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Tropical Cyclone Maintenance and Intensification (TCMI) is a generalized definition of
tropical cyclones that strengthen or maintain intensity inland while maintaining tropical
characteristics. Herein, a novel methodology, using a machine learning method was
created to examine the tropical cyclone record to improve climatological representation of
such cases. Using the International Best Track Archive for Climate Stewardship (IBTrACS)
dataset, individual times of inland tropical cyclones were classified into TCMI and non-
TCMI (weakening) events. The MERRA-2 dataset was applied to develop a prototypical
machine-learning model to help diagnose future TCMI events. A list of possible TCMI
storms for case studies in future analyses is provided. Two of these storms were examined
for attributes characteristic of the Brown Ocean Effect, a hypothesized mechanism for
TCMI centered on warm, moist soils. It was revealed that variables that were important at
the time of storm arrival were important the prior day, which indicates that a TCMI event is a
reaction to the environment. Moreover, the variables that were finally selected show a
heavy emphasis on land-surface processes. This supports the idea that the accurate
representation of the land surface state is critical to the accurate diagnosis of TCMI.
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1 INTRODUCTION

After tropical cyclones (TCs) make landfall, it is often assumed that the wind speeds decay, and
damage is reduced. There are two types of progression that an inland tropical cyclone may take:
extratropical transition (ET; Keller et al., 2018; Jones et al., 2003; Evans et al., 2017) or dissipation
(Kaplan and Demaria, 2001; Shen et al., 2002). One exception to this categorization is the observation
that some TCs intensify or maintain intensity while inland, albeit not indefinitely (Andersen and
Shepherd, 2014; Brauer et al., 2021). These events are called TC Maintenance or Intensification
(TCMI) events by Andersen and Shepherd (2014; hereafter referred to as AS14). Unlike AS14, the
central pressure criteria was not considered. Decreases in pressure could be without meaning if the
environmental pressure, which IBTrACS does not record, decreases proportionally thereby
sustaining the pressure gradient. Often, the “Brown Ocean” effect (BOE), which hypothesizes
that enhancements in surface enthalpy fluxes induced by antecedent soil moisture support the TC, is
attributed or associated. Examples of these events include, but are not limited to, Tropical Storm Erin
(2007; Evans et al., 2011; Kellner et al., 2012; Monteverdi and Edwards 2010), Tropical Storm Bill
(2015), and an unnamed Tropical Depression in 2010 (Nair et al., 2019). The BOE may be a factor in
non-TCMI events, as the surface roughness may reduce the intensity. That is, despite the presence of
soil moisture and enhanced latent heat fluxes, the surface wind is still constrained by the properties of
the surface.
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The number of TCMI events is not limited to these studies.
Rather, those studies are only instances of the BOE. AS14
examined previous TCs to identify characteristics of TCMI
events not found in ET events. AS14 considered the 1-month
antecedent values of latent heat flux and supporting components.
However, the immediate surface conditions have a large impact
on the resulting structure of the TCs not just the environment of
the previous month. In this study, the analysis will focus on the
immediate environment of each location that TCMI events
occurred and did not occur.

Section 2 describes the methodology used to identify TCMI
events and describe a prototypical machine-learning model.
Section 3 investigates the cross-validation of similar machine-
learning models, as well as instances where the prediction and
dataset do not match. Section 3 will also examine previously
unexamined TCs. Section 4 explores potential uses of the
machine-learning model, as well as potential pitfalls of the model.

2 DATA AND METHODS

TC location and intensity data were obtained from the
International Best Track Archive for Climate Stewardship
dataset (IBTrACS; Knapp et al., 2010; Knapp et al., 2018). Of
those TCs, only those that occurred since 1980 were considered as

that is the limit of the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017), which was used for the environmental conditions. Of the
variables in MERRA-2, only the Single level variables (SLV),
surface flux variables (FLX), and land-surface variables (LND)
were considered. Not only were the variables at the time of the
strike considered, but the variables 24 h prior were used.
However, variables that were physically more relevant to
reintensifcation, were more commonly measured, or more
relevant to reintensification were considered. For example,
total column ozone, a SLV variable was not considered as it is
possibly unphysically related to tropical cyclones. Neither the
root zone water content, a LND variable, nor the areal fraction of
anvil showers, a FLX variable were considered, as both are
undefinable outside of the model setting or are unmeasured.

Each datum that occurred 350 km away from the coast was
considered, similar to AS14. Unlike AS14, however, this study
does not compare ET events with TCMI events but rather TCMI
events and TCs that decay. As long as the datum and the
following datum’s ‘nature’ were classified as a Tropical Storm
or Disturbance, the datum was still categorized. The classification
of the following datum is important as neglecting such a criterion
may mean a miss-categorization of a TCMI storm as a TC
undergoing ET. The change in the maximum wind speed
(MUSD, or ‘usa_wind’ in IBTrACS) between the previous time

TABLE 1 | Description of the machine-learning model and the constituent coefficients.

Variable Name Variable Coefficient Standard Error p-value Coefficient units

Const Constant 0.5955 1.051 0.571 N/A
BSTAR Surface Buoyancy Scale 461.686 194.405 0.018 s2 m−1

PBLH Planetary Boundary Layer Height −0.0012 0.001 0.199 m−1

V250Prev 250 hPa Meridional Wind Velocity from the previous day 0.095 0.049 0.052 s m−1

PBLHPrev Planetary Boundary Layer Height from the previous day −0.0009 0.001 0.275 m−1

H1000Prev Height of the 1,000 hPa level from the previous day 0.0076 0.008 0.323 m−1

BSTARPrev Surface Buoyancy scale from the previous day 79.2888 119.757 0.508 s2 m−1

V250 250 hPa Meridional Wind velocity −0.0826 0.06 0.167 s m−1

PRECTOTPrev One hour accumulated precipitation from the previous day 1,597.887 911.807 0.08 kg−1 m2 s
U10M 10 m zonal wind velocity 0.1557 0.083 0.062 s m−1

LWLAND Net longwave radiation from the land 0.0507 0.038 0.18 W−1 m2

PRECTOT One hour accumulated precipitation 370.3106 267.323 0.166 kg−1 m2 s

TABLE 2 | Contingency Analysis and Brier Score of the machine-learning model on the test dataset and training dataset.

Metric Test Train References

Percentage of Hits (A) 25.24% 9.91% N/A
Percentage of False Positives (B) 12.62% 1.8% N/A
Percentage of Misses (C) 24.27% 17.12% N/A
Percentage of Correct Negatives (D) 27.86% 71.17% N/A
Climatological Probability of a Single TCMI event 49.51% 27.03% N/A
Probability of Detection 51% 36.66% Doswell et al. (1990); Wilks (2006)
False Alarm Rate 25% 2.5% Wilks (2006)
Clayton Skill Score 0.276 0.6523 Clayton (1927), Clayton (1934), and Wilks (2006)
Brier Skill Score 0.2606 0.1566 Brier 1950; Wilks (2006)
Odds Ratio 3.12 22.87 Stephenson (2000)
Heidke Skill Score 0.1302 0.2081 Heidke (1926); Wilks (2006)
Peirce Skill Score 0.2598 0.342 Peirce 1884; Wilks (2006)
Equitable/Gilbert’s Skill Score 0.1497 0.3827 Gilbert (1884); Wilks (2006)
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FIGURE 1 | Composite mean sea level pressure (SLP) for all of the contingencies of the machine-learning model.

FIGURE 2 | Composite mean of the aerodynamic roughness length (Z0M).
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FIGURE 3 | Composite mean of the maximum wind speed (SPEEDMAX).

FIGURE 4 | Composite mean of the energy loss flux by interception (EVPINTR).
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FIGURE 5 | Composite mean of the surface buoyancy scale (BSTAR).

FIGURE 6 | Map of the performance of the machine-learning model. Tropical Storms Bill (2015) and Erin (2007) have been identified as TCMI events, while
Hurricane Dolly (2008)and Tropical Storm Hermine (2010)are described in the text.
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and next time, a time span typically of 6 h, were calculated using
centered differencing. If the MWSPD difference was greater than
or equal to 0, the datum was classified as a TCMI event. If the
MWSPD-change criteria was not met, the datum was classified as
a non-TCMI event. If the datum occurred in the North Atlantic
basin, it was used to test the developed machine-learning model.
Otherwise, the datum was used to train the model coefficients.

The data for TCMI and non-TCMI storms were consolidated by
averaging the environmental variables of TCMI and non-TCMI
events. This consolidation prevents the observational
independence assumption of logistic regression models from
being violated.

The function used to create the machine learning model was
the “Logit,” a diminutive of logistic regression, function in

TABLE 3 | Tropical cyclones that Underwent TCMI.

Non-North Atlantic Storms North Atlantic Storms

Season Name Number of
TCMI events

Season Name Number of
TCMI events

1981 EDDIE 17 1980 ALLEN 1
1984 FREDA 7 1982 CHRIS 2
1987 IRMA 6 1983 ALICIA 1
1989 KEN-LOLA:LOLA 12 1985 DANNY 13
1990 LOLA 1 1985 ELENA 6
1991 DAPHNE 14 1986 BONNIE 2
1995 BOBBY 3 1988 FLORENCE 3
1996 JACOB 1 1988 GILBERT 11
1996 KIRSTY 18 1989 CHANTAL 3
1996 ETHEL 12 1992 ANDREW 1
1996 HERB 4 1994 ALBERTO 10
1997 RACHEL 22 1994 BERYL 5
1997 AMBER 2 1995 DEAN 13
1999 BILLY 1 1995 ERIN 15
2000 ROSITA 2 1995 JERRY 3
2001 WINSOME 5 1996 FRAN 10
2001 ABIGAIL 2 1997 DANNY 12
2002 SINLAKU 1 1998 CHARLEY 2
2003 DELFINA 2 1998 FRANCES 2
2005 SANVU 1 1999 BRET 1
2007 GEORGE 1 1999 DENNIS 2
2007 JACOB 1 2001 BARRY 6
2008 NOT_NAMED 1 2002 ISIDORE 4
2010 LAURENCE 4 2003 BILL 6
2010 PHET 1 2003 CLAUDETTE 2
2010 GIRI 1 2003 GRACE 4
2011 YASI 20 2004 FRANCES 7
2018 HILDA 8 2004 IVAN 3
2018 KELVIN 2 2005 ARLENE 8
2018 YAGI 1 2005 DENNIS 45

2005 KATRINA 2
2005 RITA 2
2007 ERIN 14
2008 DOLLY 12
2008 EDOUARD 1
2008 FAY 3
2008 GUSTAV 9
2008 IKE 2
2010 NOT_NAMED 3
2010 HERMINE 11
2012 ISAAC 5
2015 BILL 17
2017 CINDY 6
2017 HARVEY 4
2017 IRMA 5
2018 ALBERTO 15
2018 FLORENCE 2
2018 GORDON 10
2019 BARRY 3
2020 AMANDA:CRISTOBAL 6
2020 LAURA 5
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statsmodels (Seabold and Perktold, 2010). Logistic regression fits
a likelihood function for a binary variable to a multivariate
logistic equation. Another possible description for logistic
regression is an estimate of the probability of a binary event
by identifying the coefficients of a multivariate linear equation
functionally composed within a logistic function. The statsmodels
function allows for the statistical model to be trained, applied, and
provides the contribution of each variable to the equation along
with a statistical description of the fitness of the regression.
Candidate machine-learning models were developed iteratively
going through sets of unmatched, potentially relevant variables to
identify independent candidate variables for a final prototype
machine-learning model, which was initialized as an empty set.
Then the accuracy of each variable pair for both the test and
training dataset was evaluated and stored under the condition
that the variance inflation factor (VIF) was less than or equal to 10
(O’Brien, 2007). If a variable in the variable pair is included in the
candidate variables, it is excluded for the test.

Afterwards, the most accurate candidate machine-learning
models were selected. The accuracy metric utilized is the
average of the Peirce Skill Score (Peirce, 1884; Manzato, 2007)
between the test and training dataset subtracted by the absolute
difference, with the same process applied to the Clayton Skill
Score. Optimizing the combined Peirce Skill Score with a
difference penalty produced reasonable values of other skill
scores with minimal difference between the testing and
training datasets. The subtraction of the absolute difference is
to penalize overfitting of the training dataset. The most frequent
variable that was shown in the most accurate candidate machine-
learning models was used to train the next iteration of candidate
machine-learning models, though the variable was excluded if the
most frequent variable appeared previously in the set of candidate
variables. The exclusion of a candidate variable may not always
indicate that the machine-learning model is necessarily less
accurate but may be a result of a reduction in the VIF. After

the Peirce Skill Score was optimized, variables with a p-value
greater than 0.6 were removed.

While the prototypical machine-learning model may be useful
for identifying TCMI events, it is not without flaw. On a dynamic
note, the machine-learning model does not account for external
influences, including localized intensification due to surface
features, or horizontal influences. For example, Cyclone Kelvin
(2018) has been shown to have maintained a warm core
(Shepherd et al., 2021) over land but was more influenced by
the horizontal advection of moisture rather than the BOE (Yoo
et al., 2020). This may be the reason that the prototypical
machine-learning model missed the TCMI of Kelvin. Along a
similar line, this prototypical machine-learning model does not
include extratropical cyclones, which derive energy from
baroclinicity (Evans et al., 2017; Keller et al., 2018).
Intensification due to the influence of surface features and
topography (Miller et al., 2013; Coch, 2020) are also not
considered.

The criteria allowed for a small number of non-North Atlantic
storms 93) and an even smaller number of North Atlantic TCs 65)
so the amount of data used to train and test the machine-learning
model is very limited. Of those limited number of TCs, there were
40 TCs in the North Atlantic basin and a total of 20 TCs in other
basins that were counted as both non-TCMI and TCMI cyclones.
This may mean that more stringent criteria for discriminating
between TCMI and non-TCMI events, beyond wind speed, may
be necessary. Other choices, such as excluding subtropical
cyclones, is open for critique. One criteria for TCs to be
consideration that may be relaxed is the 350 km buffer from
the coast, suggested by Andersen and Shepherd (2014), which
excluded TCs such as Hurricane Gaston (2004; Franklin et al.,

FIGURE 7 | Maximum wind speed (top) and minimum central pressure
(bottom) for Hurricane Dolly (2008). The red line depicts the final landfall.

FIGURE 8 | Rainfall associated with Hurricane Dolly in inches. Source:
NOAA/NWS (https://www.wpc.ncep.noaa.gov/tropical/rain/
dolly2008filledrainblk.gif).
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2006) and Tropical Storm Helene (2000; Franklin et al., 2001)
from being considered. The spatial criteria also does not prevent
the TC under consideration from being influenced by the oceanic
environment (Yoo et al., 2020).

3 RESULTS

3.1 Statistical Model
Table 1 provides a summary of the final statistical model.
Variables ending with the suffix ‘Prev’ refer to variables from
24 h prior. For reference, the equation for a logistic regression
model is

P � ⎛⎝1 + exp⎡⎣ − β0 −∑N
i�1
βixi

⎤⎦⎞⎠−1

where P is the probability of an event occurring, β0 is the
constant, βi is the ith coefficient corresponding to the ith

variable. While the pseudo-R squared of 0.1727 may be
underwhelming, the other statistical measures of accuracy,
described in Table 2 are more optimistic. The relatively small
Brier Skill Score indicates the need to assign a reference
probability to discriminate between TCMI and non-TCMI
events. The probability that was used to discriminate between
TCMI and non-TCMI events was a naïve probability of 50%.
There is a bias towards overpredicting TCMI events, as indicated

by the False Alarm Rate for both datasets being over 50%.
Adjustment of the naïve reference probability of 50% may
change the Probability of Detection, but also may increase the
False Alarm Rate.

A positive coefficient indicates that the variable has a tendency
towards promoting a TCMI event, while a negative coefficient is
indicative of a reduction in the likelihood to a TCMI event. The
positive coefficient with buoyancy scale (BSTAR) is indicative of
the influence of the WISHE mechanism on the occurrence of
TCMI events. The coefficient associated with the previous day’s
accumulated precipitation (PRECTOTPrev) indicates recently
wetted soil, which may be promoting the BOE. The coefficient
associated with the planetary boundary layer height at the
analysis (PBLH) implies that less turbulent mixing increases
the probability of a TCMI event. The meaning of the opposite
sign between the coefficients associated with the previous day’s
meridional wind and the meridional wind at the analysis time is
unknown, but there may be some level of bias within the wind
variables, based on the gradient wind balance and TCs in opposite
hemispheres. The decrease in the coefficient with height for the
previous day’s meridional wind with height (V500Prev and
V250Prev) can be reinterpreted as the positive contribution of
the mean wind and the negative contribution of the shear.

3.2 Verification Composite
Figure 1 shows the sea level pressure (SLP) relative to the
IBTrACS location averaged over the contingencies produced

FIGURE 9 | Time-averaged map of the final run of multi-satellite precipitation estimate with gauge calibration prior to the landfall of Hurricane Dolly (2008). Source:
NASA Giovanni (Berrick et al., 2009; Acker and Leptoukh, 2007).
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by the prototype machine-learning model. The centeredness is
indicative that the TC position is represented well by MERRA-2.
The central and environmental pressures are lower in the non-
North Atlantic dataset than the testing dataset, indicating a
systematic difference between the datasets. There are a couple
of other systematic differences between the training and testing
datasets. Another systematic difference is the roughness length
(Figure 2), which is larger in the North Atlantic basin than in the
other basins. It should be noted that in both datasets but
particularly the training dataset, the number of constituent
storms that had false positives is limited, which emphasizes
individual storm characteristics. Cyclone Naomi 1993) and
Cyclone Yasi (2011), which progressed over the sparsely
vegetated Australian interior, were the only TCs that were
false positives in the training dataset leading to a systematic
difference in the roughness length. Both the systematic difference
in SLP and Z0M lead to systematic differences in the maximum

wind speed (SPEEDMAX; Figure 3). The average storm that
underwent TCMI had a lower SPEEDMAX than the storms that
did. The eastern maxima in SPEEDMAX is due to the compound
effect of the translation velocity and gradient wind balance.

Figure 4 shows the energy loss flux from interception
(EVPINTR). For the testing dataset, the average EVPINTR is a
good metric for determining inaccurate diagnoses, while it may
improve the accuracy in the training dataset. However, including
EVPINTR in the machine-learning model produced a larger
p-value than the threshold. From a physical interpretation,
EVPINTR is the amount of energy constrained to the surface
by the presence of objects on the surface. EVPINTR disrupts the
surface energy flux and reduces the buoyancy. This is seen in
Figure 5, which shows BSTAR. BSTAR is one of the criteria
variables within the machine-learning model that describes the
role of the WISHE/BOE mechanism. In the testing dataset, the
average BSTAR near the center of the TC is positive only in the

FIGURE 10 | Two week averaged latent heat (W m−2) from the NCA-LDAS model prior to Hurricane Dolly. Source: NASA GIOVANNI.
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hits. This is one way of discriminating between hits and false
positives in the North Atlantic basin.

3.3 Event Analysis
3.3.1 Discussion
Figure 6 shows a geographical distribution of the machine-
learning model performance on the testing dataset. The
machine-learning model does not predict TCMI events in
southern Mexico even though TCMI events do occur in that
region. There are several identifiable storms that have and have
not undergone TCMI. Specifically, Tropical Storms Erin (2007)
and Bill (2015) are storms that were identified by the prototypical
machine-learning model, which are published instances of the
BOE (Evans et al., 2011; Kellner et al., 2012; Arndt et al., 2009;
Brauer et al., 2021). Table 3 lists other storms that meet the TCMI
classification. Below, we examine Tropical Storm Hermine
(2010), which followed a similar path to Tropical Storms Erin
and Bill, as well as Tropical Storm Dolly (2008), which eventually
caused flooding in New Mexico.

3.3.2 Hurricane Dolly (2008)
Hurricane Dolly (2008) was a hurricane that formed in the
western Caribbean Sea on 20 July 2008. After experiencing
two brief landfalls near Cancun, Mexico and South Padre
Island, Dolly experienced a final landfall on Texas on 23 July
2008 at 2000 UTC. Figure 7 shows the trend in the intensity of
Hurricane Dolly. After rapid weakening associated with landfall,
Dolly experienced two periods of cyclone maintenance with the
first period as a tropical depression and a constant wind speed of
25 kts for 20 h, and the second period as a low pressure with a
constant wind speed of 20 kts for 24 h before dissipating. The first
period had monotonically increasing pressure, while the pressure
decreased two hPa over 12 h, but increased by six hPa over the
next 12 h.

But more than just the characteristic wind speed change, Dolly
produced a secondary precipitation maxima (Figure 8) in New
Mexico, leading to flash flooding and the death of one person and
(National Weather Service (NWS) 2018a). It should be noted that
widespread floods impacted New Mexico earlier that month,
before Hurricane Dolly, which may qualify as a series of
predecessor rain events (PRE; Bosart et al., 2012; Galarneau
and Davis, 2013). This is supported by Figure 9, which shows
the time averaged precipitation for the month, prior to final
landfall. The machine-learning model did predict a TCMI event.
The latent heat flux (shown in Figure 10) criteria of 70Wm−2 for
the BOE, as suggested by AS14, was not sufficient evidence to
predict the TCMI of Dolly, indicating that this tool is an
improvement on previous criteria.

3.3.3 Tropical Storm Hermine (2010)
Tropical Storm Hermine (2010) developed within the Bay of
Campeche and traveled across to the Gulf of Mexico, making
landfall in northeast Mexico at 0200 UTC on 7 September 2010
(Avila, 2010). While Hermine lasted only 64 h as a TC after
landfall, 30 of those hours were as a tropical depression at a
constant wind speed of 20 kts and a constant central pressure of
1,005 hPa. The maximum wind speed and minimum central
pressure is summarized in Figure 11.

FIGURE 11 |Maximum wind speed (top) and minimum central pressure
(bottom) for Tropical Storm Hermine (2010). The red line depicts landfall.

FIGURE 12 | Rainfall associated with Tropical Storm Hermine (2010) in
inches. Source: NOAA/NWS (https://www.wpc.ncep.noaa.gov/tropical/rain/
hermine2010filledrainwhite.gif).
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Like Hurricane Dolly, Hermine produced an inland maxima
in precipitation, as shown in Figure 12. Hermine was a significant
precipitation event, despite it qualifying as a TCMI on the basis of
the TC dynamics, as it was the only precipitation event for some
areas in September 2010. A severe drought began afterwards
(National Weather Service (NWS) 2018b). Despite the severe
drought, the 2-week averaged latent heat flux, shown in
Figure 13, was sufficient to produce a BOE storm. For
reference, a 2 week average 40Wm−2 is the criteria value of
for the BOE identified by Andersen et al. (2013).

4 CONCLUSION

A prototypical machine learning model has been developed with
variables that were chosen to optimize accuracy rather than any
given cause of TCMI. Some variables that were important at the
time of storm arrival were important the prior day, which

indicates that a TCMI event is a reaction to the environment,
namely BSTAR, PBLH, V250, and PRECTOT. Moreover, the
variables that were finally selected show a heavy emphasis on
land-surface processes, which also indicates that proper modeling
of air-land interactions are critical for modeling TCMI events.
This supports the idea that the accurate representation of the land
surface state is important for accurate diagnosis of TCMI.

One aspect of the final machine-learning prototype model that
can be criticized is the inclusion of the wind components (U10M,
V250, V250Prev). The machine-learning model was trained on
data in both the Northern and Southern Hemisphere,
respectively, indicating an opposing bias in each due to the
opposite signed Coriolis force and opposing rotation.
Moreover, the 1,000 hPa height from the previous day
(H1000Prev) is included, even though it is often masked.
However, developing the model without the masked variables
still yields a similar subset of variables (including V250 and
V250Prev) with similarly signed coefficients within the

FIGURE 13 | Time-averaged net latent heat flux from the NCA-LDAS model in W m−2. Source: NASA GIOVANNI.
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confidence interval of the original model, though with less
accuracy. The role of the shifting meridional wind deserves
more study. Moreover, the inclusion of meridional wind shift
emphasizes the independence of variable selection without the
perceived bias of the TCMI being caused exclusively by the BOE.
To clarify, the variables in the final prototype model were chosen
not out of preconceived notions of the causes of TCMI but as
variables that improve the accuracy of the prototype machine-
learning model. This means that variables that are instinctively
examined for the BOE were not given priority (such as latent heat
flux) but are heavily influenced by those variables.

5 Applicability and Future Use
What has been presented here is a usable prototypical machine-
learning model that may diagnose the probability of a TCMI
event based on reanalysis data. This probability forecast is
effectively a conditional probability of a TCMI event given the
inland onset of a TC. If given the probability that an area is to be
struck by a hurricane at a given time, this diagnostic method can
be applied to determine whether the TC decays or maintains
strength/intensifies. This tool may be useful in diagnosing the
occurrence of TCMI events in a future climate beyond the simple
70Wm−2 latent heat flux threshold suggested by AS14.

Possible future improvements to this statistical model include
excluding weaker TCs as well as distinguishing between
intensification and maintenance events. Identifying the BOE
given a TCMI event through the use of Bayes’ Theorem is also
a potential avenue of identifying specific TCs that underwent the
BOE. Another potential improvement is the inclusion of
surrounding grid cells or times but at the cost of additional
computations and possibly decreasing the physical
interpretability. While observations of rainfall are not included
in the IBTrACS dataset, satellite observations of the precipitation
rate in space may also be employed in to broaden the definition of
TCMI beyond the dynamic criteria.

This study provides a list of candidate TCs to study for TCMI
events (see Table 3). More TCs can be considered if the range of
dates is expanded to the full selection rather than what is limited
by MERRA-2 or if the spatial constraints are reduced. This

provides a new set of TCs to be considered as BOE storms for
study, instead of morbidly awaiting new TCMI events or
questioning any new TC for the potential for the BOE. This
study also indicates that, while the BOE is one specific and major
cause of TCMI, it is not the only cause.
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