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The existence of gravels in the glutenite formations leads to the complex geometries
of hydraulic fracturing propagation and difficult construction in fracturing
engineering. To study the hydraulic fracturing propagation law of glutenite
formations, this paper establishes a fracture propagation model for the
heterogeneous glutenite formations based on discrete element method, and
analyzes the effects of gravel content, particle size, distribution, horizontal stress
difference, fracturing fluid viscosity and flow rate on hydraulic fracturing propagation
behavior. Results show that the complex geometries of hydraulic fractures in
glutenite formations can lead to the generation of branched fractures and
fracture bifurcation. Small-sized gravels have little effect on the fracture
propagation shape which leads to a single main fracture with a flat fracture
surface, on the contrary, large-sized gravels may induce hydraulic fractures to
deflect along the gravel interface and form branched fractures with distorted
fracture surfaces. Hydraulic fractures can propagate around gravels under the
condition of high stress difference, high viscosity and medium flow rate. Gravels
can prevent the propagation of hydraulic fractures under low stress difference, low
viscosity and small flow rate. Hydraulic fracture bifurcation can occur when
encountering gravels under high stress difference and large displacement.
Properly increasing the high viscosity of fracturing fluids can effectively promote
the main hydraulic fracture propagation and reduce the fracture tortuosity, thereby
avoiding sand up.
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1 Introduction

Due to lithology change, low porosity, poor permeability and strong heterogeneity,
fracturing design and parameters optimization of glutenite formations face great challenge
(Jia et al., 2017;Wang et al., 2017). For the gravels in glutenite formation, fracture distortion and
multi-fracture propagation are prone to occur in the hydraulic fracturing process, resulting in
sand up and affecting hydraulic fracturing effects (Meng et al., 2010; Li et al., 2013; Feng et al.,
2016; Ma et al., 2017). Therefore, studies of the fracture propagation law is of great significance
for the stimulation and reconstruction in glutenite formation.
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A large number of numerical simulations (Feng et al., 2017; Zhang
et al., 2017; Zhang et al., 2018; Lu et al., 2020; Wang et al., 2021; Wei
et al., 2021) and experimental investigations (Fan et al., 2014; Ma et al.,
2017; Moghadasi et al., 2019; Tan et al., 2019; Xie et al., 2022) have
been carried out for the hydraulic fractures propagation of different
lithologies. Tan et al. (2017), Tan et al. (2020) summarized fracture
morphology types in mid-depth and deep shale formation. For mid-
depth shales, fracture geometries were characterized by simple
fracture, fishbone-like fracture, fishbone-like fracture with fissure
opening, and multilateral fishbone-like fracture network (2017). For
deep shales, fracture geometries were characterized by horizontal
hydraulic fracture, transverse fracture, step-shaped hydraulic
fracture with fissure opening, and multilateral step-shaped
hydraulic fracture network (2020). Wan et al. (2019); Tan et al.
(2021) came up with the concept of “lithology transition zone” for
coal measure strata and studied the fracture propagation and
penetration behavior; Zhao et al. (2007) compared hydraulic
fractures propagation law in different lithologies such as basalt,
conglomerate, marl. For glutenite formations; Luo et al. (2013)
considered that particle size, content of gravel and the properties of
the interface are the internal reason for irregular hydraulic fractures
and pressure fluctuations based on the numerical simulation results;
Meng et al. (2010) analyzed the influence of gravel particle size and
horizontal stress difference on fracture propagation morphology and
pressure curve using artificial samples; Li et al. (2013) analyzed the
effects of the in situ stress and gravels on fracture propagation with
RFPA-Flow, and summed up four typical fracture propagation modes
at the gravel, including fracture arrest, deflection, penetration and
adsorption. Based on the three-dimensional reconstructed
heterogeneous glutenite model; Ju et al. (2016) studied the
initiation and propagation of hydraulic fractures under different
horizontal stress differences by using the discrete element method,
and compared with the physical simulation results. Although this
research reveals the fracture propagation law of glutenite formation to
some extent, there are still many issues worthy of further discussion.
On the one hand, the glutenite formation is different from the
sandstone reservoir which has fast phase transformation, large
changes in lithology and permeability, and poor sandstone
connectivity and strong heterogeneity. The brittle fracture
morphology of the glutenite formation is obviously different from
that of the normal sandstone reservoir especially when glutenite

formation contains high gravel content and large gravel particles,
the fracture surface is extremely irregular and prone to multiple
fractures (Ma et al., 2017). Also, multiple fractures will increase the
filtration of the fracturing fluid, thus affecting the fracture and sand
carrying capacity, resulting in difficult large-scale fracturing
treatment. At present, many studies has been carried out on the
physical characteristics of glutenite formations, and these studies focus
mainly on reservoir characteristics and flow problems in the
development process (Zhang et al., 2019; Wang et al., 2020),
However, the research on fracture propagation law in glutenite
formation is relatively less. On the other hand, it is impossible to
obtain directly theoretical solution of the fracture propagation law
under the restriction of the factors such as the great lithology changes
and the strong heterogeneity for glutenite formations. The laboratory
experiment is one of the methods that can be tried, and some intuitive
observations can be obtained through the laboratory experiments (Ma
et al., 2017). However, due to the uncertainty of the content, size,
properties and distribution characteristics of the gravels in the
glutenite formations, the laboratory results are generally very
discrete, and it is difficult to conclude a repeatable conclusion by a
limited number of tests.

Based on the physical and mechanical parameters, the discrete
element method is also an effective way to study the hydraulic
fracturing propagation law under complex conditions (Zhang et al.,
2017; Tan et al., 2018; Huang et al., 2019; Huang et al., 2023).
Therefore, this paper uses 2D Particle Flow Code (PFC2D, 2006)
to analyze the hydraulic fracturing propagation law in glutenite
formations, in order to guide the fracturing design and
construction for glutenite formations.

2 Model calibration and schemes

2.1 Model calibration

In order to illustrate the reliability of PFC2D, simulation of
uniaxial compression is carried out, and the simulation results are
compared with the laboratory results. The size of the model is
25 mm × 50 mm. The top and bottom surfaces are set as rigid
walls with constant displacement. The left and right sides are set to
the constant pressure wall controlled by servo to simulate the loading
of confining pressure. The confining pressure is set to 0.1 MPa. Since
the pressure is very small compared with the fracture pressure of the
samples, thus it can be ignored and can be approximated to uniaxial
loading. The micro parameters in the model are shown in Table 1. The
samples in the laboratory were collected from sandstone cores of a
block in Changqing Oilfield. The rock mechanics parameters obtained
by numerical simulation are close to those obtained by laboratory
experiment, as shown in Table 2. The hydraulic fracture geometries in
the laboratory and simulation are similar which are shear fractures, as
shown in Figure 1. Therefore, it proves the reliability of the PFC 2D
method to reconstruct the rock structure and simulate the hydraulic
fracturing process.

2.2 Hydraulic coupling model

In this paper, PFC2D software was utilized to establish the fluid
solid coupling model of hydraulic fracturing. In the model, each

TABLE 1 Calibrated micromechanical parameters.

Micromechanical
parameters

Value

Elastic modulus of the
particle element, Emod(GPa)

1.2

Elastic modulus of the bonding
element, Pb_Emod (GPa)

17

Ratio of normal stiffness to tangential
stiffness for particle element, kn/k

1.0

Ratio of normal stiffness to tangential stiffness
for bonding element, kn/ks

1.2

Tensile strength for the bonding element, σt (MPa) 11

Shear strength for the bonding element, �τ (MPa) 21
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particle contact is a flow channel to simulate the fluid flow, and that
these channels contact up small “domains” that store some fluid
pressure, as shown in Figure 2. The particles position can be

changed by the change of contact force, and finally the change of
channel pores is realized.

The flow rate of fluid exchange can be expressed by Hagen
Poiseuille equation (Hiroyuki et al., 2011):

Q � w3ΔP
12μL

(1)

Where, ΔP is the pressure difference between the two pore basins, μ is
the fluid viscosity, w is the aperture and L is the length of the fluid
channel.

Each channel has an aperture associated with it. The aperture is
calculated by:

w � w0F0

F + F0
(2)

TABLE 2 Comparison of measured and simulated macro mechanical properties.

Parameters Measured
mechanical

parameters in
laboratory

Obtained
mechanical

parameters in
simulation

Elastic modulus (GPa) 20.32 21.29

Poisson’s ratio .174 .175

Uniaxial compressive
strength (MPa)

118.45 120.13

FIGURE 1
Comparison of the fracture geometry for the simulated result (A)
and experimental result (B).

FIGURE 2
The model of domain and flow channel in PFC2D (Tan et al., 2018).

FIGURE 3
The geometric model.
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Where,w0 is the residual aperture for particles that are just touching, F
is the normal stress at the contact and F0 is the contact stress at which
the aperture decreases to half of its initial aperture.

For each time increment, the change of fluid pressure ΔP is
(Hiroyuki et al., 2011):

ΔP � Kf

Vr
ΣQΔt−Vr( ) (3)

Where, ΣQ is the total flow rate of fluids, Δt is the duration in one
time step, Kf is the compressive modulus of the fluid, Vr is the
“domain”, that is the pore volume and ΔVr is the pore volume
change.

2.3 Simulation scheme

A two-dimensional plane model was established by using PFC2D,
as shown in Figure 3. The size of the model is 50 cm × 50 cm, and the
diameter of the composed spherical particles is set to 1 mm, with a
total of 6,547 in particles. The diameter of the middle circular hole is
3 cm, which is utilized to simulate the injection hole. In Figure 3, the
maximum horizontal in situ stress is applied along the X-axis
direction, and the minimum horizontal in situ stress is applied

along the Y-direction. The simulation parameters are shown in
Table 3.

3 Results and discussion

3.1 Effects of geological factors

1) In-situ stress

Figure 4 shows the hydraulic fracture propagation patterns under
different conditions of in situ stress differences for the two cases of
whether there is gravel or not. The simulation results show that the
presence of gravels increases the complexity of the hydraulic fracture
propagation. When the horizontal stress difference is small, the
fracture propagation is less restricted by the in situ stress, and
radial fractures are easily formed along the wellbore direction.
However, during the hydraulic fracture propagation, the branched
fractures propagating in the direction of non-maximum in situ stress
are prone to be arrested after encountering gravels, and the hydraulic
fractures extending in the direction of maximum in situ stress become
domination. When the horizontal stress difference is large, the
hydraulic fractures tend to extend in the direction of the maximum

TABLE 3 Simulation parameters.

Sample
number

Maximum
horizontal
stress (MPa)

Minimum
horizontal
stress (MPa)

Horizonal stress
difference
(MPa)

Average
gravel

size (mm)

Gravel
volume

content (%)

Flow
rate
(mL/
min)

Viscosity
(mPa.s)

Gravel
or not

#1 30 28 2 - - 35 20 N

#2 30 28 2 12 25 35 20

#3 30 25 5 12 25 35 20

#4 30 28 2 5 30 35 20

#5 30 28 2 8 30 35 20

#6 30 28 2 12 30 35 20

#7 30 28 2 16 30 35 20

#8 30 28 2 20 30 35 20

#9 30 28 2 10 10 35 20

#10 30 28 2 10 20 35 20

#11 30 28 2 10 30 35 20

#12 30 28 2 10 40 35 20

#13 30 28 2 10 50 35 20

#14 30 28 2 16 50 35 10

#15 30 28 2 16 50 35 30

#16 30 28 2 16 50 35 100

#17 30 28 2 12 40 5 20

#18 30 28 2 12 50 5 20

#19 30 28 2 8 40 50 20

#20 30 28 2 12 50 50 20
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horizontal stress, and there are few branched fractures. In this
condition, the main hydraulic fracture will detour after
encountering gravels during the propagation process.

2) Average gravel size

To study the influence of gravel particle size on hydraulic
fracture propagation, five groups of calculation examples are
designed. In each case, the principal stress difference is 2 MPa,
and the gravel content is 30%. The simulation results are shown in
Figure 5.

Simulation results show that, the distribution of gravels
becomes more dispersed with the increase of the gravel size if
the gravel content is same. The main fracture has enough spaces to
propagate around the gravels, and the probability for encountering
gravels decreases. However, under the control of the principal
stresses, once the main fracture encounters the larger-sized
gravel, more energy is required to bypass the gravel, and the
hydraulic fracture will have a greater turning angle. When the
particle size of the gravel is small, the number of the gravel
increases, and the main fracture is more likely to encounter the
gravels during propagation. However, the degree of stress
concentration has been homogenized in the situation, and the
hydraulic fracture can easily continue to propagate around the
gravel. Hence, the inhibition and shielding effect of gravels on
hydraulic fractures are relatively weak, and the fractures are
relatively straight.

Figure 6 shows the relationship between different gravel sizes
and fracture initiation pressure. Results show that under the same
gravel content, the fracture initiation pressure increases at initial
stage and then decreases with the increase of gravel size. At a
certain volume content, the size of the gravel has a probabilistic
effect on the fracture propagation. When the gravel particle size
increases, the sensitivity and uncertainty of the system stability
increases, and the probability characteristics are obvious. The
decreases in the gravel particle size contribute to the generation
of micro-fractures clusters between the gravel, matrix and matrix,

which reduces the rock strength and the fracture initiation
pressure. (Khristianovic, 1955; Li et al., 2013).

3) Gravel content

In this section, to simulate the hydraulic fractures propagation
under different gravel contents, six groups of calculation examples are
designed with gravel contents of 0%, 10%, 20%, 30%, 40% and 50%.
The average gravel size is 10 mm. The simulation results are shown in
Figure 7.

Results show that the non-uniform distribution of gravels will
lead to asymmetric hydraulic fracture propagation. With the
increase of gravel content, micro-fractures at the end of the
main fracture continue to initiate and propagate. The gravels
distributed on the fracture propagation path will have an
influence on the fracture propagation direction, which the
gravels in other areas have little effect on the fracture
propagation. With more gravel content on the propagation path,
the fractures bypass and turn around the gravel to form S-shaped
fractures.

3.2 Effects of engineering factors

1) Fracturing fluid viscosity

To study the influence of fracturing fluid viscosity on hydraulic
fracture propagation, three groups of examples are designed in this
section. The fracturing fluid viscosity is 10 mPa · s, 30 mPa · s and
100 mPa · s. The simulation results are shown in Figure 8.

Results show that the lower the viscosity of the fracturing fluid is,
the easier the fracturing fluid is to loss along the fracture to the
matrix, resulting in the generation of multi-branched fractures. Due
to the joint distribution of hydraulic energy by the multi-branched
hydraulic fractures, the length of the main hydraulic fracture
becomes shorter. As the viscosity of fracturing fluid increases, the
possibility of infiltration in all directions is reduced, as a result, the

FIGURE 4
Fracture propagation geometry under different stress differences.
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hydraulic fracture morphology is relatively straight and the length of
the main fracture increases. Therefore, the length of the main
hydraulic fracture can be increased by increasing the viscosity of
fracturing fluids during constructions.

2) Flow rate of fracturing fluid

To study the effect of flow rate on the fracture propagation, two
sets of calculation examples are designed in this section, and the

FIGURE 6
Initiation pressures under different gravel sizes.

FIGURE 5
Fracture propagation geometry under different gravel sizes.
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flow rates are 5 ml/min and 50 ml/min. Under each flow rates, two
kinds of gravel contents and gravel sizes were set respectively to
simulate the hydraulic fracture propagation process. The
simulation results are shown in Figure 9.

The studies show that under small flow rate, the hydraulic
fracture geometry is relatively simple, and the gravels can cause
the arrest of the hydraulic fracture. Under large flow rate, after
encountering gravels in the fracture propagation process, fluids in

FIGURE 8
Fracture propagation geometry under different fracturing fluid viscosity.

FIGURE 7
Fracture propagation geometry under different gravel volume contents.
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the fracture are likely to produce a “water hammer effect”, which
leads to the fracture bifurcation and multiple fractures.
Contrastively, for homogeneous reservoirs, high flow rate also
does not cause fracture bifurcation (Stanchits et al., 2014).

4 Conclusion

1) The gravels in the glutenite formation will have a significant
impact on the initiation and propagation of hydraulic fractures.
Compared with homogeneous sandstone formations, the
glutenite formations own complex hydraulic fracture
geometries, which could easily lead to the generation of
branched fractures and bifurcation fractures, making non-
planar fracture type.

2) This study applied PFC to simulate the hydraulic fracturing
propagation of glutenite formations, and there are three
main behaviors for the hydraulic fracture as encountering
gravels: bypass, stop and bifurcation. Under the high stress
difference, high viscosity and moderate flow rate, hydraulic
fractures can continue to propagate around the gravel. Under

low in situ stress difference, lower viscosity and smaller flow
rate, gravels can prevent the propagation of hydraulic fractures.
Under the higher in situ stress difference and larger
displacement, hydraulic fractures can bifurcate and continue
to propagate.

3) The particle size and content of gravels have a certain influence
on the fracture propagation. The larger gravel particle size
makes it easier to cause the hydraulic fracture to stop or
bypass at the gravel. Only the gravel distribution in the
direction of hydraulic fracture propagation will cause the
hydraulic fracture propagation changes, and the more gravels
intensively distributes in the propagation direction, the more
distorted the hydraulic fracture is, and which will result in a
S-shaped fracture.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed to
the corresponding authors.

FIGURE 9
Fracture propagation geometry under different fluid flow rate.
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