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The fossil record represents the world’s largest historical dataset of biodiversity.

However, the biomechanical and ecological potential of this dataset has been

restricted by various unique barriers obstructing experimental study. Fossils are

often partial, modified by taphonomy, or lacking modern analogs. In the past,

these barriers confined many studies to descriptive and observational

techniques. Fortunately, advances in computer modeling, virtual simulations,

model fabrication, and physical experimentation now allow ancient organisms

and their biomechanics to be studied like never before using “Defossilized

Organismal Proxies” (DOPs). Although DOPs are forging new approaches

integrating ecology, evolutionary biology, and bioinspired engineering, their

application has yet to be identified as a unique, independent methodological

approach. We believe that techniques involving DOPs will continue

revolutionizing paleontology and how other related fields interact with and

draw insights from life’s evolutionary history. As the field of paleontologymoves

forward, identifying the framework for this novel methodological development

is essential to establishing best practices that maximize the scientific impact of

DOP-based experiments. In this perspective, we reflect on current literature

innovating the field using DOPs and establish a workflow explaining the

processes of model formulation, construction, and validation. Furthermore,

we present the application of DOP-based techniques for non-specialists and

specialists alike. Accelerating technological advances and experimental

approaches present a host of new opportunities to study extinct organisms.

This expanding frontier of paleontological research will provide a more holistic

view of ecology, evolution, and natural selection by breathing new life into the

fossil record.
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Introduction

Organisms have adapted to constantly changing

environments throughout the earth’s history. These changes

are documented in the fossil record, providing a critical deep-

time context for the evolution and structure of modern

ecosystems and organisms. Beyond paleontology, fossils give

macroevolutionary context to interrelated fields like biology,

ecology, and bioinspired engineering (Takita et al., 2003;

Roberts et al., 2011; Fukuoka and Akama, 2014; Park et al.,

2014). Yet distinct challenges are associated with studying the

functional morphology of organisms whose behavior cannot be

directly observed. Paleontologists have continuously developed

new techniques to explore past life at a level that more closely

matches our understanding of modern organisms. Early studies

prioritized describing novel, extinct organisms and constructing

their evolutionary framework (e.g., Cope, 1878; Sherwood

Romer, 1968) using environmental information and modern

analogs to generate ecological hypotheses. Later, functional

morphologists analyzed the potential function of fossil

morphologies. As the number of described fossil taxa and

individuals increased, investigators created quantitative

approaches to study evolution, extinction, and ecological

trends through morphological change (Parrington and

Parrington, 1977; Holmes, 1989; Vermeij, 1993; Hutchinson

and Garcia, 2002). Today, the study of form and function is

transforming again, as computational defossilization creates new

means to study organisms previously rendered static by

fossilization experimentally. We define computational

defossilization as the process of resurrecting fossils as virtual

and/or physical proxies of once-living organisms’ morphologies.

We refer to these virtual and physical models as Defossilized

Organismal Proxies (DOPs). Rapidly developing 3D printing and

computational modeling technologies have helped DOPs

flourish, bringing investigators closer than ever to subjecting

the morphologies of extinct organisms to biomechanical tests

akin to those conducted on extant organisms (Johnson and

Carter, 2019; Pandolfi et al., 2020). However, as the

experimental design using DOPs is rooted in techniques from

fields in which, classically, many paleontologists do not have

foundational training, paleontologists must apply these

technologies meaningfully by ensuring an understanding of

experimental inputs, assumptions, and limitations.

We, the authors, have broad interests in using the process of

computational defossilization for biomechanical experiments,

primarily applying these techniques to physical experiments

regarding functional morphology and its implications for

macroevolution and paleoecology. While individually, we

focus on disparate topics and taxa, we have identified

fundamental commonalities in our experimental goals and

approaches. Going forward, we anticipate that paleontology

will emphasize a broadened understanding of how form and

function are related to interactions between organisms (e.g.,

predator-prey interactions) and across complex anatomical

systems of single organisms (e.g., interactions between the

spine and limbs during locomotion). Analyzing such

biomechanical interactions will require physical models that

can accommodate complex morphologies and the chaotic

circumstances of real-world environments. In this perspective,

we synthesize a generalized experimental workflow, highlight

methodological limitations, and suggest best practices to make

biomechanical DOP-based experiments repeatable and

meaningful in a broader evolutionary context. Lastly, we

discuss future directions for the field to develop the skills

needed for increasingly interdisciplinary experimentation for

macroevolutionary research using DOPs.

Experimental design

The first step in designing a DOP-based experiment is

identifying an ecological or evolutionary hypothesis that

would benefit from empirical testing. Often, these are long-

standing hypotheses from the literature that propose drivers

of macroevolution or the function of morphological

adaptations. However, investigators must first strategically

narrow the vast scale of macroevolutionary hypotheses to

questions with scopes that can be addressed empirically

(Table 1). The resulting empirical scope often targets aspects

of morphology that can be isolated. While the technology to

create DOPs has existed for many years (Cunningham et al.,

2014; Pandolfi et al., 2020), many researchers within the field

have not yet adopted computational defossilization in

combination with physical experiments to establish

fundamental, empirical relationships between form and

function (i.e., first-order approximations of functional

morphology). Investigators can subsequently incorporate new

levels of complexity to systematically probe models increasingly

similar to taxa of interest (Figure 1).

The limitations of taphonomy and taxonomy for a chosen

fossil group dictate the morphological assumptions needed to

create a DOP, thus, informing whether virtual models are

sufficient or if physical models are required. Investigators

must consider taphonomic variation across taxa,

morphologies, fossil completeness, levels of taxonomic

identification, and sampling frequency (Tarver et al., 2007;

Starrfelt and Liow, 2016). These limitations influence the level

of abstraction needed for a DOP, affecting whether a DOP is

intended to demonstrate strict mimicry or some level of

inspiration from fossils. For example, in cases of exceptional

preservation of morphology, direct mimicry from a specimen

may be more achievable (Perricone et al., 2022). In contrast,

fossils that exhibit greater taphonomic distortion require a larger

level of abstraction to fill morphological gaps. Investigators,

therefore, may instead aim to create a DOP inspired to probe

unique morphological features that unite a taxon in its
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biomechanical applications. We will expand upon these concepts

in the following sections.

Model construction and
experimentation

The goal of a DOP is to represent the living animal and/or the

critical parts of its morphology for experimentation. Sometimes

this requires reconstruction and/or retrodeformation while a

DOP is virtual (VDOP) (Srivastava and Shah, 2006; Molnar

et al., 2012; Tallman et al., 2014; Johnson et al., 2017; Pohle and

Klug, 2018; Schlager et al., 2018). Investigators can mitigate

taphonomic distortion by assuming symmetry to complete a

partial specimen (Schlager et al., 2018), using modern analogs as

guides (Molnar et al., 2012; Tallman et al., 2014), forming

composites from multiple individuals (Ibrahim et al., 2014;

Peterman et al., 2020b), or reconstructing morphologies

mathematically (Raup, 1967; Peterman et al., 2020a; Peterman

et al., 2020c; Moron Alfonso et al., 2020; Chirat et al., 2021).

Mathematical reconstruction is uniquely valuable for

creating theoretical morphologies that “simplify” characters

and isolate morphological variables of interest (Johnson,

2020). These models can serve as a foundation for

increasingly complex models, modifying a few morphological

characters at a time. In addition to avoiding taphonomic

distortion altogether, theoretical morphologies help compare

the form and function of non-existent morphologies to

realized (extant and extinct) morphologies (Hebdon et al.,

2020b; Johnson, 2020). Testing non-existent morphologies can

reveal evolutionary, functional, and sometimes developmental

constraints on ancient and extant forms (Raup, 1966). In any

case, one must recognize that all abstractions (e.g., morphology,

biological material properties, size) made to create a DOP for

biomechanical experiments will likely influence results.

Therefore, choices made in retrodeformation and

reconstruction must be clearly outlined in publications so that

future investigators may make meaningful comparisons to their

work and understand precisely how virtual components were

constructed (mesh size, density, smoothing, etc.) so that they may

replicate methods.

There are many determining factors for choosing to use a

VDOP, a PDOP, or both. Experiments on VDOPs can often be

cost-effective as many iterations of an experiment may be run

while changing single parameters (e.g., kinematic studies, multi-

body dynamic analysis, computational fluid dynamics) (Sellers

et al., 2009; Hebdon et al., 2020b; Jones et al., 2021). Virtual

experiments are also valuable tests of expected outcomes for

further physical experiments or settings that are not feasible for a

physical laboratory setting (e.g., those which require extremely

large spaces or amounts of materials) (Díez Díaz et al., 2020). For

example, investigators have performed hydrostatic simulations to

TABLE 1 Examples of macroevolutionary hypotheses and topics that have been addressed using DOPs. Each topic must be narrowed to an
appropriate scope for an experimental question before a VDOP or PDOP can be used.

Evolutionary hypothesis or
topic

Experimental question VDOP or
PDOP

References

There may exist tradeoffs between the ability to escape
predators and having a stronger shell based on shape

Do shell shapes which permit escape sustain lower peak loads
than those which do not permit escape?

PDOP Johnson (2020)

Ammonoid septa became more complex over time due to
predation pressures

When all other parameters are equal (shell size, whorl shape,
thickness, etc.) do complex septa sustain higher peak loads
than less complex septa?

PDOP Johnson et al. (2021)

There is a wide variation in durophagous dentition, and
some tooth forms break shells more effectively than
others

Which tooth shapes require the least load to induce breakage? PDOP Crofts and Summers, (2014)

The land to flight transition in Maniraptora did not
require an intervening gliding transition phase

Could oscillation frequencies in Caudipteryx cause wing
flapping?

VDOP &
PDOP

Talori et al. (2019)

Advanced terrestrial locomotion historically has been
restricted to stem-amnniotes

What was the walking gait of Orobates pabsti? VDOP &
PDOP

Nyakatura et al. (2019)

Therpod dinosaurs may have used their tails to stabilize
in jumping maneuvers

How does the presence of a stiff tail affect stability in agama
lizards and a small robot?

PDOP Libby et al. (2012)

The function of long necks of plesiosaurs is unclear What is the range of motion in Nichollssaura borealis
(plesiosaur)?

VDOP Nagesan, et al. (2018)

Hydrostatic stability versus maneuverability in
cephalopods

Are hydrostatically unstable morphotypes capable of
modifying their orientation in the water column?

VDOP &
PDOP

Peterman and Ritterbush
(2022)

Investigating a physiological function for fractal-like
septa

Do more complex ammonoid septa have higher capillary
potential?

VDOP &
PDOP

Peterman et al. (2021)

Investigating how hydrostatic stability constrains mode
of life

Were orthocone cephalopods capable of assuming non-
vertical orientations?

VDOP &
PDOP

Peterman et al. (2019b);
Peterman and Ritterbush
(2021)
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determine the buoyancy and mass distributions of organisms

submerged in water (Peterman et al., 2019a). Others have

performed computational fluid dynamics (CFD) simulations

on similar models to determine aero- and hydrodynamic drag,

lift, and movement capabilities (Rahman, 2017; Hebdon et al.,

2020a; Hebdon et al., 2020b). VDOPs have also been used to

study structural resistance to mechanical stress (Lemanis et al.,

2016; Lemanis and Zlotnikov, 2018; Lemanis, 2020), bite force

(Rayfield, 2007; Walmsley et al., 2013; Cox et al., 2015), and other

properties with various finite element analysis (FEA) utilities

(Bright, 2014). Additionally, the mechanics of movement have

been derived from VDOPs (Snively et al., 2013; Nyakatura et al.,

2015; Sellers et al., 2017; Bishop et al., 2018; Bishop et al., 2021).

However, virtual analyses remain computationally limited

in several important areas of biomechanical study, including

modeling fracture, material properties of soft tissues, ground

reaction forces, and the mechanics of locomotion on soft

substrates. Additionally, the properties of many biological

materials are still unknown, requiring investigators to

assume similarity to taxa whose material properties are

FIGURE 1
Generalized workflow for using DOPs to study macroevolutionary hypotheses showing steps to experimental design, model construction,
experimentation, validation, and application of results. The workflow is iterative by design, allowing for models and experiments to be refined as new
results are generated.
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known (which may significantly change results). Since virtual

studies are highly dependent on chosen inputs and

assumptions, it is crucial that investigators clearly state

these choices in their methods. While methodological

transparency may seem like an obvious scientific caveat, it

is of particular importance for paleontological studies, which

often draw conclusions from relative comparisons rather than

the absolute magnitudes of simulated results to account for

necessary estimations (e.g., bulk material properties) (Tseng

et al., 2011).

Finally, it is imperative to thoroughly explain virtual

methodologies because not knowing what lies behind

prefabricated programs can lead to mistakes in choosing

inputs or interpreting results. It is also essential to understand

how researchers in other fields use tools that paleontologists have

adopted (e.g., FEA, MBDA from engineering). For example,

finite element methods have become common practice as

complete paleontological studies examining the morphologies

of ancient organisms. However, in our experience in engineering

labs, virtual or mathematical models are often a first step used to

approximate the outcome of a physical model, which researchers

will build subsequently. The virtual model does not stand alone;

instead, it serves to help the investigator detect areas of weakness

in their design, anticipate possible outcomes, and troubleshoot

and validate ideas that researchers will put into practice

physically. Thus, we suggest that using physical DOPs

(PDOPs) creates a valuable complement and point of

validation for existing VDOPs.

Experiments with PDOPs incorporate real-world variability

unaccounted for in virtual settings. Recent advances in the

fabrication of physical models, most notably 3D printing, have

created direct conversions of virtual models to physical ones

(Long et al., 2006; Mcinroe et al., 2016; Talori et al., 2018;

Johnson and Carter, 2019; Nyakatura et al., 2019; Talori et al.,

2019; Ibrahim et al., 2020; Johnson et al., 2021). Now, in

addition to performing experiments on casts or physical

approximations of specimens (Chamberlain, 1976; Jacobs,

1992; Schulp, 2005; Whitenack and Herbert, 2015), more

intricate morphologies can be created at high levels of

detailed combinations for uses spanning robotic gait

reconstruction (Nyakatura et al., 2019; Ibrahim et al., 2020),

compression experiments (Johnson, 2020; Johnson et al., 2021),

hydrostatic balancing (Peterman et al., 2020d) and dynamic

fluid flow experiments (Peterman and Ritterbush, 2021). These

experiments may not always reflect absolute physical properties

or behaviors; however, they provide valuable insight from

relative comparisons of results between different

morphologies using materials with similar bulk properties

(Johnson et al., 2021). Even the most fundamental syn vivo

capabilities have not yet been determined for many extinct

organisms, especially those lacking clear modern analogs.

Again, this illustrates the importance of defining an

appropriate scope for DOP-based experiments for

meaningful interpretation and validation.

Validation

The inherent challenges of working with fossils necessitate

methods to confirm that experimental design accurately captures

modeled behavior and does not reflect experimental conditions

alone. DOPs can be validated in multiple ways:

1) Researchers can conduct sensitivity analyses during the

experimental design process. Sensitivity analysis entails

systematically changing parameters to determine effects on

results (Tseng et al., 2011; Bijlert et al., 2021; Bishop et al.,

2021) and demonstrate methodological constraints. Such

tests are often used to validate VDOP studies and to tune

parameters over many iterations. In contrast, PDOP studies

often require a priori decisions, which may affect sensitive

parameters.

2) Once an experiment is complete, one can demonstrate that

an experimental design produces results within a range

generated using extant taxa with similar material

properties, morphologies, or behaviors (Sellers et al.,

2009; Pierce et al., 2012; Nagesan et al., 2018; Talori

et al., 2019; Ibrahim et al., 2020). However, there are

biases in this approach: similar structures may not be

functionally or environmentally homologous when

organisms are considered in their paleoecological

context (Pierce et al., 2013). Some paleontologists can

alleviate this by using recently-extinct taxa or taxa with

living descendants (Dzemski and Christian, 2007). In cases

without relevant modern analogs, validation can be

conducted using different taxa from various phylogenetic

backgrounds. The farther apart the modern taxa are

phylogenetically, the less likely a method will capture

data present due to homoplasy alone. Given these

constraints, many investigators also benefit from cross-

methodological validation.

3) Comparing VDOPs and PDOPs can ground a virtual model

in real-world conditions (Nyakatura et al., 2019; Ijspeert,

2020). Using VDOPs and PDOPs in conjunction reduces

the chance that experimental design choices dominate results.

PDOPs help constrain and assess the real-world plausibility of

a simulation using a VDOP. For example, cross-method

validation has been used in reconstructing walking gaits in

a stem-amniote and flapping motion in an early bird

(Nyakatura et al., 2019; Talori et al., 2019). A VDOP

model predicted accepted results, and physical experiments

validated virtual results in both cases. VDOPs and PDOPs

have also been used in concert to investigate liquid retention

in extinct cephalopods (Peterman et al., 2021).
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Experiments using DOPs are frequently interdisciplinary,

generating results that investigators can apply across ecology,

evolution, engineering, paleontology, and other fields in

several ways: 1) Collecting empirical data allows

investigators to assess the potential function of morphology

and hypothesize about its adaptive value, if any, exists. For

example, DOPs can be used to evaluate morphological

tradeoffs between different roles, like defense and

locomotion (Johnson, 2020) or stability and

maneuverability (Peterman and Ritterbush, 2022).

Functional experimental studies are also valuable to

modern animal behaviorists interested in evolutionary

processes governing behaviors (Hsieh and Plotnick, 2020).

Understanding the behaviors of extinct organisms also

expands the range of taxa that can be used for bioinspired

design in engineering (Perricone et al., 2022; Tamborini,

2022). 2) DOP-based studies are useful for refining existing

deep-time eco-evolutionary hypotheses previously

understood primarily from description. Incorporating

empirical data sharpens our understanding of existing

macroevolutionary hypotheses. 3) Finally, the results of

experiments using DOPs are highly informative for future

experimental design. DOPs aid in establishing fundamental,

first-order approximations of form and function. Thus, DOP-

based experiments create a foundation for future work that

can incorporate new levels of complexity once a framework

has been developed. These more detailed models will further

aid macroevolutionary studies that contextualize how past life

was influenced by changing environmental and ecological

conditions. Understanding long-term evolutionary patterns,

in turn, informs the advancement of studies of modern life

and ecosystems.

Future directions and synthesis

In this perspective, we have discussed a generalized

workflow for the effective use of DOPs in paleontology

studies. For the first time, we can understand extinct taxa

with the same rigor as their extant counterparts. This new

scientific horizon will revolutionize how the fossil record is

utilized across many fields. As paleobiology embarks on this

journey, it is essential to consider how to approach this

venture meaningfully.

Recently, there has been increasing emphasis on the

applications of the fossil record for paleomimetics and

paleo-bioinspired design. Mimetic approaches are

appropriate for species-specific questions (i.e., Nyakatura

et al., 2019; Perricone et al., 2022). However, for questions

encompassing generalized forms relevant to multiple taxa

(e.g., macroevolutionary inquiry aligned), abstracted models

using paleo-bioinspiration (McInroe et al., 2016) are more

valuable. Abstracted models can incorporate parameters

tuned to match a host of animals (i.e., a test bed). As

paleontology is further integrated into studies in related

fields like robotics and engineering, investigators should

carefully consider the significant differences between these

approaches and ensure that their choices match their

questions. Furthermore, it is essential to correctly interpret

the results from either type of model and ensure other fields

understand the evolutionary context of the results from any

DOP-based study.

While related fields are becoming increasingly aware of

the value of understanding the history of past life,

macroevolution often remains misused as a means to

support the development of bioinspired work. For

example, the previously common misconception that

modern animals are the result of many iterations of failure

and improvement in morphology over geologic time

(i.e., evolution is an optimizing process) has mainly been

mitigated (Flammang, B.E., 2022). However, it remains

challenging to interpret a DOP-based result without a

robust paleontological background to understand a taxon

within its geologic framework (time, environment, ecological

composition). The biotic and abiotic conditions that lead to

the evolution of extant taxa have changed over time (e.g.,

environments change, predators are introduced, and gene

duplication events occur). Extinct animals were sufficient for

life during their given time periods. While scientists have the

power of retrospection, evolution does not. Without

understanding the broader evolutionary and geologic

context for functional morphology, investigators in other

fields may employ tests that do not capture their aims or

misinterpret paleontological trends.

Lastly, as paleontologists continue to embrace rapidly

developing technologies, we must ensure our scientists are

trained to utilize these advancements to their full potential.

Paleontologists are traditionally heavily trained in geology

and biology; however, it is becoming increasingly apparent

that having training in areas like engineering, manufacturing,

and mathematics enables a host of new PDOP-based

experiments. Not only are those skills practical within the

field, but also being trained in these areas also has the

potential to attract and retain more diverse paleontologists

from a wide range of backgrounds and interests. By utilizing

skills from other fields and drawing members from these

fields, paleontology can recruit and retain more diverse

scientists (which has been a historical challenge (Carter,

et al., 2022)). Paleontology has always had one foot in the

past and one foot in the present. However, with modern

technologies and DOP-based approaches, we can now make

good on the adage: “What’s past is prologue” and take a step

into the future. It will require reassessing our model types and

changing how we teach our students, but this is doable for a

field that has taken on the challenge of investigating life from

its beginning.
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