due to uncertain input parameters, or to quantify the
uncertainty of derived metrics such as the Factor of Safety (FoS).
Point Estimate Method (PEM) (Przewlocki et al., 2019), First Order
Second Moment method (FOSM) (Kaynia et al., 2008), First Order
Reliability Method (FORM) (Sun X. et al., 2021a), and Monte Carlo
Simulations (MCS) (Cepeda et al., 2013; Liu et al., 2019; Brezzi et al.,
2021) are examples of such methods. Dalbey et al. (2008) presented
several standard andnewmethods for characterising the effect of input
data uncertainty on model output for hazardous geophysical mass
flows.

PEM is a simple way to determine the expectation (mean),
variance, and skewness of a variable that depends on a random
input, by evaluating the function at a low number of pre-selected
values. Additionally, MCS grants access to the complete probability
distribution even in complex problems (Fenton and Griffiths, 2008).
However, it requires a large number of model evaluations, so-called

realisations, at randomly selected inputs following a pre-determined
statistical distribution. Przewlocki et al. (2019) used PEM to conduct
a probabilistic slope stability analysis of a sea cliff in Poland, and
compared the moment estimates with results from MSC. Mean and
standard deviation values of FoS yielded similar results, and PEM
was favoured as it required a lower number of model realisations,
hence lower computational costs for a seemingly similar information
outcome. Tsai et al. (2015) also obtained similar estimations by
comparing PEM and MSC, but pointed out the effects of correlation
between input variables. Earlier works also highlighted the limited
feasibility of PEM for an increasing number of input variables, as
2n estimations are required for n input variables (Christian and
Baecher, 1999; 2002).Therefore, it is more feasible to handle problems
characterised by a low-dimensional input parameter space with PEM,
while high-dimensional problems quickly become computationally
infeasible.

MCS has also been widely used for practical uncertainty
quantification owing to its simplicity of implementation. Liu et al.
(2019) and Ma et al. (2022) used MCS to quantify uncertainty
in landslide run-out distance due to uncertain soil properties.
Brezzi et al. (2021) performed uncertainty quantification of the
Sant’Andrea landslide using MCS. They assumed the two friction
parameters (Coulomb friction and turbulent friction) in a depth-
averaged Voellmy-Salm type approach to follow independent
Gaussian distributions, and then studied the induced uncertainty
in deposit heights. The major challenge of using MCS for
uncertainty quantification in landslide run-out modelling is the high
computational cost, as pointed out by many researchers (Dalbey et al.,
2008; McDougall, 2017; Aaron et al., 2022; Zhao and Kowalski, 2022).

As PEM relies on a much lower number of sampling points
compared to MCS, the probability distribution function (PDF) of
the output cannot be reliably approximated for a general non-
linear process model, such as a landslide run-out model in complex
topography. MCS provides an approximation of the PDF, but it creates
a computational bottleneck when the forward-model is complex and
subject to long runtimes. Physics-basedmachine learning, i.e. creating
a surrogate by training a data-driven model with results from a
physics-based simulation, can overcome the computational bottleneck
of highly-throughput tasks such as uncertainty quantification. The
surrogate model can be sampled, instead of the sampling from
the forward model, and hence the PDF of the quantity of interest
can be calculated efficiently. An example of physics-based machine
learning techniques proven to be effective in many applications
related to geohazards is Gaussian Process Emulation, with successful
demonstrations in landslide run-out models (Zhao et al., 2021;
Zhao and Kowalski, 2022) and stability of infrastructure slopes
(Svalova et al., 2021).

This study aims at demonstrating how an uncertainty
quantification workflow can be set up effectively, and how this affects
themodel-based landslide risk assessment. A test case with a synthetic
topography and a test case with a real world problem are designed.
Multiple forward simulations of both cases are conducted to construct
Gaussian process emulators to facilitate MCS. The objectives are (i)
comparing the results of PEM-based simulations andMCS conducted
with emulators trained based on datasets from a limited number
of simulations in terms of three moments, (ii) investigating the
effects of topographic complexity, i.e. synthetic topography vs. the
topography of a real-world problem, on the PEM - MCS comparison,
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and (iii) demonstrating the applicability of emulation techniques for
uncertainty quantification.

2 Materials and methods

2.1 Modelling approach

Existing physics-based landslide run-out models can be divided
into three groups: lumped mass models, particle models, and
continuum models. Lumped mass models treat the flow mass as
a condensed mass point without spatial variation. This process
idealisation greatly reduces the complexity of the problem, but
the trade-off is losing spatial variation of flow dynamics, such as
internal deformation of the flowing mass. Particle models treat the
flow mass as an assembly of particles and simulate the movement
of each particle and their interactions in order to characterise
flow dynamics. They can directly account for three-dimensional
flow behaviours, including an internal re-distribution of mass.
Computational realisation of a particle model relies on the definition
of conceptual particles, whose size is chosen based on available
computational resources, and is oftenmuch larger than actualmaterial
particles in the landslide. This is beneficial from an implementation
point of view, yet requires special attention, when formulating
necessary interaction forces which are often challenging to justify
and validate. Continuum models treat the flow mass as continuum
material, for which governing equations are derived from balance
laws closed by tailored, complex constitutive relations. Implementing
these in a general three-dimensional context is very challenging and
uses a lot of computational resources. A majority of particularly
relevant continuum models for practical landslide run-out modelling
are formulated within a depth-averaging framework. Depth-averaged
continuum models balance computational efficiency, accuracy and
interpretability. They can account for internal deformation of the
flow material, and provide spatial variation of flow dynamics.
Eqs. 1–3 describe the governing systemof an idealised depth-averaged
landslide run-out model:

∂th+ ∂x (hux) + ∂y (huy) = 0, (1)

∂t (hux) + ∂x(hu2x + gn
h2

2
)+ ∂y (huxuy) = gxh− S fx, (2)

∂t (huy) + ∂x (huxuy) + ∂y(hu2y + gn
h2

2
) = gyh− S fy. (3)

The equations are derived from the mass balance (Eq. 1)
and momentum balance (Eqs. 2, 3). The flow height h and the
depth-averaged surface tangent flow velocities ux and uy are the
state variables. gx, gy, and gn are components of the gravitational
acceleration along surface tangent and in normal directions. The
friction terms Sfx and Sfy depend on the chosen basal rheology. In
terms of the Voellmy rheological model, they are defined as:

S fi =
ui
‖u‖
(μgnh+

g
ξ
‖u‖2), i ∈ {x,y} , (4)

where ‖u‖ denotes the magnitude of the flow velocity; μ and ξ are
the dry-Coulomb friction coefficient and turbulent friction coefficient
respectively.

Many numerical solvers for depth-averaged landslide run-out
models have been developed in the past decades, and McDougall
(2017) provides a comprehensive review. A GIS-based open source
computational tool developed by Mergili et al. (2017), r.avaflow
v2.3, is used in this study. It implements a high-resolution total
variation diminishing non-oscillatory central differencing scheme
to solve Eqs. 1–4 given topographic data, initial mass distribution,
and Voellmy parameters. It runs on Linux systems, and employs
the GRASS GIS software, together with the programming languages
Python and C, and the statistical software R. A Digital Elevation
Model (DEM) and a release height map are given as input as raster
files.

2.2 Case studies

2.2.1 Synthetic case
A simple topography has been created in Python—similar to the

topography generation inAvaFrame (D’Amboise et al., 2022)—which
is denoted as synthetic case herein. Topography consists of a parabolic
slope starting at x = 0 at an altitude of 1332 m, and connecting to a
flat land at x = 3000 at an altitude of 0 m. Extent of the area in x and y
directions are 5000 m and 4000 m, respectively, whereas the resolution
is 20 m. Release zone was defined as an elliptic cylinder, of which the
centre is located at (x,y) = (600, 2000) with aminor axis of 100 m and a
major axis of 200 m.Height at each point within the ellipsewas defined
as 20 m, which generates a total release volume of 1.432 x 106 m3.
Figure 1A illustrates themaximumflowheightmap from a simulation
of synthetic case, while Figure 1B shows the deposit height from the
same simulation.

2.2.2 Acheron rock avalanche
A real-world case is chosen to compare the differences in

uncertainty quantification with the synthetic case. Radiocarbon
testing dates the occurrence of Acheron rock avalanche—located near
Canterbury, New Zealand—approximately 1100 years before present,
and it may have been triggered by seismic activity (Smith et al., 2006).
The deposit area was estimated to be .72 x 106 m2 using a GPS
outline of the deposit, while the deposit volume was estimated as 8.9
x 106 m3 using an estimated mean depth derived from observed and
estimated thicknesses for different morphological zones (Smith et al.,
2012). DEM file and the release height map are obtained fromMergili
and Pudasaini (2014–2021)1, which gives an initial release volume of
6.4 x 106 m3. Figure 2 presents the shaded relief of the area, together
with a map of maximum flow height (see Figure 2A) and deposit
height (see Figure 2B) from a random simulation of Acheron rock
avalanche.

2.3 Gaussian process emulation

Themain problem of applyingMCS for uncertainty quantification
in landslide run-out modelling is its high computational cost. The
runtime of the landslide run-out model is one of the key drivers of
computational cost in classical MCS, as it scales with the number of

1 Mergili, M., Pudasaini, S.P., 2014–2021. r.avaflow—The mass flow simulation tool.
https://www.avaflow.org. Accessed on 2022-07-12.
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FIGURE 1
(A) Maximum flow height and (B) deposit height from a simulation of the synthetic case.

FIGURE 2
(A) Maximum flow height and (B) deposit height from a simulation of Acheron rock avalanche.

forward evaluations. Gaussian process emulation has been used in
recent years to build cheap-to-evaluate emulators to replace expensive-
to-evaluate computational models in the framework of uncertainty
quantification, such as Sun X. P. et al. (2021b), Zeng et al. (2021), and
Zhao and Kowalski (2022). A Gaussian process emulator is a statistical
approximation of a simulation model, built based on input and output
data of a small number of simulation runs. Once an emulator is

constructed, it provides prediction of simulation output at a new input
point almost instantly, together with an assessment of the prediction
uncertainty. This emulator-induced uncertainty can be taken into
account in the framework of uncertainty quantification.

Let y = f(x) denote a simulator where y represents a scalar output
depending on a p-dimensional input x. Assuming that the simulator
is a realisation of a Gaussian process with a mean functionm(⋅) and a
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kernel function k(⋅, ⋅), namely

f (⋅)∼N (m (⋅) ,k (⋅, ⋅)) , (5)

A Gaussian process emulator can be built based on the input-
output data D of n simulation runs, namely D = {xi,yi}

n
i=1. At any

new input point x*, the approximated output y* follows a Gaussian
distribution given by

y*∼N (m′ (x*) ,k′ (x*,x*)) , (6)

m′ (x*) =m(x*) + kT (x*)K−1(y1 −m (x1) ,…,yn −m(xn))
T, (7)

k′ (x*,x*) = k(x*,x*) − kT (x*)K−1k(x*) . (8)

The symbol K denotes the n× n covariance matrix of
which the (i, j)-th entry Kij = k(xi,xj) and the symbol k(x*) =
[k(x*,x1),…,k(x*,xn)]

T.
RobustGaSP package developed by Gu et al. (2019) is used in

this study to build emulators. It provides robust Gaussian process
emulation for both single-variate (Gu et al., 2018), i.e. one simulation
producing one scalar output, and multi-variate simulators (Gu and
Berger, 2016), i.e. one simulation producing high-dimensional output.
Training and validation datasets of each case were generated from
outputs of both cases simulated with r. avaflow 2.3. 100 simulations
for training, and 20 additional simulations for validation of vector
emulators were run for synthetic case and Acheron rock avalanche
separately. Dry-Coulomb friction coefficient (μ), turbulent friction
coefficient (ξ), and release volume (vo) were chosen as uncertain
input variables. The friction coefficients are rather conceptual than
physical (Fischer et al., 2015) and rely on back-analysing past events
where field data are available. The calibrated results are often ranges
(Zhao et al., 2021) or probability density functions (Quan Luna et al.,
2013). In this study, ranges of friction coefficients were chosen as
μ = [.02, .3], ξ = [100,2200] m/s2 according to Zhao et al. (2021). The
release volume of a future landslide event is hardly predictable.
Uncertainty in vo were defined by multiplying the release height map
with a coefficient k, which is assumed to vary between .5 and 1.5
in this study. Parameter combinations were generated using Latin
Hypercube sampling by maximising the minimum distance between
points. Datasets were extracted from simulation results after training,
and scalar outputs, e.g. impact area, deposit area, deposit volume, and
vector outputs, e. g flow height or flow velocity in each cell, were
defined.

2.4 Uncertainty analysis

2.4.1 Point estimate method
Any scalar output y(s, t)— either aggregated, such as impact area,

deposit area or deposit volume, or point-wise flowheight, flowvelocity,
or flow pressure—in space (s) and time (t), from the landslide run-out
simulations can be expressed as a function of three uncertain input
variables as shown in Eq. 9.

y (s, t) = f (μ,ξ,vo) (9)

Assuming that the input variables are not correlated and skewness
is 0, locations of sampling points of each variable correspond to mean

± standard deviation. This results in eight sampling points with equal
weights for three input variables to evaluate the output function y
and calculate the three moments of the output, i.e. mean, variance,
skewness. PEM were executed three times with different coefficient of
variation (COV), i.e. 10%, 25% and 50%. Table 1 shows the assumed
mean, which was chosen as the central point of the ranges defined in
Section 2.3, and standard deviations for the input variables used in the
analyses, PEM 1, PEM 2, and PEM 3.

2.4.2 Monte Carlo Simulations
Parameter combinations for MCS were sampled from truncated

multivariate normal distribution using the R package, tmvtnorm
(Wilhelm and Manjunath, 2010). Points of truncation were chosen as
the ranges given in Section 2.3. Three sets of MCS were conducted
similarly to the PEM, i.e. mean value is the central point of the range
andCOV is chosen arbitrarily as 10% (MCS 1), 25% (MCS 2), and 50%
(MCS 3) to represent different levels of uncertainty in input variables.
10,000 parameter sets were generated for each MCS analysis, and the
outputs are estimated using the emulators defined in Section 2.3.

3 Results

Simulation outputs used in this study can be found in Yildiz et al.
(2022a), and the general workflow, as well as the scripts to reproduce
the figures can be found in the Git repository presented in Yildiz et al.
(2022b).

3.1 r.avaflow simulations

A total of 100 simulations of the synthetic case and a separate 100
simulations for Acheron rock avalanche have been used to calculate
the scalar outputs, and to extract vector outputs. Quantities of interest
(QoI) derived from the simulations are impact area, deposit area and
deposit volume. In addition to the derived ones, direct simulation
outputs, i.e. maximum flow height (hmax) and maximum flow velocity
(vmax) at a predefined cell, are extracted from the simulations. Point
of extraction was chosen arbitrarily as (x,y) = (1000, 2000) for the
synthetic case, and as (1490100, 5204100) for Acheron rock avalanche.
These points were picked among those which had a value higher than
a threshold, e.g. a maximum flow height of .1 m, from all simulations.

Evolution of a simulation in synthetic case can be summarised as
a rather constrained flow, with a limited lateral spread at the upper
section of the slope, and a more pronounced lateral spread close to the
transition to the flat land (See Figure 1A). As no stopping criteria was
defined, the failedmass accumulatesmostly around the toe of the slope
(SeeFigure 1B).Mean values± standard deviations of the impact area,
deposit area and deposit volume were (2.39 ± .37) x 106 m2, (1.22 ±
.22) x 106 m2 and (1.37 ± .41) x 106 m3, respectively. Ranges of vmax
and hmax at (x,y) = (1000, 2000) are 24.9–63.4 m/s and 7.18–14.4 m,
with mean values of 47.7 m/s and 11.0 m, respectively.

Flow path of Acheron rock avalanche can be generalised based
on the simulations conducted in this paper as an initially relatively
straight path, followed by a sharp turn and extending into the valley
(See Figure 2A). Similar to synthetic case, 100 simulations of Acheron
rock avalanche were run, and the same scalar outputs were calculated
or extracted. Mean values ± standard deviations of the impact area,
deposit area and deposit volume were (2.78 ± .91) x 106 m2, (1.45 ±
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TABLE 1 Mean and standard deviation values of the input variables used in the Point EstimateMethod (PEM) analysis of the synthetic case and Acheron rock
avalanche. Same values of Dry-Coulomb and turbulent friction coefficients are used for both cases.

Unit PEM 1 (COV = 10%) PEM 2 (COV = 25%) PEM 3 (COV = 50%)

mean Std. dev. mean Std. dev. mean Std. dev.

Dry-Coulomb friction coefficient - .160 .016 .160 .040 .160 .080

Turbulent friction coefficient m/s2 1150 115.0 1150 287.5 1150 575.0

Release volume - Synthetic x 106 m3 1.432 .143 1.432 .358 1.432 .716

Release volume - Acheron x 106 m3 6.40 .64 6.40 1.60 6.40 3.20

TABLE 2 Coefficient of determination, R2, mean absolute percentage error,MAPE, and normalised root mean squared error nRMSE for the emulators trained with
scalar outputs from synthetic case and Acheron rock avalanche.

Output Synthetic case Acheron rock avalanche

R2 [-] MAPE [%] nRMSE [%] R2 [-] MAPE [%] nRMSE [%]

Impact area .999 .468 .606 .997 1.294 1.900

Deposit area .996 .864 1.173 .988 2.530 3.100

Deposit volume .999 .553 .717 .999 .541 .752

Maximum velocity .999 .592 .731 .967 2.802 3.473

Maximum height .989 1.609 1.996 .965 2.084 2.828

.42) x 106 m2 and (6.28 ± 1.83) x 106 m3, respectively. vmax and hmax at
(x,y) = (1490100, 5204100) have mean values of 32.2 m/s and 42.2 m,
with standard deviations of 6.2 m/s and 6.4 m.

3.2 Emulation

Gaussian process emulation has been used in this study in order
to facilitate the prediction of many scalar outputs for MCS analysis.
Once the training datasets consisting of scalar outputs described in
Section 3.1 are generated, the trained emulators are first validated
with leave-one-out cross-validation technique. Table 2 presents the
validation results of scalar emulators, i.e. mean absolute percentage
error (MAPE), normalised root-mean-square error (nRMSE), and
coefficient of determination (R2) values for both cases. Emulators
trained for synthetic case produced very low percentage-based
errors, i.e. maximum MAPE and nRMSE was 1.609% and 1.996%,
respectively, while theR2 valueswere around .99.The lowest prediction
quality was obtained for maximum flow height at (x,y) = (1000,
2000) in synthetic case. Emulators trained with derived scalar outputs,
i.e. impact area, deposit area and deposit volume, of Acheron rock
avalanche yielded similar model performance as the synthetic case.
Relatively lower R2 values, approximately .97, and higher MAPE and
nRMSE values were obtained for vmax and hmax at (x,y) = (1490100,
5204100). Lowest prediction performance for Acheron rock avalanche
was for maximum flow velocity at the given point.

Prediction quality of the vector emulators both for synthetic
case and Acheron rock avalanche has been evaluated using
testing data from additional 20 simulations. PCI(95%), defined
by Gu and Berger (2016), is chosen as the diagnostic for vector
emulators. It represents the proportion of testing outputs that lie in
emulator-based 95% credible intervals. PCI(95%) of the vector
emulator for point-wise maximum flow height is 83.8%

and 85.3% for synthetic case and Acheron rock avalanche
respectively;PCI(95%) of the vector emulator for point-wisemaximum
flow velocity is 86.3% and 89.1% for synthetic case and Acheron rock
avalanche respectively.

3.3 Uncertainty analysis

Uncertainty of model outputs were investigated by conducting
PEM andMCSwith three differentCOV, a comparison has beenmade
in terms of the three moments, i.e. mean, variance, and skewness, of
the scalar outputs. Figure 3 presents the comparison for the synthetic
case. If the uncertainty of the model outputs is assessed via PEM,
similar mean values are obtained even though the COV is varied
from 10% up to 50%. Differences were higher for vmax and hmax
(See Figures 3D, E). An increase of variance with increasing COV is
evident for all outputs produced by PEM,whereas no clear relationship
can be defined for skewness. For example, the skewness of impact
area and deposit area increased with increasing COV, whereas the
deposit volume, vmax and hmax had nearly no skewness if analysed
by PEM.

Similar to PEM, MCS at all COV produced similar mean values
and increasing variance with increasing COV for all scalar outputs.
No overall trend can be observed in skewness of the outputs generated
via MCS. If both techniques are compared, no significant difference
is present in mean values. PEM produced higher variances especially
at the highest COV, while—similar to previous comparisons—no
generalisations can bemade for skewness. It should be noted that there
is a change from a slightly positive skewness to negative skewness for
vmax and hmax, if the method is switched from PEM to MCS. Other
scalar outputs had rather arbitrary changes between methods, even
though slightly lower values are observed for impact area and deposit
area.
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FIGURE 3
Three moments (mean, variance and skewness) of (A) impact area (in x106 m2), (B) deposit area (in x106 m2), (C) deposit volume (in x106 m3), (D) maximum
flow velocity (in m/s) and (E) maximum flow height (in m) at (x,y) = (1000, 2000) obtained from synthetic case with Monte Carlo simulations (MCS) and
point estimate method (PEM).

Figure 4 presents three moments of the same scalar outputs
from Acheron rock avalanche. Similar patterns to data from
synthetic case are observed in Figure 4. Mean values of the
outputs are similar between different methods and levels of
COV. Variance increases in both methods with increasing COV,
while the values obtained from MCS is lower than those from
PEM.

Figure 5 illustrates the synthetic case results of the MCS
analysis at COV of 50% in terms of the five scalar outputs–the
impact area, deposit area, deposit volume, vmax and hmax at (x,y) =
(1000, 2000). The first three columns show the relationships of
the scalar outputs with respect to the three uncertain parameters.

The last column shows the histograms of each scalar output.
Figure 6 presents the corresponding results of Acheron rock
avalanche. Observations from Figures 5, 6 can be generalised as
follows.

• the impact area and deposit area decrease with
increasing dry-Coulomb friction coefficient and increases
with increasing release volume (see Figures 5A, B,
6A, B),
• the deposit volume is proportional to the release volume and
has almost no dependence on the dry-Coulomb and turbulent
friction coefficients (see Figures 5C, 6C),
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FIGURE 4
Three moments (mean, variance and skewness) of (A) impact area (in x106 m2), (B) deposit area (in x106 m2), (C) deposit volume (in x106 m3), (D) maximum
flow velocity (in m/s) and (E) maximum flow height (in m) at (x,y) = (1490100, 5204100) obtained from Acheron rock avalanche with Monte Carlo
simulations (MCS) and point estimate method (PEM).

• the point-wise maximum flow velocity decreases with increasing
dry-Coulomb friction coefficient and has little dependence on the
release volume (see Figures 5D, 6D),
• the point-wise maximum flow height increases with increasing
release volume and has little dependence on the dry-Coulomb
and turbulent friction coefficient (see Figures 5E, 6E).

Differences between the two cases can be noted as (1) the
deposit area has a clear negative relationship with the dry-Coulomb
friction coefficient in Acheron rock avalanche, but the trend is
hardly visible for the synthetic case; (2) the point-wise maximum

velocity increases with the turbulent friction coefficient in the
synthetic case, but the relationship is vague in Acheron rock
avalanche.

Figures 7, 8 show the comparison of spatial distribution of
maximum flow height from synthetic case and Acheron rock
avalanche, respectively. Results given in the figures,mean and standard
deviation of hmax in each cell as well as their differences, are from
the PEM and MCS analyses conducted at COV = 50%. A visual
comparison of mean values (See Figures 7A, B, 8A, B) look nearly
identical, but the difference map shows that flow heights at the central
section of the flow path in both cases are higher inMCS analysis, while
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FIGURE 5
Relationships and histograms of (A) impact area, (B) deposit area, (C) deposit volume, (D) maximum flow velocity and (E) maximum flow height at (x,y) =
(1000, 2000) from synthetic case with uncertain parameters used in the Monte Carlo analysis with coefficient of variation of 50%.
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FIGURE 6
Relationships and histograms of (A) impact area, (B) deposit area, (C) deposit volume, (D) maximum flow velocity and (E) maximum flow height at (x,y) =
(1490100, 5204100) from Acheron rock avalanche with uncertain parameters used in the Monte Carlo analysis with coefficient of variation of 50%.
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FIGURE 7
Spatial distribution of mean and standard deviations of maximum flow height (hmax) from synthetic case obtained with (A, D) Point Estimate Method (PEM)
and (B, E) Monte Carlo Simulations (MCS) at 50% coefficient of variation. Differences of (C) mean value and (F) standard deviation are plotted by subtracting
MCS results from PEM results.

TABLE 3 Correlation of input variables with location (xL) and the length (Lmax)
of maximum lateral spread in synthetic case.

xL Lmax

Dry-Coulomb friction
coefficient

.99*** .33***

Turbulent friction
coefficient

No correlation .50***

Release volume No correlation .80***

***p < .001

the edges of the flowpath have higher flowheights in the PEManalysis.
Similar to the results in Figures 3, 4, MCS produced lower standard
deviation than PEM at the majority of cells, i. e approximately 200
cells out of 6600 for synthetic case, and 830 cells out of 9800 cells for
Acheron rock avalanche.

4 Discussion

Risk for a single landslide scenario has three main components:
the landslide hazard, the exposure of the elements at risk, and
their vulnerability. Conducting a quantitative risk analysis enables
the researchers or practitioners to obtain the probability of a
given level of loss and the corresponding uncertainties of these
components (Corominas et al., 2014; Eidsvig et al., 2014). The
hazard in a model-based landslide risk assessment is generally
evaluated by simulating various scenarios with an underlying
physics-based computational model. A probabilistic approach to

this assessment and the quantification of associated uncertainty
inevitably create a computational bottleneck—especially for large-
scale applications (Strauch et al., 2018; Jiang et al., 2022). One can
opt for a simple technique to quantify uncertainty, i.e. PEM in
this study, to reduce the number of simulations required, or use a
technique necessitating high number of simulations, for instanceMCS
techniques.

The computational challenge of MCS has been well-recognised in
the field of landslide modelling, which results from the large number
of model realisations at randomly selected input values (Dalbey et al.,
2008; McDougall, 2017). MCS can be very computationally intensive,
since it typically requires tens of thousands of model runs to achieve
reasonable accuracy (Salciarini et al., 2017). This is often not feasible
in model-based landslide risk assessment, as a single model run
may take minutes to hours. A solution to overcome this problem
has been demonstrated in this study by utilising recent development
of GP emulation (Gu and Berger, 2016; Gu et al., 2018; Gu et al.,
2019). GP emulators are built for each case based on only 100
model runs. Then, MCS with 10,000 randomly generated inputs is
conducted using the emulators, which means no further model runs
are needed. Moreover, diagnostics of built GP emulators are analysed
to evaluate their performance. High R2 values and low MAPEs and
nRMSEs (See Table 2) suggests that the scalar emulators can be
used with confidence for predictions of a singular output from an
input parameter combination. All PCI(95%) values for the vector
emulators are close to 95%, which justify their usage as a surrogate
to the computational model (Gu et al., 2019). The corresponding
results of GP emulation-based MCS are therefore close to results
of a classical MCS, but the computational time is significantly
reduced by introducing GP emulation. This demonstrates the
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FIGURE 8
Spatial distribution of mean and standard deviations of maximum flow height (hmax) from Acheron rock avalanche obtained with (A, D) Point Estimate
Method (PEM) and (B, E) Monte Carlo Simulations (MCS) at 50% coefficient of variation. Differences of (C) mean value and (F) standard deviation are plotted
by subtracting MCS results from PEM results.

applicability of GP emulation for uncertainty quantification of
landslide run-out models. A similar methodology applied to
landslide generated waves was also found promising to perform
probabilistic hazard analysis based on computationally intensive
models (Snelling et al., 2020).

Comparative studies in landslide research showed that similar
mean values of the QoI can obtained with PEM or MCS (Tsai et al.,
2015; Przewlocki et al., 2019). As shown in Figures 3, 4, when an
aggregated (e.g. impact area, deposit area, deposit volume) or point-
wise (velocity and height at a predetermined coordinate) output
is calculated, PEM and MCS yielded similar expectancies (mean
values) in this study. In addition, both PEM and MCS lead to

similar variance values for relatively low COV, i.e. 10% and 25%.
This implies that if one only aims at computing low-order moments
in comparative topographic settings, PEM can achieve reasonable
results (Fanelli et al., 2018). PEM is particularly computationally
appealing for low-dimensional problems due to the requirement of
2n realisations, where n is the dimension of the input parameter
space. However, as pointed out by Christian and Baecher (2002),
caution should be used in approximating skewness or other higher
order moments based on PEM. This is supported by the large
difference between PEM- and MCS-based skewness results as shown
in Figures 3, 4. Christian and Baecher (2002) also pointed out that
the results deviate significantly, when the COV of uncertain inputs is
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large, which is confirmed by the large difference between the variance
computed by PEM and MCS in the cases of COV = 50% as shown
in Figures 3, 4. Comparing Figures 3, 4, it can be seen that the
complexity of topography, which refers to the real topography of
Acheron rock avalanche in comparison to the parabolic slope of the
synthetic case, seems to have limited impact on the general trend of
moments based on PEM and MCS, especially mean and variance. It
may imply the transferability of the trends described above to different
topographies.

When input uncertainty is high and the input parameter space is
high-dimensional, MCS is clearly favourable over PEM to compute
desired statistics of the output of interest.The benefit of GP-integrated
MCS is that it can not only compute the desired statistics, but it
also provides the PDF (Marin and Mattos, 2020). Cepeda et al. (2013)
recommends a stochastic approach for uncertainty quantification
such as MCS to be part of the routine of any landslide hazard
risk assessment, and Hussin et al. (2012) denotes the frequency
distributions of model outputs important as a first step to assess
the spatial probability in future debris flow hazard assessments. The
workflow of GP emulation-based uncertainty quantification in this
study is therefore expected to improve landslide risk assessment. It
should be noted that the number of model runs to train GP emulators
are effected by the dimension of input parameter space even though
the number of model runs of MCS is independent. Due to this
limitation, the gain of computational efficiency by using GP emulation
decreases with increasing dimension of input parameter space. If
the dimension is too high, other emulation techniques or dimension
reduction can be considered (Liu and Guillas, 2017).

Histograms plotted in Figures 5, 6 can be used to infer on the
complexity of the output functions, see Eqs. 9. Input parameters
were assumed to be normally distributed in MCS analysis. It can
be seen that the deposit volume (see Figures 5C, 6C) is the only
parameter that has the shape of the truncated normal distribution
with nearly no skewness. Other scalar outputs result in skewed
and even bi-modal distributions that clearly deviate from the initial
Gaussian distribution of the corresponding input parameter. Both
cases show a nearly perfect correlation between deposit and release
volume with no effects of the friction coefficient indicating parameter-
independent mass conservation. It should be noted that the deposit
volumewas calculated considering cells in which height exceeded .1 m
at the last simulation time step. As there was no stopping criteria
defined and no entrainment was considered, the deposit volume was
nearly equal to the release volume. Highly linear function of deposit
volume and release volume translates into the deposit volume having
a Gaussian distribution, as the linear transformation of a Gaussian
distribution is also aGaussian distribution.However, the non-linearity
of the other functions that can be used the express the scalar
outputs—except deposit volume—results in distributions different
than those of the input parameters. For example, Cepeda et al. (2013)
fittedGammadistributions for flowheight and velocity in twodifferent
cases.

Patterns observed in Figures 7C, 8C can be explained by analysing
the effects of input variables on the general shape of the flow path.
Hence, the simulation in a synthetic topography is an ideal example
due to its simplicity. As explained in Section 3.1 and shown in
Figure 1A, the flow path of the synthetic case can be described as a
concentrated central flow superposed by lateral spread at the toe of
the slope. It can be seen in Figure 7A that the mean flow height has

two pronounced dents in its spatial distribution obtained with PEM.
These correspond to the initiation of the lateral spread at different
configurations of the input variables are considered. More specifically,
PEM analysis is run only at few discrete values in parameter space
chosen at a distance of one standard deviation away from the mean.
When the friction coefficient is chosen at a COV = 50% with a mean
of .16, PEM simulations are characterised by a lateral spread very
early in the flow path, or a lateral spread that kicks in much further
downstream. Therefore, the dents in the maximum flow height map
(See Figure 7A) is a direct consequence of the coarse discretisation of
the parameter space in the PEM approach. In contrast, MCS yields a
homogeneously distributed maximum flow height map at the toe of
the slope as expected in this almost linear setting. As a consequence,
flow heights at the upper sections of the lateral spread are higher in
PEM, whereas MCS yields higher values at the mid-section of the
lateral spread (See Figure 7C).

To recognise patterns between the location (xL) and themagnitude
(Lmax) of the maximum lateral spread with the input variables, linear
regression analysis was conducted. Table 3 shows that the location is
controlled dominantly by the dry-Coulomb friction coefficient with
a negative correlation, i.e. higher the friction coefficient earlier the
lateral spread starts, and howmuch the flow spreads in y-axis is mostly
controlled by the release volume, even though the friction coefficients
affect to a certain extent.

5 Conclusion

Uncertainty quantification is a computationally demanding task
for designing and developing amodel-based landslide risk assessment.
Classical MCS is often computationally infeasible due to the large
number of required forward evaluations of the computational
model. It has been demonstrated that GP emulation-based MCS
can greatly improve the computational efficiency which makes GP-
integrated MCS applicable for landslide run-out modelling. One
clear advantage of using GP emulation-based MCS is the ability to
sample parameter uncertainty in a dense way, as evaluation time
of the forward simulation is no longer a computational bottleneck.
As a consequence, the output’s probability distribution reflecting the
propagated uncertainty is captured at high accuracy and provides
additional information about skewness and possible multi-modality.
In contrast to this PEM provides only limited information on the
output’s probability distribution. A comparative study between PEM
and GP emulation-based MCS has been conducted based on the
three moments of the probability distribution, i.e. mean, variance, and
skewness. The simpler approach, PEM, yielded a similar expectancy
values to GP emulation-based MCS. However, PEM and MCS
differed in higher order moments, such as variances and skewness,
hence also in the respective spatial distribution of the flow path,
and the subsequent hazard map. This finding is of high practical
relevance: While a computationally cheap PEM based workflow
predicts the mean of a probabilistic landslide risk assessment well,
it is in general cases not suitable to assess the reliability of the
prediction, for instance in the sense of a probabilistic simulation’s
standard deviation. The latter requires a MCS approach, which
often is computationally infeasible. GP-emulated MCS overcome this
limitations by introducing a surrogate model trained based on an
empirical error control. It can be suggested that highly uncertain and
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high-dimensional input parameter spaces, e.g. complex topographies,
advanced material models, models with empirical parameters,
inevitably requires an uncertainty quantification workflow that is able
to account for non-Gaussian, potentially multi-modal distributions. It
should be noted that the gain in compute time by using GP emulation
critically depends on the computational effort needed to train the
GP emulator. This means that computational resources significantly
increase, as the dimension of the input parameter space increases.
Alternative techniques will have to be incorporated if the input
dimension is too high.
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