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The 2020/21 La Niña was not well predicted by most climate models when it started in
early-mid 2020. This paper adopted an El Niño-Southern Oscillation (ENSO) ensemble
prediction system to evaluate the key physical processes in the development of this cold
event by performing a clustering analysis of 100 ensemble member predictions 1 year in
advance. The abilities of two clustering approaches were first examined in regard to
capturing the development of the 2020/21 La Niña event. One approach was index
clustering, which adopted only the 12-month Niño3.4 indices in 2020 as an indicator, and
the other was pattern clustering through contrasting the evolution of sea surface
temperature (SST) anomalies over the tropical Pacific in 2020 for clustering. Pattern
clustering surpasses index clustering in better describing the evolution over the off-
equatorial and equatorial regions during the 2020/21 La Niña. Consequently, based on
the pattern clustering approach, a comparison of the selected most (five best) and least
(five worst) representative ensemble members illustrated that the predominance of
anomalous southeasterly winds over the central equatorial Pacific in spring 2020
played a crucial role in initiating the moderate La Niña event in 2020/21, by preventing
the development of westerly winds over the warm pool. Moreover, the inherent spring
predictability barrier (SPB) was still a major challenge for improving the prediction skill of the
2020/21 La Niña event when the prediction occurred across the spring season.
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INTRODUCTION

The El Niño-Southern Oscillation (ENSO), the largest interannual signal in the climate system, is a
typical coupled atmosphere-ocean phenomenon with time scales of approximately 2–7 years (Ren
et al., 2020). ENSO not only affects weather and climate anomalies in the equatorial Pacific but also
affects other parts of the world through atmospheric teleconnections (Trenberth et al., 1998);
therefore, successful prediction of ENSO has always been a hot topic (Luo et al., 2016; Song et al.,
2021).

Since the 1960s, domestic and foreign scholars have established numerous theories regarding the
onset and development of ENSO (Bjerknes, 1969;Wyrtki, 1975; Jin, 1997;Weisberg andWang, 1997;
Picaut et al., 1997); these theories offer much assistance in predicting and studying ENSO. With the
increase in computing power and the introduction of techniques such as data assimilation (Evensen,
2004; Zheng and Zhu, 2010), current climate models can realize the effective prediction of El Niño
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and La Niña events 6–12 months in advance (Jin et al., 2008;
Barnston et al., 2012; Ludescher et al., 2013; Zhang and Gao, 2016;
Zheng and Zhu, 2016; Ren et al., 2017; 2020; Zhang et al., 2020).
However, there are also many problems in ENSO prediction, such
as ENSO diversity (Xie et al., 2018; Ren et al., 2018) which
indicates that various and complex forcing and feedback
mechanisms exist throughout the entire process of ENSO
onset and development (Kang et al., 2017), and this diversity
still cannot be described well by current coupled models (Cai
et al., 2018). Moreover, ENSO prediction skills were lower in the
2000s than in the 1980s or 1990s (Barnston et al., 2012; Zheng
et al., 2016), even with an increase in ocean observations,
especially in the equatorial tropical Pacific (Kumar et al.,
2015). In addition, due to asymmetric ENSO features, the
predictability between El Niño and La Niña events is
distinctively different (Hu et al., 2019). First, the successful
prediction of La Niña has not received the same attention as
that of El Niño (Barnston et al., 2012). Feng et al. (2015)
recognized that La Niña events are less predictable because of
their weaker intensity and more features; Larson and Kirtman
(2019) pointed out that El Niño events are more predictable from
the aspect of the signal-to-noise ratio. Furthermore, most current
models have a faster decline across the boreal spring in the
prediction skill of La Niña events than for El Niño events
(Lopez and Kirtman 2014).

The 2020/21 La Niña was not well predicted by most climate
models when it started in early mid 2020 (IRI website at https://
iri.columbia.edu/), which indicates that the onset and
development of this event were complicated and that this
event is worth exploring carefully. Furthermore, Zheng et al.
(2021) pointed out that the 2020/21 La Niña event was
responsible for the extremely cold winter in China, but they
did not describe the key processes in this event and generally
attributed them to atmospheric and oceanic processes. In this
work, we utilized a clustering approach called pattern clustering
because it is better and more reasonable for depicting the physical
evolution of the tropical Pacific when compared with the
traditional clustering approach called index clustering. This
paper attempted to compare the information in an ENSO
ensemble prediction system between the best and worst
prediction members obtained by pattern clustering and found
characteristics and key processes for this event. The paper is
organized as follows: In Section 2, the selected model, data
sources and methods are described. In Section 3, the
comparison of the two clustering approaches is discussed. In
Section 4, the main results through pattern clustering are
reported. Finally, in Section 5, a conclusion and discussion
are given.

MODEL, DATASETS AND METHODS

Model
This paper adopted the ENSO ensemble prediction system (EPS)
developed at the Institute of Atmospheric Physics (IAP), Chinese
Academy of Sciences (Zheng et al., 2006; Zheng et al., 2009;
Zheng and Zhu, 2016), to evaluate the key processes of the 2020/

21 La Niña event. This system utilizes the ensemble Kalman filter
(EnKF) data assimilation method (Zheng and Zhu, 2010), which
is based on an intermediate coupled model, and establishes ENSO
real-time prediction (Zheng and Zhu, 2015) by taking the initial
uncertainty and the uncertainty in the prediction process into
account (Zheng et al., 2009). The implementation of a 20-year
retrospective 12-month ensemble forecast experiment proved
that the EPS can successfully predict the possibility of ENSO
events 1 year in advance (Zheng and Zhu, 2016).

Datasets
Based on this model using the same initial conditions but
different stochastic model error perturbations, we obtained
100 ensemble members that predict a 12-month lead from
January 2020. The prediction results contained monthly data
of physical quantities such as the sea surface temperature
anomaly (SSTA), 20°C isotherm depth anomaly (Z20), zonal
wind stress anomaly (Tauxa), and meridional wind stress
anomaly (Tauya). This dataset has a longitude interval of 2°

and an unequal latitude interval of 0.5°. The SSTA in the
observation data was derived from the monthly extended
reconstruction of SST data (ERSST v5) (Huang et al., 2017),
with a horizontal resolution of 2°, and the monthly wind stress
data were from the NECP–DOE (National Centers for
Environmental Prediction–Department of Energy) Reanalysis
II (Kanamitsu et al., 2002), with a global T62 Gaussian grid
(192 × 94).

Methods
Clustering analysis, a statistical approach, is widely used in
ENSO research and related studies. Cassou and Terray (2001)
pointed out the asymmetrical role of El Niño and La Niña in
influencing the winter atmospheric variability of the North
Atlantic/Europe using K-means clustering. Singh and Delcroix
(2013) indicated that the EP El Niño (maximum anomalous
warm center in the equatorial eastern Pacific) and CP El Niño
(same as EP El Niño but in the equatorial central Pacific) have
different recharge and discharge processes through hierarchical
clustering analysis. Zhao et al. (2020), using clustering analysis,
demonstrated that the Pacific meridional mode (PMM) has two
types, which have different characteristics on the impact of
ENSO. As a classification method in machine learning,
clustering usually includes K-nearest neighbor (KNN)
clustering, K-means clustering and hierarchical clustering. In
this paper, the principle of the KNN clustering algorithm was
adopted; that is, we selected the k-training samples nearest to the
input sample in the feature space, and we could also select
abnormal values compared with the input sample. Therefore,
this paper aims to find the closest and farthest prediction
members to the observations. The distance between the
prediction members and observation sample is calculated
based on the Euclidean distance. The calculation formula is as
follows:

dij �
������������
∑p
k�1

(xik − xjk)2
√√

(1)
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In this formula, i and j represent two different samples, which can
be regarded as the prediction and observation, respectively, k
represents the corresponding elements between the two samples,
and p is the total number of samples.

To obtain members closer to the observations from the
ensemble members, two different clustering approaches were
adopted, namely, index clustering and pattern clustering. The
former was based on 12-month Niño3.4 (170°W-120°W, 5°S-5°N)
indices for clustering to obtain different degrees of similarity in
the actual evolution of the Niño3.4 index among ensemble
members and only utilized the SSTA-based index for
clustering, called as index clustering. The latter realized
clustering by using the 12-month Pacific anomalous SST
(120°E-80°W, 30°S-30°N) evolution, and it is referred to
pattern clustering. At the same time, this paper adopted
principal component analysis (PCA) which is an unsupervised
machine learning method commonly used in dimensionality
reduction, to reduce the amount of calculation of pattern
clustering. In this work, we regarded the 12-month Pacific
SSTA field as a whole, which was the input of the PCA, and
extracted an explanation variance of 90% to represent the
evolution of the 12-month Pacific SSTA. Finally, the output of
PCA was performed for clustering analysis.

THE ABILITY OF INDEX CLUSTERING AND
PATTERN CLUSTERING TO REPRESENT
LA NIÑA’S DEVELOPMENT IN 2020/21
As indicated by Zheng et al. (2021), the moderate 2020/21 La
Niña event originated from the cold SSTA of the equatorial
eastern Pacific in May 2020, gaining strength and spreading
westward under the easterly wind anomaly in the autumn, and
since October 2020, the Niño3.4 index exceeded −1.0°C and
reached its peak in the boreal winter.

To find ensemble members that were closer to the
development of the 2020/21 La Niña event, this paper utilized
two clustering approaches (index clustering and pattern
clustering) to obtain the top five best ensemble members,
which were mostly similar to the observations, called the best
prediction members (Figure 1). On the one hand, the ensemble
mean of the model indicated that the equatorial Pacific developed
into an El Niño event in 2020, while in reality it developed into a
La Niña event, which was completely opposite of the
observations, illustrating that the model starting from January
also failed to predict the 2020/21 La Niña event. On the other
hand, the best members selected by the two clustering approaches
had temporal variations in the Niño3.4 index similar to the

FIGURE 1 | The temporal variation in the Niño3.4 index in 2020 of the observations (black line) and of the best prediction members selected by the two clustering
methods. The red line represents the ensemble mean from all 100 ensemble members. The green lines represent the best five ensemble members (light) with the
ensemble-mean forecast (dark) selected by index clustering, the purple lines represent the best five ensemble members (light) with the ensemble-mean forecast (dark)
selected by pattern clustering, and other gray lines are other residual ensemble members.
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observations, and there were few obvious differences in index
evolution between the two methods. Furthermore, it was
necessary to find a better method, such as the evolution of sea
surface temperature or the wind field, to distinguish these two
approaches.

The SSTA distributions obtained by the two clustering
approaches were further explored, and we not only paid
attention to the evolution of the SSTA within the equator
(Figure 2) but also showed the evolutionary characteristics of
the SSTA outside the equator (Figure 3). The onset time of this La
Niña event was May 2020 based on observations of the
anomalous development of the cold SSTA of this La Niña
event within the equator as mentioned in previous work
(Zheng et al., 2021). The cold SSTA gradually spread
westward over time, reaching La Niña status (i.e., the Niño 3.4
index exceeded -0.5°C) in August, and approached its peak in
November 2020, forming a moderate La Niña event (Figure 1).
The cold anomaly center was located near 135°W, and the entire
equatorial western Pacific always had a warm SSTA. Both
clustering approaches could show the cold SSTA in the
equatorial central and eastern Pacific in the boreal winter of
2020, but only pattern clustering could describe westward
propagation of the cold SSTA, which was closer to the realistic
2020/21 La Niña evolution, while the variation in the cold SSTA
in index clustering tended to be locally generated in the central

equatorial Pacific. In addition, when describing the anomalous
sea temperature in the western equatorial Pacific, index clustering
from March to June obviously had a cold SSTA, which was
somewhat different from the actual situation.

Furthermore, from the evolution of the SSTA outside the
equator, we also found that there were apparent differences
between the two clustering approaches (Figure 3). First, in
observing the evolutionary characteristics of the SSTA south
and north of the equator (Figures 3A,D), we found that the
cold SSTA south of the equator began to spread westward from
June, which corresponded to the time when the cold SSTA in the
equator began to develop. For the two clustering approaches,
index clustering compared with pattern clustering had two
propagation paths of a cold SSTA south of the equator
(Figures 3B,E) and eastward propagation of a cold SSTA
north of the equator (Figures 3C,F), which were both
inconsistent with the observational facts. Therefore, the best
members selected by pattern clustering were closer to the
observations regardless of observing the variation in the SSTA
within or outside the equator.

To further examine the differences between the two clustering
approaches from another perspective, we focused on the
evolution of the anomalous wind field. Since the cold SSTA
south of the equator mentioned above was closely related to
this La Niña event, the variation in the anomalous wind field

FIGURE 2 | Temporal evolution of the SSTA along the equatorial Pacific (averaged between 5°S and 5°N) in 2020 for (A) observations, (B) the ensemblemean of the
best prediction members by index clustering, and (C) the ensemble mean of the best prediction members by pattern clustering. The contour interval is 0.4°C.
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FIGURE 3 | Temporal evolution of the SSTA along the off-equatorial Pacific (averaged between 10°S and 5°S and between 5°N and 10°N) in 2020 for (A,D)
observations, (B,E) the ensemble mean of the best prediction members by index clustering, and (C,F) the ensemble mean of the best prediction members by pattern
clustering. The contour interval is 0.4°C.
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south of the equator was mainly considered (Figure 4). The mean
wind anomalies in Figures 4B,C were obtained by the ensemble
mean of the best prediction members in index clustering and
pattern clustering based on SSTA differences, respectively. From
observations, it could be found that the eastern Pacific in the
Southern Hemisphere basically maintained a state of southerly
wind anomaly, which was conducive to transporting cold water
south of the equator to the equator. For the two clustering
approaches, even though the prediction results of wind stress
were weaker than the observations (Zheng and Zhu, 2016), from
the difference map (pattern clustering minus index clustering), it
could be determined that the best prediction members selected by
pattern clustering could better reflect the southerly wind
anomaly, especially in the area near 135°W. In summary,
regardless of the evolution of the SSTA or of the anomalous
wind field, pattern clustering was more in line with the
observational facts and was more conducive to discussing the
developmental characteristics of this event.

KEY PROCESSES OF THE 2020/21 LA NIÑA
EVENT REVEALED BY PATTERN
CLUSTERING
Based on the above comparison, this paper utilized pattern
clustering to select the best and worst prediction members,
and the evolution of the Niño3.4 index of the two sets is
shown in Figure 5. Through the comparison of the best and
worst prediction members, we could analyze which key process
could trigger this La Niña event. First, the prediction results of the
evolution of the SSTA and anomalous wind field from January to
May for the best and worst prediction members are displayed in

Figure 6. From the observations, the entire equatorial Pacific was
warm in the west and cold in the east in January, and it was one of
the structures most likely to produce the “spring predictability
barrier” (SPB) (Webster and Yang, 1992; Yu et al., 2009), a
phenomenon in which most ENSO prediction models suffer a
sharp decrease in prediction skill across the spring season (Latif
et al., 1994). Currently, the SPB is still a major challenge in ENSO
prediction (Zheng and Yu, 2017). When we focused on the
variation in the Niño 3.4 index of the ensemble mean and
observations (Figure 1), apparent discrepancies appeared after
spring, which displayed an obvious SPB phenomenon in the
2020/21 La Niña event. Second, even under the action of an
easterly wind anomaly in the eastern equatorial Pacific, the
development of the cold SSTA in this area was interrupted
from January to March, mainly because the strength of the
coupled ocean-atmosphere system is weak in boreal spring,
which is one of the possible reasons for the SPB phenomenon
(Zebiak and Cane, 1987; Webster, 1995). Therefore, it is difficult
to have good coordination between the wind field and sea
temperature. After spring, the cold SSTA developed again and
was accompanied by the transportation of cold water south of the
equator. In summary, this event actually exhibited a characteristic:
the uncoordinated ocean-atmosphere configuration structure
formed by the large-scale warm SSTA in the western equatorial
Pacific and the general easterly wind anomaly in the equatorial
region. This uncoordinated ocean-atmosphere coupled structure
appeared in spring and was superimposed on the weak coupled
strength of the ocean-atmosphere, which further increased the
difficulty of prediction starting at this time, and it may be one of
the reasons why many models starting in spring failed to predict
the 2020/2021 La Niña event. From the perspective of the best
and worst prediction members, there were two completely

FIGURE 4 | Temporal evolution of wind stress anomalies along the equatorial Pacific (averaged between 10°S and EQ) in 2020 for (A) observations, (B) the
ensemble mean of the best prediction members by index clustering, (C) the ensemble mean of the best prediction members by pattern clustering, and (D) ensemble
mean of the best prediction members by pattern clustering minus ensemble mean of the best prediction members by index clustering (i.e., (C)–(B)).
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opposite development situations, that is, the best (worst)
prediction members showed the gradual weakening
(strengthening) of the westerly wind anomaly in the western
equatorial Pacific, and correspondingly showed that this anamaly
was beneficial to the development of the cold (warm) SSTA in the
equatorial eastern Pacific; therefore, the different variation of the
Niño3.4 index between the best and worst prediction members
formed two totally opposite events (Figure 5).

We further explored the reason for the opposite development of
the best predictionmembers and theworst predictionmembers using
pattern clustering. Figure 6 shows that in January, the ocean-
atmosphere configuration (wide range of warm SSTA in the
tropical Pacific and westerly wind anomaly in the western Pacific)
of the best and worst prediction members can easily develop into the
state of El Niño, and the cold SSTA in the eastern equatorial Pacific
was relatively weak compared with the large-scale warm SSTA;
however, the configuration developed into the La Niña event in
the best prediction members. One possible reason for this
development may be that its cold SSTA in the eastern equatorial
Pacific was obviously stronger than the worst prediction members in
January 2020 (Figure 6). Furthermore, we analyzed the Hovmoller
diagrams (Figure 7), which are profile diagrams first proposed by
Hovmöller in 1949 to reflect the temporal variation of atmospheric
variables (Hovmöller, 1949) and are now widely used in the analysis

of zonal ormeridional variation characteristics of ENSO events (Feng
et al., 2015; Lian et al., 2017; Lian and Chen, 2021; Hu et al., 2019;
Zheng et al., 2021). At the starting time of the forecast (January 2020),
the most obvious differences between the worst prediction members
and the best prediction members in the four variables (Taux, Tauy,
SSTA, and Z20) were the cold SSTA located in the southeast Pacific.
Even though there were southerly wind anomalies in this region, the
cold SSTA of the worst prediction members was weaker than that of
the best prediction members. It was easier for the cold SSTA of the
best prediction members to occupy the equatorial region, thereby
establishing the Bjerknes feedback (Bjerknes, 1969), leading to the
westward development of cold SSTA in the eastern equatorial region,
weakening the westerly wind anomaly, and thus establishing the
easterly wind anomaly. Therefore, the best prediction members
successfully predicted that the cold SSTA in the southeast Pacific
explained why the best and worst prediction members had
completely opposite development directions.

Moreover, the discrepancies between the best andworst prediction
members deserve further discussion to determine the specific time
and sequence of apparent differences in variables (Taux, Tauy, SSTA,
and Z20) and to further find the different roles of the atmosphere and
ocean in the development of this La Niña event. Therefore, the
difference diagrams along the equatorial Pacific (from 5°S to 5°N)
between the best prediction members and the worst prediction

FIGURE 5 | The temporal variation in the Niño3.4 index in 2020 of observations (black line) and of the best and worst prediction members selected by pattern
clustering. The red line represents the ensemble mean from all 100 ensemble members. The purple lines represent the best five ensemble members (light) with the best
ensemble-mean forecast (dark), the orange lines represent the worst five ensemble members with the worst ensemble-mean forecast (dark red line), and the gray lines
represent other ensemble members.
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members are shown in Figure 8 (ensemble mean of the best
prediction members minus ensemble mean of the worst
prediction members). Based on the discussion above, the
anomalous cold water from the best prediction members in
the southeast Pacific flowed into the equatorial region under
the impact of the southerly wind anomaly, and by February,
there were differences in SSTA compared with the worst
prediction members. The atmosphere responded quickly to
the differences; Figure 8 shows the negative and positive
values of the anomalous zonal wind and meridional wind,
respectively, and the most obvious areas of the differences
were near the date line. Therefore, for the best prediction
members, it manifested as the strengthening of a southeasterly
wind anomaly near the date line, and it was this anomalous
wind field condition that was conducive to the appearance of
the cold SSTA in the central and eastern equatorial Pacific and
the northward transportation of cold water south of the
equator. Correspondingly, apparent differences in the
thermocline depth anomaly appeared after spring. The

discrepancies between the best and worst prediction
members emerged in the spring season. On the one hand,
this was the result of the cold SSTA in the Southern
Hemisphere under the influence of the southerly wind
anomaly, and on the other hand, it actually reflected the
SPB phenomenon of this model in this cold event.
Furthermore, the differences between the best and worst
prediction members also emphasized the dominant role of
surface signals in the development of the moderate 2020/21 La
Niña event.

DISCUSSION AND CONCLUSION

Clustering using traditional index types could not accurately describe
the evolution of the entire event, and clustering analysis using the
evolution of the anomalous sea temperature field (120°E-80°W, 30°S-
30°N) better fit the physical changes of the actual event; for such a
coupled system, both the SSTA field and the anomalous wind field

FIGURE 6 | Temporal evolution of wind stress anomalies (vectors) and SSTA (shading) (30°S-30°N, 120°E-80°W) from January to May 2020 [(A): observations; (B):
the ensemble mean of the best prediction members by pattern clustering; and (C): the ensemble mean of the worst prediction members by pattern clustering].
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FIGURE 7 | Temporal variation of Taux, Tauy, SSTA, and Z20 of the ensemble mean of the best prediction members (i.e., (A,C,E,G)) and the worst prediction
members by pattern clustering (i.e. (B,D,F,H)) along the 10°S to the equator.
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showed a better fit with the observation. The development of the
2020/21 La Niña event had an obvious SPB. In spring, there was
an obvious inconsistency in ocean-atmosphere coordination,
and the strength of the coupled ocean-atmosphere system was
weak; therefore, the cold SSTA in the equatorial eastern
Pacific in spring did not develop even under the action of
an easterly wind anomaly, leading to the occurrence of cold-
warm-cold variation in the SSTA in the equatorial eastern
Pacific. This uncoordinated coupled ocean-atmosphere
structure explains the failure of many models starting in
the spring of 2020 to predict the event and indicates its
complexity. The best members predicted by pattern
clustering were closer to the actual observations, indicating
that the development of this event was closely related to the
cold SSTA south of the equator and the southeasterly wind
anomaly in this region, which were the key processes of the
2020/21 La Niña event and the reason for opposite
development between the best prediction members and the
worst prediction members. Previous works (Min et al., 2017;
Hua and Su, 2020) demonstrated that the important role of
the southeast Pacific in the prediction of the ENSO event, and
the failure to predict the cold SSTA in the southeast Pacific
among the worst prediction members may be the reason for
the obvious SPB phenomenon in this model. Moreover, this
event also showed the dominant role of the surface signals.

A very obvious difference between the ensemble mean and
the observation after spring (Figure 1) is the apparent

performance of the SPB of this model, that is, the
prediction skills suffer a sharp decline after the spring
season, and at the same time, as mentioned in previous
discussions, the atmosphere-ocean configuration of the
equatorial Pacific in early 2020 was uncoordinated, which
made it more difficult to determine the development direction
of this event. Therefore, the prediction results starting in
January are worthwhile for analyzing the specific
performance and role of the SPB phenomenon in this
event. From the discussion of the best and worst prediction
members, it was found that successful predictions for the cold
SSTA in the southeast Pacific would be extremely beneficial in
overcoming the SPB phenomenon, thereby significantly
improving prediction skills across the spring season,
though only for this cold event.

In this work, we highlighted the importance of the SPB in
predicting the 2020/21 La Niña event and the primary role of
surface signals in the development of this event. However, this
paper only explained the key processes of this event from a
qualitative perspective, and the specific role of the wind field
needs further study. At the same time, when comparing the
best and worst prediction members by pattern clustering,
apparent differences appeared in the spring season, and the
relationship between this and the SPB and whether all of the
obvious differences in each prediction of the ensemble
prediction system appeared in spring are worthy of further
exploration.

FIGURE 8 | Temporal evolution of the differences (ensemble mean of the best prediction members minus ensemble mean of the worst prediction members) of four
variables along the equatorial Pacific (averaged between 5°S and 5°N) in 2020 for (A) ΔSSTA, (B) ΔTaux, (C) ΔTauy, and (D) ΔZ20.
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