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The stability of a cast-in-place pile foundation in permafrost region is primarily subject to the
thermal regime and tangential frost-heave forces (TFF) during the operation period.
However, studies focusing on the thermal and mechanical characteristics of pile
foundation during runtime are rare. To investigate the effect of pile foundation on the
thermal regime and quantify the magnitude of unit tangential frost-heave forces (UTFF), a
field experiment was conducted on the Qinghai–Tibet Plateau, China. Results showed that
the cast-in-place pile foundation enhanced the heat exchange between the atmosphere
and soil, which expanded the annual range of the surrounding ground temperature.
Furthermore, the permafrost table depth was increased by 0.4–0.7 m (0.33–0.58 times the
pile diameter). The TFF increased significantly when the soil temperature decreased from 0
to −0.5°C. Meanwhile, the thickness of the frost heaving layer was approximately double
that of the active layer, in which the maximum UTFF was higher than 52.04 kPa. The
adfreezing bond force of permafrost to pile shaft burdened most of the applied load, and
the end bearing contributed relatively little. Findings from this study will benefit the stability
maintenance and structure design of pile foundation in permafrost regions.

Keywords: tangential frost-heave forces, cast-in-place pile foundation, thermal regime, permafrost region, frost
heaving, frost jacking

INTRODUCTION

The cast-in-place pile foundation was first widely adopted in Qinghai–Tibet Plateau permafrost
regions. Owing to its superior mechanical stability, more cast-in-place pile foundations will be
constructed under the scenarios of the promotion of road grading. More than 80% of the bearing
capacity of pile foundation in permafrost regions, irrespective of their types, is provided by
adfreezing force between the surrounding frozen soil and the pile shaft (Aksenov and Kistanov,
2008). Adfreezing force is highly sensitive to temperature changes (Goncharov, 1965; Wang et al.,
2005; Ma and Wang, 2014); hence, the thermal regime can affect the safety of pile foundation. To
understand the stability of pile foundation more effectively during operation in permafrost regions,
the interactive thermal effect between the pile foundation and the permafrost environment must be
discussed. For the thermal regime of the cast-in-place pile foundation in permafrost, previous studies
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have primarily focused on the disturbance of hydration (Jia et al.,
2004; Wu et al., 2006; Tang and Yang, 2010), temperature
optimization of casting concrete (Wu et al., 2004; Li et al.,
2005), and freeze-back time (Wang et al., 2004; Wang et al.,
2005; Yuan et al., 2005; Zhang et al., 2010; Wang et al., 2013).
Although these studies have emphasized on the thermal
characteristics of pile foundation in the construction period,
analyses of the thermal regime during the operation period are
lacking.

In addition to the thermal regime, the seasonal frost heaving of
active layers may threaten the safety of pile foundation in
permafrost. It can cause a large uplift force, which contributes
to the destructive movement of pile foundation (Andersland and
Ladanyi, 2003). Additionally, the heaved pile may not return to its
original position at the end of the thaw period owing to the
support provided by the adfreezing bond force of the permafrost
to the pile shaft. Furthermore, the uplift would be cumulated after
several seasonal freeze-thaw cycles (Johnston, 1981). For a pile
foundation in permafrost region, the total uplift force is a
function of the unit tangential frost-heave forces (UTFF) and
the area of the foundation in contact with the active layer.
Therefore, to resist the uplift, the precise value of the
tangential frost-heave forces (TFF) must be determined.
Considering the perimeter of a pile, frost line, and minimum
temperature of an active layer, Tsytovich (1959) proposed
Dalmatov’s equation to estimate the TFF. Subsequently,
Penner and Irwin (1969) reported that Dalmatov’s equation
agreed well with the data acquired from field experiments.
Based on the frost heaving deformation theory of foundation
soil, He et al. (2015) derived an integral equation for three-
dimensional viscoelastic problem of pile frost heaving force
computation. Torgersen (1976) summarized the typical
limiting tangential adfreezing stress values for several material
types. Liu (2018) proposed a model to simulate frost jacking
performances of a pile foundation, which was validated by a case
study of simplified bridge pile foundation in permafrost region.
Vyalov and Porkhaev (1976) recommended the design values of
UTFF to be 80 kPa for the soil temperatures above −3°C and
60 kPa for those below −3°C. Liu (1993) discussed the distribution
of tangential stress with the penetration of frost line. For the
control measures, the screw piles were introduced to reduce frost
diseases, and a series of laboratory tests and numerical
simulations were conducted to evaluate the frost jacking
characteristics of screw piles (Wang et al., 2017a; Wang et al.,
2017b; Wang et al., 2018). A fiberglass reinforced plastic cover
was proposed to relieve the frost jacking of pile foundation, and
the control effect of the frost jack was assessed (Wen et al., 2016).
Jiang et al. (2014) determined that two-phase closed
thermosyphons can significantly restrain the frost jacking of
pile foundation. Zhou et al. (2021) numerically researched the
frost jacking behavior of pile foundations with and without two-
phase closed thermosyphons in permafrost regions. Few studies
have reported the TFF of cast-in-place pile foundation,
particularly in permafrost regions. Because many variables are
involved and that the material type and surface condition are key
factors that govern the TFF, the existing research results barely
serve as guides for the design of cast-in-place pile foundation.

Hence, it is necessary to conduct field studies to determine the
TFF magnitude of cast-in-place pile foundation.

Generally, the thermal regime of cast-in-place pile foundation
buried in permafrost during the construction period has been the
primary foci of research to date. However, the thermal and
mechanical characteristics of pile foundation during operation
are less well understood. The purposes of this study are
primarily to:

1) Investigate the characteristics of the thermal regime of cast-in-
place pile foundation during the operation period;

2) Evaluate the tangential frost-heave forces of cast-in-place pile
foundation.

Hence, a field experiment was conducted on a site along the
China National Highway 214 (G214) in a permafrost region of
the Qinghai–Tibet plateau. Based onmonitored data, we analyzed
the effect of the cast-in-place pile foundation on the thermal
regime and predicted the magnitude of TFF. The results will
provide essential references for the structure design and stability
maintenance of cast-in-place pile foundation in permafrost
regions.

EXPERIMENTAL SITE AND MONITORING
STUDIES

The experimental site was located in the Huashixia Area of
Maduo County, Qinghai Province, Western China
(Figure 1A). The elevation was approximately 4,300 m, and
the permafrost table was approximately 2.5 m deep. An ice-
rich frozen layer existed near the permafrost table. The mean
annual ground temperature was about −0.7°C, signifying a region
of unstable warm permafrost (Ma et al., 2008), which was highly
sensitive to climate change. More precisely, permafrost
degradation would more easily weaken the freezing strength
and anchorage capacity of pile foundations in this area. Thus,
it is representative to conduct the study on thermal regime and
frost jacking of pile foundation in this experimental site.

The soil around the piles can be divided into three layers: silty
clay (0–2 m), sand with gravel (2–8 m), and weathered mudstone
(below 8 m). Two pile foundations, of diameter 1.2 m, were cast
with C30 concrete (mixed with silicate cement) on the site in
October 2012, and their lengths were 20 and 30 m. The main
reinforcement in each pile foundation consisted of 28 ribbed
reinforced bars with the diameter of 22 mm. A load exceeding
120 t was applied on each pile foundation on 4 November 2015.

Thermistors were instrumented along the pile sides and fixed
on the reinforcement cages, as shown in Figure 1B. A borehole
more than 10 m from the piles was drilled, and the thermistors
were fixed in it to examine the natural ground temperature. Rebar
stress gauges were installed in the reinforcement cage, and a
protective layer of thickness approximately 7 cm existed between
the reinforcement cage and the pile foundation surface. The
depths of the monitoring points are summarized in Table 1
and Table 2. Data were collected using data loggers at 2:00, 8:00,
14:00, and 20:00.
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FIGURE 1 | Experimental site.
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RESULTS AND ANALYSIS

Thermal Characteristic of the Pile
Foundation
To investigate the effect of the pile foundation, Figure 2 is
presented to depict the freeze-thaw process of the natural

ground and pile sides. Little difference between the two cycles
in the isotherms of 0 and -0.5°C can be seen in Figures 2B,D,E.
This phenomenon illustrated the pile foundations had completed
the freezeback. As shown, a visible distinction existed between the
natural ground and pile sides in the freeze-thaw process. First, the
natural permafrost table was at the depth of 2.6 m in 2015

TABLE 1 | Depths of the thermistors.

Borehole Depths (m)

Natural ground Natural borehole 0, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −4.5, −5, −6, −7, −8, −9, −10
No. 1 K 1, K 2 0, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −4.5, −5, −5.5, −6, −6.5, −7, 7.5, −8, −8.5, −9, −9.5, −10,−11, −12, −13,

−14, −15, −16, −17, −18, −19, −20

No. 2 K 3, K 4 0, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −4.5, −5, −5.5, −6, −6.5, −7, 7.5, −8, −8.5, −9, −9.5, −10, −11, −12, −13,
−14, −15, −16, −17, −18, −19, −20, −21, −22, −23, −24, −25, −26, −27, −28, −29, −30

TABLE 2 | Depths of the rebar stress gauges.

Borehole Depths (m)

No. 2 G 1 −5.2, −10.7, −11.8, −12.9, −16.2, −17.3, −18.4, −21.6, −25.8
G 2 −5.2, −6.3, −7.4, −9.6, −11.8, −14, −16.2, −17.3, −18.4, −19.5, −21.6, −23.7, −27.9, −30

FIGURE 2 | Freeze-thaw process of the boreholes.
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(Figure 2A); however, for the pile side, it ranged from three to
3.3 m (Figure 2B–E). Next, the −0.5°C isotherm of the natural
borehole could reach the depth of 5.1 m in March 2016, which
was 0.9–1.7 m shallower than that of the boreholes along the pile
sides. Subsequently, the area encircled by the −1°C isotherm in
the natural borehole was significantly smaller than that in
boreholes K1, K2, and K3. The thermal conductivity and
thermal capacity of the pile foundation were 2.94 W/(m•°C)
and 2,449 kJ/(m3•°C), respectively (National Standards of the
People’s Republic of China, 2016). The freeze-thaw process of the
surrounding soil was significantly affected by the pile foundation.
This attributed to the thermal conductivity of the pile, which
enhanced the heat transfer between the soil and atmosphere.
As shown in Figure 2B,C little difference can be seen between
the depths of their permafrost tables. This characteristic was
also observed on the east and west sides of pile No. 2
(Figure 2D,E).

To quantify the effect of the concrete foundation, Figure 3 shows
the annual range of ground temperature (ARGT) along the pile sides
and the nature borehole under the depth of 4m. As shown, the
ARGTs of the pile sides were significantly larger than that of the
natural borehole. At the depth of 7m, the ARGTs of boreholes K1
and K3 were more than double that of the natural borehole. Hence,
the pile foundation increased the ARGT to a large degree.

The thermal regime difference between the natural ground
and pile foundation demonstrated that the pile foundation acted
as a heat source for the surrounding soil in warm seasons, and
that the soil absorbed more heat through it. However, in the
winter, the pile played a role in cooling the ground and pumped

heat out of the surrounding soil. In this way, the pile foundation
altered the freeze-thaw process.

Table 3 lists the time consumed by the shallow layers (0–3m) of
the boreholes to cool to the target temperatures, and the target
temperatures included 0°C and −0.5°C. It is noteworthy that, to cool
the active layer below 0°C, the natural borehole consumed 14.25 d,
which was approximately double those consumed by boreholes K2
andK3. In addition, before the shallow layer (0–3m) cooled to below
−0.5°C, the cooling rate of the boreholes along the pile sides was
more than 1.5 times that of the natural ground. The pile foundation
accelerated the freeze rate of the shallow layers and reduced the
cooling time significantly, which may alter the frost-heave capacity
of the surrounding soil (Xu et al., 2001).

Response of Rebar Axis Force in Pile
Foundation to Applied Load and Frost
Heaving
Figure 4 shows the variation in rebar axis force (RAF) of pile No. 2
under the loads and the frost heaving. The vertical coordinate F,
monitored using rebar stress gauges, did not represent the RAF,
and its variation signified the increase or decrease in the RAF. The
variation values of the RAF at several depths are listed in Table 4.
The negative values signified compression, whereas the positive
tension. A step decrease occurred 36 h after load application, and
the F values of all depths changed in the same manner.
Additionally, the absolute value of the variation decreased with
depth in the range from 6.3 to 27.9 m. The variation value at the
depth of 6.3 m was more than 11 times that at the depth of 27.9 m,
indicating that the adfreezing bond force in the deep layer
burdened a small percentage of the applied load. In addition,
the absolute value of the F variation was larger at the depth of 6.3 m
than 5.2 m; this may illustrate that the weight of the pile section
exceeded the adfreezing bond force between the two depths.

Subsequently, the RAF increased sharply as the cold season was
approaching, which related to the frost heaving of the surrounding
active layer. From the variation values (Table 4) and ratio (Figure 5),
it can be seen that the strain, caused by frost heaving, decreased with
the depth. Additionally, the adfreezing bond force in the layer
between 6 and 10m alleviated most of the TFF.

To further understand the development process of the TFF,
Figure 6 is presented to show the relationship between the freeze-
thaw process and the RAF variation of pile No. 2. Note that the value
of F almost had not increased until the 0°C isotherm disappeared.
Subsequently, it increasedwith the thickness decrease of the soil layer
above −0.5°C. Furthermore, the F values reached the maximum on
March 29, 2016 when the −0.5°C isotherm disappeared. The
thickness of the frost heaving layer was approximately double

FIGURE 3 | Annual range of ground temperature of pile sides and natural
borehole.

TABLE 3 | Time consumed by shallow layers (0–3 m) to cool to below 0 °C and
−0.5°C during freezing period in late 2015.

Target temperature (°C) Cooling time (d)

Nature borehole K 1 K 2 K 3

0 14.25 8 7.25 7.25
−0.5 148.83 90.00 89.75 93.00
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that of the active layer. This phenomenon may be attributed to the
existence and migration of unfrozen water within the soil (Qiu et al.,
1994). In other words, the soil first contained both ice and unfrozen
water when the temperature dropped below 0°C. The unfrozenwater
was subjected to the exist temperature gradient, and moved toward
the colder direction. It enhanced the ice lens formation and frost
heaving. The maximum uplift force occurred when the ground was
completely saturated with ice (and little unfrozenwater). After that,
the heaving almost stopped development. Not only the active layer,
but also the permafrost with unfrozen water can cause the TFF in
the freezing process.

It is noteworthy that all the Fmagnitudes under frost heaving were
significantly higher than those before load application (Figure 5). And
the force diagram of shallow pile section is shown in Figure 7.
Meanwhile, the relationship between the tangential frost-heave
forces [Q(z)], applied load (P) and axial force of pile shaft at the
depth of 6.3m [N (6.3)] can be described as Eq. 1:

Q(z) � πD ∫
6.3

0

q(z)dz � P +N(6.3) (1)

Where D is the diameter of pile, q(z) is the unit tangential frost-
heave forces and the z is the depth.

It can be concluded that the maximum TFF was more than the
load (120 t). According to above scenario, the TFF was generated

by the frost heaving layer, and its thickness was approximately
6 m. Combining with the load magnitude and the pile diameter,
the maximum UTFF should exceed 52.04 kPa.

Distribution of Adfreezing Force Along Pile
Under Applied Load and Frost Heaving
Figure 8 shows the force diagram of pile. According to the
existing literature (Weaver and Morgenstern, 1981; Tang et al.,

FIGURE 4 | Variations of rebar axis force at different depths of pile No. 2.

TABLE 4 | Variations of rebar axis force caused by load and TFF.

Depth (m) The variations caused
by the load
in 35 h (kN)

The variations caused
by the TFF

(kN)

−5.2 −2.72 11.78
−6.3 −3.18 10.72
−7.4 −3.09 8.19
−9.6 −2.97 6.22
−17.3 −1.21 2.53
−27.9 −0.28 0.83

FIGURE 5 | Variations of RAF with depth.
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2019; Wang et al., 2021), the corresponding profiles of axial force
were calculated from strains multiplied by the pile axial rigidity,
and can be described as:

N � E · A · ε (2)
Where E is the Young’s modulus of the pile, and A is the cross-
section area.

The shaft resistance can be described as:

q(z, t) � −1
πD

· zN(z, t)
zz

(3)

Where t is the time.
The shaft resistance of the k-th soil layer were calculated using

axial force at each soil layer, based on Eq. 4:

qk � −1
πD

· Nk+1 −Nk

lk
(4)

Where Nk+1 and Nk are the axial forces of pile shaft at the bottom
and top of the k-th soil layer; lk is the thickness of the k-th
soil layer.

The Young’s modulus of the piles is estimated using Eq. 5:

E � (EcAc + EaAa)
A

(5)

Where Ec and Ea are the Young’s modulus of concrete and steel
rebar, respectively; Ac, Aa, and A are the cross-sectional areas of
concrete, rebars, and pile, respectively.

The relationship between strains of steel rebar and pile can be
described as Eq. 6, Eq. 7, and Eq. 8:

ε(z, t) � εa(z, t) (6)
N(z, t)
EA

� Na(z, t)
EaAa

(7)
zN(z)
zt

EA
�

zNa(z)
zt

EaAa
(8)

To illustrate the response of rebar axial force to the applied
load, according to the measured results, Figure 9 shows the
variations of RAF and temperature with depth after load
application. It can be seen that the pile side temperature have
dropped below 0°C when the load was applied on the pile
(Figure 9B). The pile shaft experienced a significant
compression processes in the initial period (Figure 9A). The
compression development tendency attenuated, and got into a
relatively stable state a month later. The distribution
characteristics of variable quantity of the RAF along the pile
side were similar at the different times. It should be noted that the
compression faded with the depth due to the effect of adfreezing
bond force of the permafrost to the pile shaft.

In order to further explain the interaction of the pile-soil
interface in an intuitive way, the coefficient α(z) �
ΔNa(z)/ΔNa(6.3) was selected as an index to assess the strain
distribution of pile under the depth of 6.3 m according to Eq. 8.
Table 5 lists the α(z) with the depth at different times. It can be
found that the α under the depth of 18.4 m gradually increase with
time in a month after load application, indicating that the deeper
pile section needed a considerable period to response to the applied
load. Meanwhile, the α (30) range from 1.29% to 5.72% during this

FIGURE 6 | Time series of the freeze-thaw process and seasonal
variations of RAFs at depths of −5.2 and −6.3 m of pile No. 2.

FIGURE 7 | Force diagram of pile section under frost heaving.

FIGURE 8 | Force diagram of pile (A) Variations of RAF with depth (B)
Distribution of temperature with depth.
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period. In other words, the end-bearing resistance only burdened
less than 5.72% of applied load, which was consistent with that
reported in Aksenov and Kistanov (2008), Johnston (1981) and
Andersland and Ladanyi (2003).

The relationship between the end-bearing resistance and shaft
resistance can be described by Eq. 9:

R � P − πD∫
L

0

q(z)dz (9)

Thus, the α can also reflect the effect of shaft resistance on the
pile axial force. The maximum shaft resistance appeared in the
layer 9.6–11.8 m on November 5, 2015, which was approximately
3.9 times that between the depths of 27.9 and 30 m. Furthermore,
the shaft resistance took more than 94.28% of the applied load,
which was a significant specificity comparing with the pile in
unfrozen soil. The shaft resistance was mainly provided by
freezing strength of permafrost to the concrete pile, which
owned a significant characteristic of temperature-dependent.
Thus, a frozen state for the surrounding soil is the key factor

that guarantees the stability of pile foundation in permafrost
regions. Further investigations on controlling the thermal regime
of pile foundation in permafrost are necessary for the operation
safety of superstructure.

It can be confirmed that the frost action of active layer
subjected a considerably large uplift forces to the pile
foundation (Figure 4). To explore the effect of frost heaving
on the pile foundation, Figure 10 presents the variations of RAF
and temperature with depth during freezing period. A part of pile
shaft was stretched under the frost action of active layer on
January 25, 2017. Then, this tension of pile shaft further
developed as the freezing front saturated downward. Until
April 5, 2017, the tension had occurred on the pile section
above a depth of 21.6 m, when the uplift forces should reach
the maximum. It can be concluded that the influence depth of
frost action on the pile foundation may reach a depth of 21.6 m.
In other words, the adfreezing bond force of the layer between 6.3
and 21.6 m played a major role in anchoring the pile, which
overcame most of adfreezing uplift forces caused by the frost
action of shallow layer.

FIGURE 9 | Variations of RAF and temperature with depth after load application (A) Variations of RAF with depth (B) Distribution of temperature with depth.

TABLE 5 | The coefficient α with depth at different time after load application.

Depths
(m)

ΔNa(z)/ΔNa(6.3) (%)

6.3 7.4 9.6 11.8 16.2 18.4 21.6 23.6 27.9 30

2015-11-5 100.00 97.06 93.37 62.32 42.25 36.00 23.97 17.21 8.84 1.29
2015-11-10 100.00 95.70 93.20 65.48 47.18 42.80 29.99 22.28 10.97 3.86
2015-11-20 100.00 93.95 88.92 65.33 51.51 48.05 37.23 25.62 13.51 3.93
2015-12-1 100.00 91.02 83.64 64.02 54.34 51.65 38.21 28.50 15.87 5.40
2015-12-5 100.00 89.19 78.65 63.14 53.87 52.54 40.70 28.40 16.01 5.72
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For further exploring the distribution of shaft resistance of
permafrost to the pile shaft, Table 6 lists the coefficient α with
depth at different time under adfreezing uplift forces. The
thickness of the frost heaving layer was approximately 6 m in
view of the above-mentioned facts. The total shaft resistance of
the first (6.3–11.8 m) layer overcame approximately 52.68% of the
adfreezing uplift forces on April 5, 2017. The unit adfreezing force
of this layer was approximately 4.04 times that of the 4th
(18.4–21.6 m) layer.

CONCLUSION

A field experiment was conducted in this study. Based on the
monitoring data, we discussed the effect of cast-in-place pile
foundation on the geotemperature during operation, and
quantitatively analyzed the TFF. Based on the results, the
following conclusions were obtained:

1) The cast-in-place pile foundation acted as a better thermal
conductor in the ground and enhanced the heat exchange
between the atmosphere and soil. Furthermore, it increased
the annual range of the surrounding ground temperature.

2) The pile foundation increased the permafrost table depth by
0.4–0.7 m in contrast to natural ground, which accounted for
0.33–0.58 times the pile diameter. It should be an important
consideration in the stability maintenance of pile foundation
during operation.

3) The TFF increased significantly when the soil temperature
dropped from 0 to −0.5°C. The thickness of the frost heaving
layer was approximately double that of the active layer, and
the maximum UTFF should be beyond 52.04 kPa. This lesson
will serve as a guide for the design of cast-in-place pile
foundation.

4) More than 94.28% of the bearing capacity was contributed by
freezing strength for cast-in-place pile foundation in
permafrost regions. The adfreezing bond force of

FIGURE 10 | Variations of RAF and pile side temperature with depth during freezing period.

TABLE 6 | The coefficient α with depth at different time under adfreezing uplift forces.

Depths(m) ΔNa(z)/ΔNa(6.3) (%)

6.3 11.8 16.2 18.4 21.6 23.6 27.9 30

2016-10-25 100.00 59.87
2017-1-25 100.00 78.31
2017-2-5 100.00 79.14 4.09 Compression
2017-3-5 100.00 59.31 12.68 2.84
2017-4-5 100.00 47.32 17.22 9.04 1.46
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permafrost to pile shaft played an important role in burdening
applied load and resisting the frost jacking.

In this study, it was discovered that the cast-in-place pile
foundation may negatively affect the stability in the thermal
regime. In future experiments, we will propose measures to
mitigate this effect. In addition, the soil type and the
characteristics of pile structure are two key factors that govern
the TFF; therefore, we will discuss the influencing mechanism of
the two factors in future publications.
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