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The origin, antiquity, and affinity of benthic seaweeds (multicellular algae) in the geological
past are shrouded in mystery due to their preservation bias. In this study, we present a
new material of well-preserved carbonaceous compression fossils in shale horizons of
the Mesoproterozoic (ca. ~1,500–1,300Ma) Singhora Group of the Chhattisgarh
Supergroup. Eleven distinct taxa, including one new taxon, Palaeoscytosiphon shuklaii,
n. gen. et. sp., and one new species, Jiuqunaoella sergeevii, n. sp., are established. Four
unidentified morphologies are also reported. Morphologically, the carbonaceous fossils
are fan-shaped, palmate, elongated, leaf-like algal thalli with/without holdfast at the base,
isolated or dichotomously branched long filaments, along with multicellular reproductive
structures. The results of laser Raman spectroscopy and energy dispersive X-ray
spectroscopy (EDX) are also presented in support of their biogenicity. Collectively, the
preservationmode of the Singhora carbonaceous fossils suggestsmulticellular algal affinity
and adds to a Burgess Shale-type (BST) taphonomic window in the Pre-Ediacaran
biosphere.
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INTRODUCTION

Macroalgae (seaweeds) are multicellular marine algae easily observed by the unaided eye, whose
“thallus” is characterized by holdfasts for attachment, and by “laminae,” reproductive “sori,” gas
bladders, and stipes (Xiao and Dong, 2006; Brodie and Lewis, 2007). They are considered
macroscopic photosynthetic eukaryotes in the Precambrian biosphere (Xiao and Dong, 2006;
Bykova et al., 2020). Gray to black shales in Ediacaran sedimentary rocks contain unusually
well-preserved Burgess Shale-type preservation of carbonaceous compressions (macroalga) (Yuan
et al., 1999; Xiao et al., 2002; Dornbos et al., 2016; Ye et al., 2019) and cast and mold preservation
(Laflamme et al., 2013). Notable carbonaceous fossils are known from the Lantian, Doushantuo, and
Liuchapo Formations in South China (Steiner, 1994; Xiao et al., 2002; Zhao et al., 2004; Yuan et al.,
2011; Ye et al., 2019); the Perevalok Formation in the Central Urals (Grazhdankin et al., 2007;
Marusin et al., 2011); the Khatyspyt Formation in Siberia (Grazhdankin et al., 2008); the Deep Spring
Formation in the United States (Rowland and Rodriguez, 2014); and the Zuun-Arts Formation in
Western Mongolia (Dornbos et al., 2016). Most of these assemblages are characterized by low
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taxonomic diversity and are dominated by multicellular benthic
algae (Xiao et al., 2002), and some are identified as putative
macro-metazoans (Wan et al., 2016; Yuan et al., 2016; Ye et al.,
2019). These records have gradually contributed to our
comprehensive understanding of the evolution, emergence,
and diversification of macroalgae before the Cambrian
explosion. Globally, they are considered ecologically important
primary producers in marine benthic ecosystems and have played
an important role in the evolution of eukaryotic organisms in the
late Proterozoic biosphere (Ediacaran) (Brocks et al., 2017; Isson
et al., 2018).

In recent years, considerable progress has been made in
understanding the evolution and diversification of Proterozoic
macroalgal fossils preserved on the surface of siliciclastic
sediments. However, their evolutionary timing and recognition
in deep time is crucial due to preservational factors (taphonomy)
in both palaeontological data and molecular clock analyses (Xiao
and Dong, 2006; Parfrey et al., 2011). Geographically, the
Proterozoic macroalgal fossils (Chuaria-Tawuia assemblage)
and multicellular metaphyte fossils have been extensively
documented from the sedimentary successions of Africa
(Amard, 1992), Antarctica (Cooper et al., 1982), Australia
(Haines, 1998), Canada (Hofmann and Rainbird, 1994), China
(Xiao et al., 2002; Tang et al., 2017; Ye et al., 2019; Tang et al.,
2020; Tang et al., 2021), Namibia (Leonov et al., 2009), Russia
(Gnilovskaya, 1971; Gnilovskaya et al., 2000), Spain (Amard,
1992; Jensen et al., 2007), Spitsbergen (Butterfield et al., 1994),
Siberia (Grazhdankin et al., 2008), Ukraine (Gnilovskaya et al.,
1988; Steiner, 1997), Ural (Marusin et al., 2011), United States
(Ford and Breed, 1973; Rowland and Rodriguez, 2014), Yakutia
(Vidal et al., 1993), and India (Sharma et al., 1991, 2009; Sharma,
2006; Sharma and Shukla, 2009a, 2009b; Singh et al., 2009;
Sharma and Singh, 2019). These carbonaceous megascopic
fossils have drawn the attention of various researchers seeking
to understand their affinity, taxonomic position (both debatable)
(Hofmann, 1992; Xiao and Dong, 2006; Lamb et al., 2007; Wan
et al., 2016; Sharma and Singh, 2019; Ye et al., 2019) and possible
natural experimentation in response to the advent of oxygen in
the palaeoenvironment (Lenton et al., 2014; Lyons et al., 2014;
Tang et al., 2017; Muscente et al., 2019; Tang et al., 2020; Zhang F.
et al., 2021; Maloney et al., 2021).

Such fossils are also recorded from the Palaeoproterozoic to
Mesoproterozoic sediments of the United States: the ca. 1.87 Ga
Negaunee Iron-Formation (Tyler et al., 1957; Han and Runnegar,
1992) and the ca. 1.4 Ga Greyson Formation (Walter et al., 1990);
China, including the ca. 1.65 Ga Changzhougou Formation (Zhu
et al., 2000), the ca. 1.63 Ga Tuanshanzi Formation (Zhu and
Chen, 1995; Yan and Liu, 1997; Qu et al., 2018), the ca. 1.56 Ga
Gaoyuzhuang Formation (Du et al., 1986; Zhu et al., 2016), the ca.
1.4 Ga Xiamling Formation (Zhang F. et al., 2021) and the ca.
1.0 Ga Nanfen Formation (Tang et al., 2020); and India, including
the ca. 1.63 Ga Olive Shale (Rai and Singh, 2006; Sharma, 2006),
and the ca. ~1.5 Ga Saraipali Shale (Babu and Singh, 2011; Babu
and Singh, 2013). Although the Palaeo- and Mesoproterozoic
fossil record of macroalgae (eukaryotes) is infrequent, they play
an important role in the evolution of multicellular life in the
Precambrian Era. The cellular structures and phylogenetic

affinities of these fossil remains are uncertain, due to the
preservation of limited morphological details (Kumar, 2001;
Bykova et al., 2020), modes of preservation (Lamb et al.,
2007), broad taphonomic variability (Samuelsson and
Butterfield, 2001), and the current paucity of biochemical
information (Arouri et al., 1999; Dutta et al., 2006; Sharma
et al., 2009). A few demonstrate cyanobacterial affinity
(Sharma and Shukla, 2009b). Recently, a coenocytic eukaryotic
and macroalgal affinity has been assigned to tomaculate fossil
Tawuia based on recalcitrant cell walls, asexual reproduction
through asymmetric constrictions, and possible abscission
structures (Tang et al., 2021). Their evolutionary patterns and
ecological influences have been mostly disregarded (Bykova et al.,
2020). To improve our understanding of macroalgal evolution in
the Mesoproterozoic biosphere, the present study systematically
describes and discusses the biogenicity, antiquity, and affinity of
new material from carbonaceous megascopic fossils found in the
rocks of the Singhora Group, Chhattisgarh Supergroup, India.

Geology and Age of the Singhora Group
In the peninsular region of central India, the
Palaeoproterozoic—Mesoproterozoic succession of
unmetamorphosed, less-deformed sedimentary succession of
the Chhattisgarh Supergroup lies over the crystalline rocks of
the Bastar Craton (Mukherjee et al., 2014; Chakraborty et al.,
2020). Lithostratigraphically, it is divided into four groups, viz.,
the Singhora, the Chandarpur, the Raipur, and the Kharsia, in
ascending order (Das et al., 1992; Mukherjee et al., 2014;
Chakraborty et al., 2015). In the ~2,300 m thick litho package
of the Chhattisgarh Supergroup, the Singhora Group is
designated as the lowermost stratigraphic unit, containing
mixed siliciclastic and carbonate litho-associations (Das et al.,
2003; Mukherjee et al., 2014). The Singhora Group of rocks is
located in the southeastern and western parts of the Chhattisgarh
Basin (Figure 1.1). It is well-exposed in the Singhora Township,
situated in parts of the Mahasamund District in Chhattisgarh
State and the Barapahar area of the Bargarh District, Odisha (Das
et al., 2003). With ~400 m thickness, the litho package of the
Singhora Group (200 km2 in aerial extent) is further subdivided
into four Formations, viz., the Rehatikhol, the Saraipali, the
Bhalukona, and the Chhuipali, in order of superposition
(Figure 1.2) (Table 1).

With ~20 mmaximum thickness, the Rehatikhol Formation of
the Singhora Group marks the initiation of sedimentation in the
Baradwar Subbasin, resting over the granitic/gneissic basement of
Bastar Craton. It is represented by the repetitive sequence of
conglomerate and arkose with minor intercalations of siltstone
and shale. More than ~60 m thick, the Saraipali Formation is the
second unit of the Singhora Group (Mukherjee et al., 2014). The
finely-laminated shale, siltstone, volcaniclastic tuffs, and
limestone-dominated Saraipali Formation overlie the basal
Rehatikhol Formation. The arenaceous sediment dominated
Bhalukona Formation (~20 m) overlies the Saraipali
Formation. It is constituted of quartz arenite with minor shale
and siltstone intercalations in its basal part representing a
coarsening upward sequence. The shale and carbonate-
dominated Chhuipali Formation is the topmost unit of the
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FIGURE 1 | Generalized geological map of the Baradwar Subbasin in and around the Singhora and Sarangarh areas, Chhattisgarh (after Das et al., 2001); 1.2:
Lithostratigraphic succession of the Chhattisgarh Supergroup in the Baradwar Subbasin (modified after Das et al., 1992; Patranabis deb and Chaudhury, 2008); 1.3: (A)
Generalized lithology of the Singhora Group, Surangi River section; (B) Conglomerate of the Rehatikhol Formation; (C)Gritty sandstone of the Rehatikhol Formation; (D)
Tuff/porcellanite of the Saraipali Formation; (E) Fossil bearing carbonaceous shale of the Saraipali Formation. Card and geological hammer used for scale; 1.4: (A)
Generalized lithology of Bendla Dongar section; (B) Gritty sandstone of the Lohardih Formation; (C,D) Shale-quartzite intercalation heterolithic of the Chaporadih
Formation. Hammer is used for scale.
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Singhora Group, resting over the Bhalukona Formation. It is
about ~300 m thick in the central part of the basin. Rocks of this
unit are characterized by variegated shale with intercalations of
siltstone, minor sandstone, chert, and stromatolitic limestone/
dolomite. It is both bedded and stromatolitic and occurs as
pockets as well as lenses. The limestone is light gray to dark
gray and is composed of sparry calcite forming a mosaic with
patches of micritic carbonate. In places, it is associated with
ferruginous arenite. Chertified limestone is further overlain by
low-dipping variegated shale which dominates without (>100 m
thick), which is laminated and highly friable; 5–20 m thick
stromatolitic limestone and dolomite comprise the upper part
of this formation and occur as pockets and lenses. The limestone
is light gray, impure, and bedded, characterized by the presence of
thin chert partings. Stromatolite sections are conspicuous on the
horizontal surface parallel to the bedding. Available studies
suggest alluvial fan, braid plain, shelf (storm infested), shallow
marine, and shelf depositional conditions for the Singhora Group
of rocks in stratigraphic order (Das et al., 1992; Chakraborty et al.,
2010; Chakraborty et al., 2012; Chakraborty et al., 2015).
Carbonaceous fossils are documented from the Saraipali and
Chhuipali Formations of the Singhora Group.

The age of the Singhora Group of rocks is constrained by
U-Th-Pb SHRIMP EPMA dating of monazite and zircon in the
Khariar and Shingora tuffs, which provide a minimum age
around ~1,500 Ma (Das et al., 2009; Bickford et al., 2011;
Chakraborty and Barkat, 2020). About ~80 Ma of depositional
timeframe has been suggested after Sm-Nd isochron dating
(~1,420 Ma) of dibasic intrusives piercing the Saraipali
Formation. SHRIMP II and LA-ICP-MS zircon dating from
the different stratigraphic units of the Singhora Group yields
the youngest age population, between c. 1,619 Ma and c.
2,543 Ma, implying sedimentation initiation of >1,600 Ma (Das
et al., 2017). However, Babu and Singh (2011) have suggested the
latest Palaeoproterozoic (~1750 Ma) age based on the
carbonaceous remains of eukaryotic affinity from the Saraipali
Formation of the Singhora Group. The occurrence of

acanthomorphic acritarch Tappania plana in the Saraipali
Formation also suggest an early Mesoproterozoic age for the
Singhora Group of rocks (Singh et al., 2019).

MATERIAL AND METHODS

The fossils described here were collected from the siliciclastic unit
of the Saraipali Formation and the Chhuipali Formation of the
Singhora Group, Mahasamund District, Chhattisgarh State,
India.

The Surangi River section (Latitude: N21°14′30.53″;
Longitude: E82°58′05.25″) is situated 25 km southwest of
Saraipali Township in the Mahasamund District. The
sedimentary succession of this section is characterized by up
to 2.0 m thick low-dipping dark grey to black fine-grained
porcellanite/tuffs followed by ~ 20 m thick black and gray
shale with minor sandy intercalations at places (Das et al.,
1992; Mukherjee et al., 2014). Shale with a gentle dip is the
dominant lithology of this formation. Most shale horizons from
this unit contain Saraipali preserved as carbonaceous
compressions within and on the surface. Specimens described
here come from the lower part of this section, as illustrated in
Figure 1.3.

The Bendla Dongar section (Latitude: N21°26′3.45″;
Longitude: E83°05′5.44″) is situated 18.5 km north of Saraipali
Township near Porapali Village in the Mahasamund District.
This hill is about 150 m high (Figure 1.4). The sedimentary
succession in this section is characterized by the low-dipping
khaki-coloured fine-grained shale of the Chhuipali Formation in
the Singhora Group. The sequence is further characterized by the
Chandarpur Group rocks, represented by the bedded quartzite
with glauconite and thin arkosic conglomerate of the Lohardih
Formation at the base (Figure 1.4B), shale-
mudstone—sandstone lower heterolithics more than 20 m
thick (Figures 1.4C, D) and about 10–15 m thick brown-
coloured ferruginous sandstone at the top, which distinctly

TABLE 1 |Generalized lithostratigraphic succession of the Chhattisgarh Supergroup (Das et al., 1992; Patranabis-Deb and Chaudhuri, 2008; Mukherjee and Ray, 2010) Age
data source: 1. Bickford et al., (2011), 2. Pandey et al., (2012), 3. Das et al., (2009). * Fossiliferous unit.

Group Formation Lithology AGE

Chhattisgarh Supergroup Kharsia Nandeli shale Gypsiferous purple shale and dolomite
Sarnadih sandstone Sandstone and conglomerate

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unconformity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Raipur Churtela shale Purple shale and Tuff 1,000 Ma (Tuff)1

Saradih limestone Dolomite/Stromatolitic limestone
Gunderdehi shale Calcareous shale with stromatolitic limestone
Sarangarh limestone Flaggy limestone and shale

Chandarpur Kansapathar formation Quartz arenite 1,641 ±120 Ma (Dolerite Intrusive)2

Chaporadih formation Glauconitic sandstone/siltstone, black shale
Lohardih formation Subarkose with basal conglomerate 1223 ± 140 Ma (Sm-Nd)2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unconformity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Singhora Chhuipali formation* Stromatolitic limestone and Variegated shale c.1500 Ma (Tuff)3

Bhalukona formation Quartz arenite and minor shale
Saraipali formation* Variegated shale/siltstone, tuff/porcellanite
Rehatikhol formation Sandstone with conglomerate at the base

Archean Basement (Sonakhan and Sambalpur Granites)
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belongs to the Chaporadih Formation. Khaki shale of this unit
contains carbonaceous remains preserved as compressions/
impressions on the bedding plane (Figure 1.4). More than
200 carbonaceous films (compressions/impressions) hosted in
shale slabs were collected for the present study from the Saraipali
Shale and Chhuipali Shale. All illustrated specimens,
photomicrographs, and associated samples have been reposited
in the Museum at Birbal Sahni Institute of Palaeosciences,
Lucknow. These can be retrieved vide statement no. BSIP 1584.

Fossil Measurements and Analytical
Microscopy
All fossiliferous slabs were thoroughly cleaned and prepared
before morphological studies. Megascopic carbonaceous fossils
were analyzed and morphologically identified on an OLYMPUS
SZ61 Stereoscopic microscope and were photographed and
measured on a software-supported OLYMPUS SC50 digital
camera. Digital Photographic images were further processed
on Olympus Cell Sense Standard software version 2.1 for
detailed linear measurements. Approximately 20 samples of
carbonaceous films were analyzed with Energy Dispersive
X-ray Spectroscopy (EDX) to make elemental mapping and
Laser Raman Spectroscopy (LRS) analyzing the macroalgae’s
chemical characterization.

Laser Raman Spectroscopy (LRS)
Selected specimens were analyzed for chemical characterization using
a RENISHAW inVia Reflex Raman Microscope at BSIP, which
permits the acquisition of both point spectra and Raman images,
which display the two-dimensional spatial distribution of molecular-
structural components of the specimens and their associated mineral
matrix. The optics of the Raman system are based on a Leica DM-
2700M REN RL/TL microscope. The instrument was calibrated
against the Raman signal for Si obtained from an internal silicon
wafer reference at 521 cm−1. Spectral acquisition was performed over
an extended range from ~200 to ~2000 cm−1. On each point of the
specimen, Raman spectra were collected by using 0.5% laser power
with 20 s of exposure time. The samples were exposed to a Coherent
Infrared (IR) laser, which provided excitation at a 785-nmwavelength
at a power of ~1–5mWover 1.5 μm, to obtain a good signal-to-noise
ratio, avoid radiation damage, and minimize laser-induced heating
(Schopf et al., 2006). In these conditions, the analysis time was a few
minutes (an accumulated time of 30 s and 10 scans). A ×50 objective
lens (with an extended working distance of 10.6 mm and a numerical
aperture of 0.5) was used to obtain a horizontal spectral resolution of
1.5 μm.

Energy Dispersive X-ray
Spectroscopy (EDX)
To determine the elemental constitution of carbonaceous fossils,
selected specimens were analyzed under the JEOL JSM-7610F
Field Emission Scanning Electron Microscope with Energy
Dispersive X-ray Spectroscopy (FESEM-EDX) instrument at
7.05 keV with a platinum coating. The instrument, equipped
with Gentle Beam (GB) mode, provides high-resolution images

even at a low accelerating voltage from 100 V to 3.9 kV without
damaging the specimen surface. The EDX documents the
quantitative and qualitative elemental analysis of fossil
materials, such as C, O, P, S, Si, Fe, Al, O, K, and many
others present in Mendeleev’s Periodic Table.

RESULTS

Systematic Palaeontology
Systematic descriptions, interpretations, and affinities of
identified macrofossils of carbonaceous remains are typically
based on gross morphological characteristics, as in most
treatment of fossil taxa. Distinct morphological characters are
an essential tool to establish the taxonomy of any fossils at the
genus and species level. Morphologically, they vary in size (from
millimeters to a few centimeters), orientation, their degree of
twisting/folding, and, in general, appear to be in situ remains. The
carbonaceous fossils are fan-shaped, palmate, elongated, leaf-like,
ribbon-like, algal thalli with/without holdfast at the base, with
rounded and angular distal ends, isolated or dichotomously
branched long tubular filaments with a cylindrical axis, along
with multicellular reproductive structures (Supplementary
Figures S1, S2). New taxa are described following the rules of
the International Code of Nomenclatures established for Algae,
Fungi, and Plants (Shenzhen Code 2018). The taxonomic details
of the identified fossils have been provided at the genus and
species level based on characteristics and descriptions proposed
by Xiao et al. (2002) and Ye et al. (2019).

Genus: Palaeoscytosiphon n. gen.
Type species: Palaeoscytosiphon shuklaii n. sp.
Etymology: With reference to the Scytosiphon-a modern

phaeophyte.
Diagnosis: It is a branched and compressed thallus comprised

of long multiple ribbons, with a holdfast at the base. The holdfast
is occasionally rhizoidal (root-like). Ribbons are long and
gradually taper to the distal end. Tapering angles are 2–3°.
Ribbons are 1.0–6.0 mm long and 0.1–0.3 mm wide. Edges of
the ribbons are parallel and sharp; each thallus contains
4–12 stalks arising from the holdfast. Filaments are often
branched, more or less symmetrically dichotomous in a few
specimens. Ribbons in some of the specimens are curved and
twisted, perhaps due to taphonomic processes (Figures 3.1, 3.3).

Comparison: The morphological characteristics of described
carbonaceous fossils can be compared to the brown alga
Scytosiphon lomentaria—an irregularly arranged weed with a
tubular, hollow, unbranched thallus growing on a rhizoid-like
holdfast (Figure 4). It is a member of the order Scytosiphonales of
the algal group Phaeophyceae.

Palaeoscytosiphonella shuklaii n. sp.
Figures 2, 3.
Stratigraphic position: The Saraipali Formation, the Singhora

Group.
Derivation of Name: In honour of the Late Dr. Manoj Shukla, a

Precambrian palaeobiologist from India.
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FIGURE 2 | Macroscopic fossil Palaeoscytosiphon shuklaii n. gen., n. sp. from the Saraipali Formation. (Arrow indicates the prominent features: st. stalk; br.
branching; hf. holdfast; rz. rhizoid.) (1–2). 1. Type specimen comprised of compressed thallus with long multiple tubular stalks attached with a discoidal holdfast at the
base; 2. Longitudinal preservation of Palaeoscytosiphon shuklaii; 2.a, 2.b. Enlarged view of Panel 2 showing secondary branching in stalks. 1. Specimen no. BSIP
41897; 2. Specimen no. BSIP 42022. Scale bar is 2 mm for each specimen.
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FIGURE 3 | Macroscopic fossil Palaeoscytosiphon shuklaii n. gen., n. sp. from the Saraipali Formation (arrow indicates the prominent features: st. stalk; br.
branching; hf. holdfast) (1–5). 1b. Enlarged view of connection between stalk and holdfast. 1, 2. Specimen no. BSIP 42022; 3. Specimen no. BSIP 42023; 4. Specimen
no. BSIP 42021; 5. Specimen no. BSIP 42024. Scale bar is 2.0 mm for each specimen.
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Type Specimen: Figure 2.1, Specimen No. 8769/82, BSIP
Museum.

Material: 10 well-preserved specimens from the Surangi River
section, southwest of Saraipali Township, Mahasamund District,
Chhattisgarh, India.

Description: As for genus/type species.

Remarks: Stalks of modern Scytosiphons are up to 400 mm
long and 3–10 mm wide. Generally, it grows on stones and hard
mud in shallow rock pools (up to 17 m deep), the mid-to-low tide
region of exposed shores, and in tide pools (Figure 4). Specimens
assigned to Palaeoscytosiphon shuklaii are well-preserved,
constituting multiple carbonaceous ribbons (Figures 2.1, 2.2;
Figure 3.1). A rhizoid-like holdfast (Figure 2.2, Figure 3.3) and
dichotomous branching in ribbons (Figures 2.2A, 2.2B) can be
distinctly seen in specimens. Carbonaceous ribbons in some
specimens are broken and ill-preserved (Figures 3.2–3.5). The
mode of preservation of P. shuklaii is illustrated in
Supplementary Figure S2. Additionally, the thread-like
elongated filamentous compression fossil form Proterotaenia
montana, known from the Palaeoproterozoic (~1,637 Ma)
Tuanshanzi Formation of China, has also been compared with
the tubular filaments of the extant brown algae Scytosiphon
lomentaria (Yan and Liu, 1997). Singh et al. (2009) have
reported specimens such as Palaeochorda vindhyansis from the
Neoproterozoic Bhander Group of the Vindhyan Supergroup,
India. Palaeochorda vindhyansis is characterized by smooth,
hollow, unbranched long tubular cord-like ribbons attached by
a holdfast-like structure similar to Chorda in morphology. In
modernmorphology, the Chordafilum is characterized by hollow,
unbranched, long cord-like ribbons attached by a small discoid
holdfast. However, in Palaeochorda vindhyansis, the discoidal
holdfast is absent. In this case, P. vindhyansis can be considered a
junior synonym of Palaeoscytosiphon shuklaii. Conversely, the
specimens of P. shuklaii have a distinct rhizoidal holdfast
(Figure 2.2).

Genus: Baculiphyca. Yuan, Li, and Chen, 1995, emend. Xiao
et al. 2002.

Type species: Baculiphyca taeniata. Yuan, Li, and Chen, 1995,
emend. Xiao et al. 2002.

Baculiphyca taeniata. Yuan, Li, and Chen, 1995, emend. Xiao
et al. 2002.

Figures 5.1, 5.1.1.
Stratigraphic position:Mesoproterozoic Chhuipali Formation,

the Singhora Group.
Material: One specimen from the Bendla Dongar section, north

of Saraipali Township, Mahasamund District, Chhattisgarh, India.
Description: Elongate, unbranched clavate algal thallus,

attached to the substrate by a basal rhizoidal holdfast. The
holdfast typically bears fine (ca. 0.1–0.3 mm in diameter)
filamentous rhizoids at its base. The thallus expands gradually
to the distal end at an apical divergence angle of 2°–6°. The upper
portion is more or less blade-like. The terminus is straight.
Elongated thalli are 2.5 mm long and 0.2 mm thick.

Remarks: Yuan et al. (1995) instituted the genus Baculiphyca
with its type species Baculiphyca taeniata assigned to
carbonaceous fossils composed of a clavate, bent and folded
thallus attached with a rhizoidal holdfast. Later, in a
taxonomic assessment, Xiao et al (2002) emended the
diagnosis of Baculiphyca based on both rhizoidal and globose
holdfasts. Subsequently, based on complex morphology, Xiao
et al. (2002) have also suggested possible eukaryotic algal affinity
for the genus Baculiphyca. Recently, Ye et al. (2019) established a

FIGURE 4 | Photographs of modern brown algae (Phaeophyta)
Scytosiphon lomentaria (1–4). Source – 1. https://www.visoflora.com/
photos-nature/photo-scytosiphon-lomentaria-1.html; 2. http://www.
seaweed.ie/descriptions/Scytosiphon_lomentaria.php; 3. https://
alchetron.com/Scytosiphon-lomentaria.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 8254308

Singh and Sharma Mesoproterozoic Chhattisgarh Macroalgal Carbonaceous Compressions

https://www.visoflora.com/photos-nature/photo-scytosiphon-lomentaria-1.html
https://www.visoflora.com/photos-nature/photo-scytosiphon-lomentaria-1.html
http://www.seaweed.ie/descriptions/Scytosiphon_lomentaria.php
http://www.seaweed.ie/descriptions/Scytosiphon_lomentaria.php
https://alchetron.com/Scytosiphon-lomentaria
https://alchetron.com/Scytosiphon-lomentaria
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 5 | 1. Baculiphyca taeniata Yuan et al., 1995, emend. Xiao et al., 2002; 1.1. Enlarged view of (B) taeniata holdfast; 2–8, 12. Changchengia stipitata Yan,
1997 in Yan and Liu, 1997 with distinct parastem ate base; 9–11. Chuaria circularisWalcott, 1899; Vidal and Ford, 1985; 13–15. Eopalmaria pristina Yan, 1995. (Arrow
indicates the prominent features: ap. apex; b. base; bd. bead; th. thallus; cn. constrictions, p. parastem; hf. holdfast). 1. Specimen no. BSIP 418983; 2. Specimen no.
BSIP 39782; 3. Specimen no. BSIP 39779; 4. Specimen no. BSIP 42026; 5. Specimen no. BSIP 41899. 6. Specimen no. BSIP 42038; 7. Specimen no. BSIP
42033a; 8. Specimen no. BSIP 39776; 9. Specimen no. BSIP 42022; 10. Specimen no. BSIP 41897; 11. Specimen no. BSIP 42042; 12. Specimen no. BSIP 42036; 13.
Specimen no. BSIP 42040; 14. Specimen no. BSIP 39774; 15. Specimen no. BSIP 39778; 16. Specimen no. BSIP 42030. Specimens 1, 4–7, 11, 12, 16 from the
Bendla Dongar section and 2, 3, 8-10, 13–15 from the Surangi River section. Scale bar is 1.0 mm for each specimen.
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new species, Baculiphyca brevistipitata, from the upper Ediacaran
Doushantuo Formation, China. A specimen from the Chhuipali
Formation is characterized by a dark black elongated stipe with a
globose holdfast, showing a close resemblance to Miaohe
specimens (Xiao et al., 2002; Ye et al., 2019), but is
comparatively smaller (Figure 5.1). The presence of a holdfast
in Baculiphyca proves their benthic habit as microorganisms.
Holdfasts may play an important role, anchoring them to
strengthen Baculiphyca in mud and making their thallus/stipe
flexible for movement according to currents.

In the fossil records, Baculiphyca is widely known in the
Ediacaran carbonaceous assemblages, specifically in China and
India (Singh et al., 2009; Ye et al., 2019). This is the first report of
Baculiphyca from the Mesoproterozoic succession and suggests
their antiquity is possibly ~400 Ma deeper in the Proterozoic
biosphere.

Genus: Changchengia Yan. Yan and Liu, 1997.
Type species: Changechengia stipitata. Yan and Liu, 1997.
Changechengia stipitata Yan. Yan and Liu, 1997.
Figures 5.2–5.8, 5.12
Stratigraphic position: The Saraipali and Chhuipali

Formations, the Singhora Group.
Material: Twenty (20) specimens from the Surangi River

section, southwest of Saraipali Township; and fifteen (15)
specimens from the Bendla Dongar section, north of Saraipali
Township, Mahasamund District, Chhattisgarh, India.

Description: Unbranched, lanceolate, broad ribbon-like thalli,
widest at the middle, wider toward the apex, narrowing toward the
base. Algal thalli are folded and twisted with depressed margins,
smooth and prominent. A distinct differential type parastem-like
structure (Figures 5.2–5.8) is present at the base of the thalli. The
measured thallus is 3.0–8.0 mm in length, and up to 1.0 mm wide.
The parastem is up to 0.5 mm long. In one specimen, the parastem-
like structure is attached to a disc-like base (Figure 5.8).

Remarks: Specimens described here are morphologically
similar to, but relatively smaller than, the C. stipitata known
from the Tuanshanzi Formation (~1,637 Ma) of Yanshan Basin
in Jinxian, Hubei, China (Yan and Liu, 1997). Specimens with
similar morphologies have been documented from the
Palaeoproterozoic Olive Shale of the Vindhyan Supergroup,
India (Rai and Singh, 2006; Sharma, 2006). Based on the
preservation mode of C. stipitata, Sharma (2006) has
suggested their growth in a lagoonal environment.

A parastem is the main morphological characteristic feature of
Changchengia stipitata, occurring at the base of the thalli. Such
structures are well-preserved in both Saraipali (Figures 5.2, 5.3,
5.8) and Chhuipali specimens (Figures 5.4–5.7). The presence of
a disc-like structure at the parastem base suggests C. stipitata
belonged to a benthic habitat. Our interpretation for the parastem
ofChangchengia stipitata is that it helped to anchor the algal thalli
on the bottom, protecting it from current movement in the water.

Genus: Chuaria. Walcott, 1899; Vidal and Ford, 1985.
Type species: Chuaria circularis. Walcott, 1899; Vidal and

Ford, 1985.
Chuaria circularis. Walcott, 1899; Vidal and Ford, 1985.

Figures 5.9–5.11
Stratigraphic position: The Saraipali and Chhuipali

Formations, the Singhora Group.
Material: Twenty (20) specimens from the Surangi River

section, southwest of Saraipali Township; and fifteen (15)
specimens from the Bendla Dongar section, north of Saraipali
Township, Mahasamund District, Chhattisgarh, India.

Description: Isolated, flattened, smooth, circular to subcircular
black carbonaceous compressions or impressions. Two-
dimensionally preserved discs, ranging from 0.5 to 0.8 mm in
diameter.

Remarks: Specimens of Chuaria circularis recorded from the
Chhattisgarh Supergroup are morphologically similar in type and
material to those from China, Canada, Russia, and other localities,
including India. The specimens consist of impressions and
compressions of carbonized material, deposited and compacted
between the bedding planes or parallel to the laminations of rock. It
is one of the few globally-distributed carbonaceous specimens
extensively reported from Palaeoproterozoic to Neoproterozoic
sediments (Hofmann, 1994; Dutta et al., 2006; Sharma et al.,
2009). Carbonaceous discs without wrinkles, documented by the
Uinta Mountain Group, were also designated as Chuaria circularis
(Hofmann, 1977). In later reports, carbonaceous discs with or
without wrinkles were globally demonstrated as Chuaria circularis
(Yuan et al., 2001; Kumar and Srivastava, 2003; Sharma et al., 2009;
Ye et al., 2019). It has also been interpreted as a colonial
cyanobacterium, based on its putative association with Nostoc-
like filaments (Sun, 1987; Steiner, 1997); or as a multicellular
eukaryote because of its excystment opening and a potentially
complex life cycle (Kumar, 2001; Sharma et al., 2009; Wang et al.,
2011; Tang et al., 2017). Specimens with medial structures are
demonstrated as polyphyletic in origin (Butterfield et al., 1994;
Sharma et al., 2009). Sharma et al. (2009) proposed a hybrid model
for the Chuaria-Tawuia association and suggested that the
biogeopolymer of Chuaria is similar to the algaenan macro-
molecules of many algae species. Recent analysis using
backscattered-electron scanning electron microscopy (BSE-SEM)
revealed that Chuariamay have had amulticellular vegetative stage
in its life cycle (Tang et al., 2017).

Genus: Eopalmaria. Yan, 1995.
Type species: Eopalmaria pristina. Yan, 1995.
Eopalmaria pristina. Yan, 1995.
Figures 5.13–5.16
Stratigraphic position: The Saraipali and Chhuipali

Formations, the Singhora Group.
Material: Eight (08) specimens from the Surangi River section,

southwest of Saraipali Township, and five (05) specimens from
the Bendla Dongar section, north of Saraipali Township,
Mahasamund District, Chhattisgarh, India.

Description: Unbranched elongate, flat, sheet-like algal
thalli, with a wide and uneven apex, foliate, angular to
subangular at the base. The measured specimens range
between 0.5–6.0 mm long and 0.5–1.50 mm wide. Parastem-
like stipes are absent at its base.

Remarks: Eopalmaria pristina was originally described as a
palmate-shaped carbonaceous compression from the ca.
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1,637 Ma Tuanshanzi Formation of the Changcheng Group of
China (Yan, 1995). In size and morphological characteristics,
the present specimens are similar to the biota known from the
latest Palaeoproterozoic Olive Shale, Semri Group, Vindhyan
Supergroup, India (Sharma, 2006). E. pristina is morphologically
comparable to the modern algae Rhodomenia palmata of the algal
group Rhodophyta, Spathoglossum of the Phaeophyta, and
Monostroma among the Chlorophyta (Yan and Liu, 1997).

Genus: Eoholynia. Gnilovskaya, 1975.
Type species: Eoholynia mosquensis. Gnilovskaya, 1975.
Eoholynia corumbensis. Gaucher et al., 2003.
Figure 6.1.
Stratigraphic position: The Chhuipali Formation, the Singhora

Group.
Material: Single specimen from the Bendla Dongar section, north

of Saraipali Township, Mahasamund District, Chhattisgarh, India.

Description: Dichotomously branched, non-septate, ribbon-
like carbonaceous thallus, 05–06 branches in the thallus. Primary
branches give rise to secondary branches. Secondary branches are
sharply tapered at the end. The length of the complete specimen is
3–18 mm, approximately 0.1–0.4 mm wide.

Remarks: Similar carbonaceous compressions have been
documented from the Neoproterozoic Guaicurus Formation of
the Corumba Group, Brazil (Gaucher et al., 2003). Branches of E.
corumbensis are wider than E. mosquensis (Gnilovskaya, 1979).
Based on morphological characters, the biological affinity of
Eoholynia is assigned to eukaryotic algae, probably of
Phaeophyta or Rhodophyta (Hofmann, 1994; Burzin, 1996). E.
corumbensis is considered probably benthic, as has been
suggested for E. mosquensis (Gnilovskaya, 1975).
Miaohephyton bifurcatum Steiner (1994)—a morphologically
similar fossil to E. corumbensis—has also been placed among
the brown algae (Phaeophyta) (Xiao et al., 1998). Subsequently,

FIGURE 6 | 1. Eoholynia corumbensis Gaucher et al., 2003; 2–7. Jiuqunaoella sergeevii n. sp.; 8–9. Synocylindra yunnanensis Chen and Erdtmann, 1991. (Arrow
indicates the prominent features: br. branching; bd. bead; cn. constriction; th. thallus). 1. Specimen no. BSIP 42028; 2. Specimen no. BSIP 39782; 3. Specimen no.
BSIP 42032; 4. Specimen no. BSIP 41898; 5. Specimen no. BSIP 42029; 6. Specimen no. BSIP 42035; 7. Specimen no. BSIP 42027; 8. Specimens no. BSIP 42037; 9.
Specimens no. BSIP 42041. Specimens 1, 3-9 from the Bendla Dongar section and 2 from the Surangi River section. Scale bar is 1.0 mm for each specimen.
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Eoholynia was placed among the vendotaenid algae (Gaucher
et al., 2003).

Genus: Jiuqunaoella Chen. Chen and Xiao, 1991, emend. Xiao
in Xiao et al., 2002.

Type species: Jiuqunaoella simplicis Chen. Chen and Xiao,
1991, emend. Xiao et al., 2002.

Jiuqunaoella sergeevii n. sp.
Figures 6.2–6.7.
Type locality: Surangi River section, southwest of Saraipali

Township, Mahasamund District, Chhattisgarh, India.
Type specimen: Figure 6.2, Specimen No. BSIP 39782.
Stratigraphic position: Carbonaceous shale of the Saraipali and

Chhuipali Formations, the Singhora Group.
Material: 10 specimens: two (02) specimens from the Surangi

River section, southwest of Saraipali Township; and eight (08)
specimens from the Bendla Dongar section, north of Saraipali
Township, Mahasamund District, Chhattisgarh, India.

Derivation of species name: In honour of the Late Prof.
Vladimir N. Sergeev, Russian Academy of Sciences, Moscow,
for his significant contribution to the field of Precambrian
Palaeobiology.

Diagnosis: Ribbon-like carbonaceous compressions consist of
a regular series of distinct chamber-like segments arranged in a
beaded manner. Filaments are twisted and folded, having more or
less parallel margins.

Description: Refer to the diagnosis. Ribbons are 4.0–11.0 mm
long and 0.5–1.0 mm wide. The diameter of the chamber ranges
from 0.5 to 1.0 mm.
Remarks: Chen (in Chen and Xiao, 1991) established the genus
Jiuqunaoella with its type species Jiuqunaoella simplicis, from
the Ediacaran Doushantuo Formation, Miaohe Village, in Hubei
Province, China. In the absence of a type repository for the
species, it was considered an invalid taxon. Later, Chen (in Xiao
et al., 2002) revised the diagnosis of this genus and retained
it as a genuine fossil in the Ediacaran Miaohe biota, assigned
and compared with coenocytic green algae. The carbonaceous
compression assigned to the new species Jiuqunaoella sergeevii
in the Lower Mesoproterozoic Saraipali Formation differs from
the type species Jiuqunaoella simplicis by its chamber-like
segments arranged in a beaded manner (Figure 6.2). Such
morphotypes are also known as Eosolenides from upper
Mesoproterozoic Lakhanda mudstone. Morphologically,
Eosolenides fossils are fragments of an elongate, benthic,
apparently soft-bodied, double-walled, tubular organism
attached to its underlying substrate (German and
Podkovyrov, 2009). A possible interpretation is that the
ribbons of J. sergeevii may be a remnant of Eosolenides. In
size, it is different from other ribbon-like carbonaceous
compressions, such as Tyrasotaenia and Cyanocylindra. We
assigned it to coenocytic green algae, as suggested by Xiao
et al. (2002). Carbonaceous ribbons with similar features are
recorded from the Chhuipali Formation of the Singhora Group
exposed at the Bendla Dongar section of the study area (Figures
6.3–6.7).

Genus: Sinocylindra. Chen and Erdtmann, 1991.

Type species: Sinocylindra yunnanensis. Chen and
Erdtmann, 1991.

Sinocylindra yunnanensis. Chen and Erdtmann, 1991.
Stratigraphic position: The Chhuipali Formations, the

Singhora Group.
Material: Two specimens from the Bendla Dongar section,

north of Saraipali Township, Mahasamund District,
Chhattisgarh, India.

Description: Smooth, ribbon-like carbonaceous compression,
twisted and folded. Both margins are more or less parallel.
Specimens bear uneven and closely-spaced transverse nodes.
Terminus ends of the ribbon are rounded. The ribbons are
3.0–4.0 mm long and up to 0.2 mm wide.

Remarks: The genus Sinocylindra differs from other ribbon-
like carbonaceous compressions, such as Tyrasotaenia and
Jiuqunaoella in the Chhuipali biota, by its rounded terminus
and more or less parallel wall margins. The carbonaceous ribbons
assigned to Sinocylindra yunnanensis show a close resemblance to
Miaohe specimens of China (Xiao et al., 2002). Chen and
Erdtmann (1991) established the genus Sinocylindra with its
species Sinocylindra yunnanensis from the Ediacaran
Doushantuo Formation of China (Chen and Erdtmann, 1991).
Xiao et al. (2002) suggested that it may be part of multicellular
algae such as Chaetomorpha (green), Nemalion (red), or Chorda
(brown), and also suggested an individual status rather than the
cyanobacterial sheath Siphonophycus. Sinocylindra is well-known
in the carbonaceous fossil assemblages of the Ediacaran to
Cambrian periods. Its occurrence in the Mesoproterozoic
Chhuipali Formation (1.3 Ga) indicates its antiquity is
~400 Ma earlier in the Proterozoic biosphere.

Genus: Tuanshanzia. Yan, 1995.
Type species: Tuanshanzia fasciaria (Yan). Yan and Liu, 1997.
Tuanshanzia fasciaria (Yan). Yan and Liu, 1997.
Figures 7.1–7.6.
Stratigraphic position: The Saraipali and Chhuipali

Formations, the Singhora Group.
Material: Twenty-five (25) specimens from the Surangi River

section, southwest of Saraipali Township, and ten (10) specimens
from the Bendla Dongar section, north of Saraipali Township,
Mahasamund District, Chhattisgarh, India.

Description: Unbranched, taeniate algal thallus, with rotundate
apex, slightly tapering toward its base, smooth margins, thin,
parastem absent. The thallus is moderately folded or twisted.
Measured specimens are 4.0–18.5 mm in length and 0.25–0.5 mm
in width.

Remarks: The specimens of the present species in Singhora
macroalgae are smaller than those from the Tuanshanzi
Formation of the Changcheng Group (~1,637 Ma) in Jinxian,
Hubei, China (Yan and Liu, 1997). In size, they are similar to
specimens of the Olive Shale, Semri Group, Vindhyan
Supergroup (Sharma, 2006). Parastem-like structures are
absent in both the algal thalli of T. fasciaria and T. lanceolata.
Yan and Liu (1997) emended the genus Tuanshanzia, pointing
out it can be distinguished from Changchengia by its lack of stalk-
like parastem structure. They suggested that its species can be
differentiated bytheir distinct morphology. It represents sessile
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FIGURE 7 | 1–6. Tuanshanzia fasciaria (Yan) Yan and Liu, 1997; 7–11. Tuanshanzia lanceolata Yan, 1995; 12. Tyrasotaenia podolica Gnilovskaya, 1971; 13–16.
Unnamed ribbon-like film comprised of small conical/circular projection on the surface. (Arrow indicates the prominent features: bnd. Branching node; ca. colonial
aggregates; th. thallus) 1. Specimen no. BSIP 42040; 2. Specimen no. BSIP 42039; 3. Specimens no. BSIP 42041; 4. Specimen no. BSIP 39777; 5. Specimen no. BSIP
39780; 6. Specimen no. BSIP 39769; 7. Specimen no. BSIP 39769; 8. Specimen no. BSIP 39782; 9. Specimen no. BSIP 42028; 10. Specimen no. BSIP 42036;
11. Specimen no. BSIP 42043; 12. Specimen no. BSIP 42025; 13. Specimen no. BSIP 42033b; 14. Specimen no. BSIP 42031; 15. Specimen no. BSIP 42045a; 16.
Specimen no. BSIP 42044. Specimens 1–3, 9–16 from the Bendla Dongar section and 4–8 from the Surangi River section. Scale bar is 1.0 mm for each specimen.
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frond-like algal thalli with bilaterally symmetrical and flat
structures.

Tuanshanzia lanceolata. Yan, 1995.
Figures 7.7–7.11
Stratigraphic position: The Saraipali and Chhuipali

Formations, the Singhora Group.
Material: Ten specimens from the Surangi River section,

southwest of Saraipali Township, and fifteen specimens from
the Bendla Dongar section, north of Saraipali Township,
Mahasamund District, Chhattisgarh, India.

Description: Broad sheet-like lanceolate algal thallus,
moderately folded, smooth edges, widest in the middle,
twisted, narrowing, and tapering toward both ends (Figures
7.7, 7.9, 7.10). The distal end of the thallus is incomplete in
some specimens (Figures 7.8, 7.11), its parastem absent. Sheets
are 3.0–8.0 mm long and 0.25–0.8 mm wide.

Remarks: The present form is morphologically comparable to
known specimens of the Tuanshanzi Formation (~1637 Ma) of
the Changcheng Group, China (Yan, 1995), the Olive Shale Semri
Group, and the Vindhyan Supergroup (Sharma, 2006). It is
comparatively smaller than original specimens. Flattened
sheet-like compression resembles the tubular thallus of some
of the Phaeophyta, viz., Siphonales (Dictyosiphonales) and green
algae Ulvales. Some specimens in the Bendla Dongar section are
characterized by a rusty color, probably resulting from oxidation
or removal of organic matter.

Genus: Tyrasotaenia. Gnilovskaya 1971.
Type species: Tyrasotaenia podolica. Gnilovskaya, 1971.
Tyrasotaenia podolica. Gnilovskaya, 1971.
Figure 7.12.
Stratigraphic position: The Chhuipali Formations, the

Singhora Group.
Material: Only six (6) specimens from the Bendla Dongar

section, north of Saraipali Township, Mahasamund District,
Chhattisgarh, India.

Description: Solitary, unbranched, long cylindrical filaments,
more or less straight and parallel, occasionally folded and
curved. Measured specimens are 2–4 mm long and
0.1–0.2 mm thick.

Remarks: The ribbon-like carbonaceous fossil Tyrasotaenia
was initially recorded from the fine-grained clastic sediments of
the 900 Ma Russian Platform (Gnilovskaya, 1971) and later from
the 1,300 Ma Belt Supergroup, Montana (Walter et al., 1976);
Little Dal Group, Mackenzie Mountains, Northwestern Canada
(Hofmann and Aitken, 1979). In India, such types of
carbonaceous filaments are known from the Proterozoic
Vindhyan Supergroup (Shukla and Sharma, 1990; Sharma,
2006; Sharma et al., 2016). Based on its morphological
similarity to stalks of Chorda and Scytosiphon belonging to
the Phaeophyta, Tyrasotaenia podolica may be a remnant of
benthic macroalga/seaweeds.

Unnamed Forms
Figures 7.13–7.16.
Stratigraphic position: The Chhuipali Formation, the Singhora

Group.

Material: Five incomplete specimens from the Bendla Dongar
section, north of Saraipali Township, Mahasamund District,
Chhattisgarh, India.

Description: Compressed ribbon-like tubular structures with
more or less parallel sidewalls, comprised of small protrusions
projected and evenly distributed over the ribbon. Terminal
margins of ribbon are straight. Projections in Figure 7.15
seem to be broken nodes of branching. Protrusions seem to be
colonial aggregates of small coccoids (Figure 7.16). The thickness
of the ribbon is up to 1.0 mm and the protrusion is up to 0.2 mm
in diameter. Specimens are incomplete.

Remarks: The Bendla Dongar section contains many
incompletely preserved ribbon-like tubular compressions.
Some ribbons are comprised of more or less parallel margins
similar to filamentous cyanobacteria Siphonophycus. However,
ribbons are much larger than the Siphonophycus (Figures 7.13,
7.14). Some ribbon-like compressions comprise small
protrusions projected and evenly distributed over the ribbon
(Figure 7.15). These seem to be a node of further branching
in the organism. The terminal margins of the ribbons are straight.
Some specimens hold bunches of carbonaceous aggregates
projected on the terminal end or sometimes in the middle
(Figure 7.16).

Raman Spectroscopy
Over the last few decades, in situ techniques, including Laser
Raman Spectroscopy (LRS), Fourier Transform Infrared
Spectroscopy (FTIR), Secondary Ion Mass Spectroscopy
(SIMS), and Atomic Force Microscopy (AFM) have been
employed to understand the cellular morphology,
ultrastructure, and chemical composition of organic matter
preserved in these carbonaceous compressions (Javaux and
Marshal, 2006; Oehler et al., 2006; Marshall et al., 2007;
Schopf et al., 2010; Kilburn and Wacey, 2015; Delarue et al.,
2018; Wacey et al., 2019). To understand the biogenicity and
geochemical maturity of the carbonaceous films, selected
specimens were analyzed using Laser Raman Spectroscopy.
Laser Raman Spectroscopy is a non-intrusive, non-destructive
analytical approach to investigate carbon compounds in
Precambrian carbonaceous matter (Schopf et al., 2005). In situ
Raman analysis on fossil materials at different targeted regions
revealed the presence of 1,322 cm−1–1,356 cm−1 and
1,599 cm−1–1,608 cm−1 spectral bands, which indicate the level
of graphitization in the form of D (Disordered peak) and G
(Graphite peak) bands of organic carbon. Additionally, micro-
Raman spectra of newly instituted carbonaceous fossil P. shuklaii
included the D-band (Disordered band) at 1,339 cm−1 and
G-band (Graphite band) at 1,603 cm−1 (Figure 8). This
variation in the spectral band is caused by due vibration of
complex carbon molecular structures, uneven surfaces, and
dangling bonds (Qu et al., 2018). The obtained spectra and
the positions and width of the D and G bands are
characteristic of organic carbon, as revealed in Figure 8. The
other best-matched minerals are glassy carbon and Shungite.
Shungite is an elementary noncrystalline mineraloid of biogenic
origin comprised of 98% carbon. The Raman spectra analysis and
comparisons with available records (Noffke et al., 2013; Qu et al.,
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2018; Shukla et al., 2019) show that the Singhora films are
typically carbonaceous and have a biogenic origin. The
carbonaceous fossil composition is also corroborated by
Raman first-order spectra organic-walled microfossils (OWMs)
embedded in the host rock, which are dominated by distinct D
and G bands of carbon (Supplementary Figure S3) supporting
the syngenecity of cellular remains within the host rock. On the
basis of fossil colour preservation fidelity, the Raman Index of
Preservation (RIP) value of kerogen is 8.5 (Schopf et al., 2005).

Energy Dispersive X-ray Spectroscopy
(EDX) in the SEM
The Energy Dispersive X-ray Spectroscopy (EDX) technique was
applied to understand the chemical composition of the
carbonaceous macroalgae. The results of EDX elemental
mapping conducted on the Saraipali macroscopic
carbonaceous fossils are illustrated in Figure 9. Elemental
mapping reveals distinctive differences in composition between
the matrix and the fossils. Analysis of the fossiliferous shale
matrix demonstrates consistently high concentrations of
aluminum (Al-11.28%), oxygen (O-50.98%), and silicon (Si-
26.27%) relative to other elements (K-3.01% and Fe-1.93%).
However, the concentration of carbon (C-6.54%) in shale
matrix silicon (Si) is not enriched relative to the matrix
(Figure 9.2). On the other hand, EDX analysis of
carbonaceous fossil material demonstrates strong carbon
enrichment (C-63.40%) relative to other elements, viz., oxygen
(O-32.33%), silicon (Si-2.54%), aluminum (Al-1.06%), potassium
(K-0.32%) and iron (Fe-0.36%) (Figure 9.1). Similarly, the
Chhuipali macrofossils are preserved on a khaki shale bedding
surface and are easily distinguishable from the shale matrix by

their darker colour. The elemental composition of the shale
matrix is the same as Saraipali Shale (Figure 9.2). Most of the
fossils preserved are robust, continuous carbonaceous films as
compressions/impressions.

EDX results reveal that the studied fossil material of
macroalgae are typically composed of carbon, and indicates in
situ preservation in aluminosilicate clay mineral-bearing rocks.
Weathered macrofossils are easily visible due to the strong
contrast between the dark fossils and the buff-coloured shale
matrix. Aluminosilicate clay elements (Si and Al) are exhausted in
the fossils relative to the matrix. Both the acid maceration and
EDX elemental mapping analyses show elevated organic carbon
enrichment in the fossils relative to the rock matrix. Further, this
mode of preservation suggests Burgess Shale-type preservation
for these macroscopic fossils (Butterfield, 1995; Gaines et al.,
2008; Orr et al., 2009; Wang et al., 2014). Recently, based on
morphological and EDX studies, Dornbos et al. (2016) have also
suggested Burgess Shale-type fossil preservation for macroscopic
filaments Chinggiskhaania bifurcata and Zuunartsphyton
delicatum recorded from the upper Ediacaran and Cambrian
Zuun-Arts Formations, Mongolia.

DISCUSSION

Biogenicity of the Singhora Carbonaceous
Fossils
In the present study, the extensively well-preserved Singhora
carbonaceous compressions and impressions show distinct
ribbon-shaped, leaf-shaped, fan-shaped morphology with putative
stipes and/or holdfast structures preserved on the bedding surface of
the host rock. These carbonaceous remains are found preserved in

FIGURE 8 | Micro-Raman spectra of the Singhora carbonaceous fossil Palaeoscytosiphon shuklaii reflecting the concentration of D (disorder) and G (Graphite)
band. Specimen no. BSIP 41897, Scale bar is 2.0 mm.
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multiple layers in regularly repeated forms (see Supplementary
Figures S4–S6). Gross morphology and preservation behaviour
of the Singhora assemblage show close resemblance to ~1,637Ma
Tuanshanzi and ~1,560Ma Gaoyuzhuang carbonaceous
assemblages of China (Zhu and Chen 1995; Yan and Liu, 1997;
Zhu et al., 2016). The Tuanshanzi Formation in Northern China is
characterized by millimeter to centimeter-sized scattered
carbonaceous compressions of irregular or indeterminate shape
(ribbons and blades), interpreted as seaweed specifically attributed
to Phaeophyta (Yan 1995; Zhu and Chen 1995; Yan and Liu, 1997)

mainly based on varied morphology. The Gaoyuzhuang
carbonaceous fossils are decimeter sized, regular, and strongly
elongated (Zhu et al., 2016). Based on their size, shape, and
chemical structure investigation, both the Chinese assemblages
are considered benthic multicellular eukaryotes (Zhu et al, 2016;
Qu et al., 2018).

Due to the lack of well-preserved cellular structures,
carbonaceous compression fossils are often challenged for their
biogenecity (Zhu et al., 2016). Among them, the Tuanshanzi
carbonaceous fossils are the most debated. Knoll et al. (2006) have

FIGURE 9 | EDX spectra of Singhora carbonaceous compressions and host rock. 1. Macroscopic film shows high concentration of C and low concentration of
other elements respectively. Presence of high carbon in fossils indicated carbonaceous and organic nature of fossils.; 2. Shale matrix: showing high concentration of Al,
SI, O, K, and Fe elements and partial concentration of Si, indicating host rock is aluminosilicate clay.
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questioned the seaweed affinity proposed for the Tuanshanzi
fossils, interpreting them as rare, fortuitously-shaped fragments
re-deposited among irregular mat shards. They have also been
interpreted as macroalgae with holdfast-stipe-blade
differentiation, but their variable morphologies appear to
suggest that some of them may be fragmented algal mats
(Xiao and Dong, 2006). Butterfield (2009), based on their lack
of regularly repeated forms and angular margins, considered the
carbonaceous films a part of the fragmented microbial mats.
Likewise, the biogenicity of the Singhora carbonaceous
compression fossils can also be questioned. But due care was
applied in recovering the Singhora fossil material. The Singhora
carbonaceous compressions have rounded algal thalli (Figures
5.14–5.16; Figure 7.1), angular distal ends (Figures 5.4–5.7,
5.12; Figures 7.9–7.11) and twisted and folded sheets (Figures
5.2, 5.3, 5.8; Figure 7.7). These features make the Singhora
carbonaceous fossils true Phaeophytic fossils. Two possible
interpretations of the Tuanshanzi fossils’ angular margins are
that they either represent the original shape of the algae, or their
distal ends were twisted and overlapped during or after the burial
process. The same interpretation may hold for the Singhora
carbonaceous fossils.

A substantial number of macroscopic compressions,
impressions, and casts are globally known in rocks of the
latest Palaeoproterozoic and early Mesoproterozoic ages
(Hofmann and Chen, 1981; Han and Runnegar, 1992; Kumar,
1995; Zhu and Chen, 1995; Yan and Liu, 1997; Zhu et al., 2000;
Rai and Singh, 2006; Sharma, 2006; Zhu et al., 2016). Millimeter
to centimeter-sized carbonaceous compressions with a diverse
range of shapes, varying from circular, elongate, filamentous, to
complex branching, recorded on the bedding plane surfaces of the
Proterozoic successions, are reviewed by Hofmann (1992). Most
of them are claimed as “multicellular eukaryotes” (Xiao et al.,
2002; Knoll et al., 2006; Xiao and Dong, 2006; Zhu et al., 2016;
Sharma and Singh, 2019; Bykova et al., 2020). Palaeoproterozoic
carbonaceous macroscopic fossils, including the circular,
elliptical, elongate, and irregularly shaped carbonaceous
compressions often described as Chuaria, Shouhsienia, and
Tawuia from the ca. 1,800 Ma Changzhougou and
Chuanlinggou Formations in northern China (Hofmann and
Chen 1981; Zhu et al., 2000), were claimed as megascopic
eukaryotes and the oldest representatives of multicellular
organisms (Zhu et al., 2000). Further investigations of the
original material, including plane light investigations of thin
sections and acid maceration, the petrographic study of thin
sections, SEM, EDS, CHN, XRD, and biomarker analyses,
indicate that Changzhougou compressions are clasts composed
of clays or phosphates with little carbon, as typically found in
pseudo-fossils instead of multicellular structures (Lamb et al.,
2007). However, interpreting biogenic origins and affinities for
many of these carbonaceous fossils remains relatively
controversial because they lack well-preserved pigments and
cellular structures (Hofmann, 1994; Knoll et al., 2006; Xiao
and Dong, 2006; Lamb et al., 2007; Butterfield, 2009; El Albani
et al., 2010; Knoll, 2011).

Recently, Qu et al. (2018) have reinvestigated chemical,
isotopic, and molecular-structural features of organic matter

from the carbonaceous films of the Tuanshanzi Formation,
using in situ Raman Spectroscopy, FTIR, and organic carbon
isotopic composition, to determine the affinity of carbonaceous
compressions. These were interpreted as the oldest putative
macroscopic multicellular eukaryotes by Zhu and Chen (1995).
The results of Raman Spectroscopy and carbon isotopic
composition of organic remains from the Tuanshanzi
carbonaceous compressions demonstrate unambiguous benthic
eukaryotic macroalgae and have experienced only advanced
diagenesis (Qu et al., 2018). They further suggest that the
Tuanshanzi Formation carbonaceous compressions imply
higher oceanic oxygen concentrations during the Palaeo- and
Mesoproterozoic than previously estimated. Similarly, well-
preserved sheets of organic fragments extracted through acid
maceration of the fossiliferous samples infer organized
multicellularity for the Singhora fossils (Supplementary
Figure S3). The organic fragments are dark brown, show
various optical densities under transmitted light microscopy,
demonstrating thermally-altered organic matter composition
(anthracitic carbon). Further, the Raman spectra (D and G
bands) of the carbonaceous material approximately equate
organic fragments within the host rock. The Singhora
carbonaceous compressions record a modest diversity of
macroscopic photosynthetic multicellular eukaryotes syngeneic
in nature.

Mode of Preservation and Taphonomy of
Singhora Carbonaceous Fossils
Several different modes of preservation, specifically silicification,
pyritization, phosphatization, carbonaceous compressions/
impressions, and cast and mold preservation are established
for most exceptionally-preserved micro and macroorganisms.
Carbonaceous compressions/impressions are mainly
responsible for preserving most macroalgae and organic-walled
microfossils (OWMs) embedded in shales and siltstone of the
Proterozoic successions. Our understanding of carbonaceous
compression fossil preservation from the Palaeo- and
Mesoproterozoic strata is inadequate due to limited records of
macroalgae, particularly non-calcified macroalgae, unusual
taphonomic conditions, and conflicts in taxonomic
assignments (Lamb et al., 2007). The taphonomic biases
contribute to the scanty fossil record of Proterozoic macroalgae.

We analyzed more than 200 specimens of macrofossils of the
Singhora Group of rocks containing various branched and
unbranched carbonaceous films with two-dimensional to
three-dimensional morphological details (Table 2).
Taphonomically, the Singhora macroalgal fossils described
here are typically preserved as two-dimensional compressional
elements (i.e., branches and stipes). Many of them have an
elevated concentration of organic carbon, attesting to their
preservation as carbonaceous compressions. Both the Saraipali
and Chhuipali specimens are also enriched in aluminosilicates.
Framboidal pyrite is conspicuously missing in both assemblages.
Some specimens in the Chhuipali Shale show a reddish colour
from where the carbon film has been detached, but they are easily
distinguished from the rock matrix (Figure 5.4, Figure 6.9,
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Figure 7.2). Most macrofossils in the Singhora assemblage are
preserved as carbonaceous compressions through kerogenization,
as confirmed by acid macerations, Laser Raman Spectroscopy
(Singh et al., 2019) and Energy Dispersive X-ray Spectroscopy
elemental mapping analysis, which resulted in high organic
carbon enrichment in the fossils compared to the rock matrix
(discussed in the text). EDX results revealed that the studied
macroalgae fossil material from the Singhora Group is typically
composed of carbon and indicates in situ preservation in
aluminosilicate clay mineral-bearing rocks. Additionally,
Singhora carbonaceous compression macrofossils are
characterized by mixed keroginization and
aluminosilicification. Overall, this mode of preservation meets
the requirements of Burgess Shale-type (BST) preservation for the
carbonaceous compressions of the Singhora Group (Butterfield,
1995; Gaines et al., 2008; Orr et al., 2009; Wang et al., 2014; Ye
et al., 2019). Globally, BST is considered exemplary of non-
mineralizing organism preservation in fully marine siliciclastic
sediments (Butterfield, 1995; Anderson et al., 2011). Several
hypotheses for taphonomic pathways, viz., kerogenization,
pyritization, and aluminosilicification provide insights to
understanding BST preservation in most recorded fossil
assemblages. However, in many cases, these processes are
found in the same fossil assemblage and sometimes even in
the same specimen (Cai et al., 2012).

Affinity and Biostratigraphic Significance
An extensively well-preserved variety of macroscopic
carbonaceous compressions and impressions are recorded
from the Saraipali and Chhuipali Formations of the
Mesoproterozoic Singhora Group. These are demonstrably
macroalgal fossils and provide information about a new level
of algal evolution in the Proterozoic biosphere. Similar
megascopic carbonaceous fossils were recorded earlier, from
the ca. 1,637 Ma Ma Tuanshanzi Formation from the
Changcheng Group of Jixian, China, and termed
Tuanshanzian Macroscopic Algae (Yan, 1995; Yan and Liu,
1997; Knoll et al., 2006; Xiao and Dong, 2006; Butterfield,
2009). Based on their considerably large size and varied
shapes, they were considered the oldest benthic and eukaryotic
multicellular algae (Yan, 1995). The lanceolate thalli of
Tuanshanzia lanceolata and Tuanshanzia fasciaria were
described as sessile frond-like algal thalli with bilaterally

symmetrical and flat structures compared to certain species of
Petalomia among the Phaeophyta and Enteromorpha or
Monostroma among the Chlorophyta (Yan and Liu, 1997).
Similarly, the palmate shape thallus of Eopalmaria pristina was
linked with Palmaria/Porphyra/Rhodymenia among the
Rhodophyta (Yan and Liu, 1997) and also with Monostroma
among the Chlorophyta (Yan, 1995) and Spathoglossum among
the Phaeophyta (Yan and Liu, 1997). The affinity of broad ribbon-
like thallus with short parastem Changchengia stipitata was
interpreted as a benthic metaphyte (Yan and Liu, 1997). Based
on diversification, Yan and Liu (1997) have suggested a neritic,
lagoon-like environment under a brackish-water habitat for the
Tuanshanzian assemblage. The Saraipali and Chhuipali
megascopic algae closely resemble Tuanshanzian specimens,
but are relatively smaller in size. The ribbon-like thin tubular
films of Tyrasotaenia podolica are also considered benthic
remnants of Scytosiphon among the Phaeophyta (Yan and Liu,
1997). Based on megascopic size, thallus nature, and possible
parastem-like features, carbonaceous films recorded from the
Late Palaeoproterozoic to Early Mesoproterozoic Olive Shale
were attributed to eukaryotic algae (Sharma, 2006). Based on
its thallus, Steiner (1994) has placed Tyrasotaenia in synonimy
with Vendotaenia.

The Saraipali and Chhuipali assemblages also contain
taxonomically well-established megascopic carbonaceous films:
namely, Baculiphyca taeniata (Yuan et al., 1995), Cyanocylindra
yunnanensis (Chen and Erdtmann, 1991), and Eoholynia
corumbensis (Gaucher et al., 2003), primarily known from the
Ediacaran successions. A rhizoidal holdfast-bearing
carbonaceous film, Baculiphyca taeniata, was compared with
remnants of green algae, including the Siphonocladales and
Dasycladales. However, due to their simple tubular
morphology, Xiao et al. (2002) interpreted the ribbon-like
tubular films of Cyanocylindra yunnanensis as filamentous
cyanobacteria, although they have also placed this form under
eukaryotic algae based on a size larger than the Siphonophycus
Schopf. Similarly, the multi-branched carbonaceous film
Eoholynia corumbensis is considered an eukaryotic algae,
probably remnants of Phaeophyta or Rhodophyta (Hofmann
1994; Burzin, 1996). The occurrence of such Neoproterozoic
complex morphologies in the Mesoproterozoic shales of the
Singhora Group of the Chhattisgarh Supergroup predates their
antiquity to earlier in time.

TABLE 2 | Megascopic carbonaceous macroalgae from the Saraipali and Chhuipali Formations of the Singhora Group.

Mega fossils/Species Overall morphology Interpretation

Baculiphyca taeniata Algal thallus with rhizoidal or globose holdfast Eukaryotic alga
Palaeoscytosiphon shuklaii n. gen., n. sp. Numerous ribbons attached with rhizoidal holdfast Eukaryotic alga
Changchengia stipitata Algal thallus with prominent parastem Eukaryotic alga
Eopalmaria pristina Palmate shape algal thallus with wide uneven apex Eukaryotic alga
Tuanshanzia fasciaria Algal thallus with rotundate apex and tapered base, parastem absent Eukaryotic alga
Tuanshanzia lanceolata Lanceolate algal thallus, both ends tapered Eukaryotic alga
Tyrasotaenia podolica Thin ribbon-like thallus, fragment of macroalgae Eukaryotic alga?
Eoholynia corumbensis Dichotomously branched, ribbon-like thallus Eukaryotic alga
Jiuqunaoella sergeevii n. sp. Ribbon-like thallus with chamber-like segments arranged in a beaded manner Green alga
Synocylindra yunnanensis Ribbon-like carbonaceous compression with uneven and closely-spaced transverse nodes Eukaryotic alga?

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 82543018

Singh and Sharma Mesoproterozoic Chhattisgarh Macroalgal Carbonaceous Compressions

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Apart from these fossils, the Saraipali Shale contains two new
carbonaceous fossil taxa, namely Palaeoscytosiphon shuklaii n.
gen., n. sp., and Jiuqunaoella sergeevii, n. sp. Preservation
behaviour suggests that P. shuklaii is attributed to benthic
multicellular algae Scytosiphon lomentaria belonging to family
Scytosiphonaceae among the class Phaeophyceae (brown algae)
(Figure 4). Scytosiphon lomentaria is a yellowish-brown or dark
brown alga, comprised of hollow unbranched cylindrical stipes,
up to 400 mm long and 3–10 mm wide. Stalks narrow at the end,
with a wider base attached by a rhizoid-like short holdfast
(Figure 2). Scytosiphon lomentaria most commonly occurs in
the upper shore pool and grows on limpets, rocks, and wave-
exposed shores. It is considered a model species for life history
and molecular studies of brown algae.

The ribbon-like carbonaceous film Jiuqunaoella sergeevii
consists of many bladder-shaped cells arranged in a beaded

manner. In its global occurrence, Jiuqunaoella is widely known
for the Ediacaran successions of China (Xiao et al., 2002; Ye et al.,
2019). Its bladder-shaped beaded arrangement distinguishes
Jiuqunaoella sergeevii. These bladder-like structures occur in
the thallus, which enable it to receive more light for
photosynthesis. In the Miaohe assemblage of the Doushantuo
Formation, Jiuqunaoella simplicis was reconstructed as a sausage-
like cylindrical tube, similar to some coenocytic green algae (Xiao
et al., 2002; Ye et al., 2019). The specimens of Jiuqunaoella in the
Singhora carbonaceous compressions are also characterized by
ribbon-like structures with distinct chamber-like circular
segments arranged in a beaded manner. Such complex
morphological characteristics, including cell-to-cell
connections, qualify J. sergeevii as a multicellular
microorganism. Its degree of morphological differentiation and
preservation behaviour reveals that the Saraipali and Chhuipali
carbonaceous fossils are attributed to multicellular eukaryotes,
similar to Palaeoproterozoic–Mesoproterozoic Tuanshanzi and
Gaoyuzhuang carbonaceous fossil assemblages (Yan and Liu,
1997; Zhu et al., 2016), although their exact phylogenetic
affinities are comparable to benthic seaweeds belonging to
modern algae Phaeophyceae and Chlorophyceae (Xiao and
Dong, 2006; Ye et al., 2019).

In this study, the Singhora carbonaceous compressions
exhibit various morphologies, including fan-shaped, palmate,
elongated, leaf-like, and ribbon-like, their algal thalli with/
without holdfast at the base, with rounded and angular distal
ends, isolated or dichotomously branched long tube-like
cylindrical axis, along with multicellular reproductive
structures. The holdfast’s role is to anchor the algal thallus
on a hard substrate, protecting it from the currents that qualify
their benthic habit, which is also consistent with brown algae
(Zhu and Chen, 1995; Qu et al., 2018). Furthermore, their
micro-macro morphologies and the results of Laser Raman
Spectroscopy of the Singhora carbonaceous compressions
share similarities with previously-known fossil materials,
which are interpreted as multicellular eukaryotes (Xiao et al.,
2002; Zhu et al., 2016; Qu et al., 2018; Zhang S. et al., 2021) and
biogenic. Assignment to the multicellular eukaryotic fossils for
the Singhora macroalgal carbonaceous compression also
supports interpretations of early macroscopic multicellular
eukaryote evolution in sulphidic and low-oxygenated Palaeo-
and Mesoproterozoic oceans (Zhu et al., 2016; Qu et al., 2018;
Bykova et al., 2020).

Antiquity of Carbonaceous Films
Our understanding of eukaryotes’s early evolution and
diversification in Precambrian Palaeobiology, specifically
multicellular macroalgae, is meager in both fossil and
biomarker records. It is difficult to define the antiquity and
evolution of fossilized remains in deep time, due to the rare
occurrence of morphological and anatomical characters with
those found in living forms (Butterfield, 2007). Available
phylogenetic records suggest that eukaryotes may have first
evolved in freshwater environments at the Palaeoproterozic-
Mesoproterozoic transition (Blank, 2013). However, most of
the fossil record supports their evolution in marine

FIGURE 10 | Chart showing the antiquity of higher algae in Proterozoic
time span compiled on the basis of published records.
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environments (Yan and Liu, 1997; Rai and Singh, 2006; Sharma,
2006; Bengtson et al., 2017; Qu et al., 2018). They extended into
marine environments in the Tonian Period due to dramatic
changes in the marine biological pump, food webs, and benthic
habitats (Sanchez-Baracaldo et al., 2017; Del Cortona et al.,
2020; Tang et al., 2020; Maloney et al., 2021).

The antiquity of macroalgae in deep time has also been
discussed in several publications (Butterfield, 2001; Knoll et al.,
2006; Butterfield, 2009, 2015; Knoll, 2015; Zhu et al., 2016;
Bengtson et al., 2017; Tang et al., 2020; Zhang F. et al., 2021;
Zhang S. et al., 2021; Tang et al., 2021). Globally, there are only
a handful of published Proterozoic records of higher
multicellular algae, as illustrated in Figure 10. Of these, the
antiquity of some reports is considered confirmed (genuine)
on the basis of distinct morphological and ultrastructural
studies. Whereas the antiquity of a few macroalgae is
unclear (doubtful) in the absence of distinct skeleton and
taphonomic biases.

Several distinct types of micro and macro fossils are recorded
after the Great Oxidation Event (GOE) from the Proterozoic
succession and claimed as eukaryotes of the oldest antiquity
(Retallack et al., 2013; Singh and Sharma, 2014). Eukaryotic
fossils recorded from different formations of the world trace
their antiquity from ~2,200 Ma to ~1800 Ma, such as the urn-
shaped discoidal body of the Diskagma buttonii from the
~2,200 Ma Palaeosols of South Africa (Retallack et al., 2013);
the coiled carbonaceous megascopic fossil Grypania from the
~1870 Ma Negaunee Iron-Formation, Michigan (Han and
Runnegar, 1992; Schneider et al., 2002) and the string-of-beads
morphology of Horodyskia from the 1,500 Ma Backdoor
Formation of the Collier Group, Australia are assigned as the
Oldest Known Tissue-Grade Colonial Eukaryote (Fedonkin and
Yochelson, 2002; Grey et al., 2010). However, Sharma and Shukla
(2009b) have established that Grypania was prokaryotic. Later, in
a review, Knoll et al. (2006) considered the Horodyskia as a
problematic macrofossil whose eukaryotic affinity is probable but
not beyond debate. Similarly, decimeter to millimeter-scale
carbonaceous ribbons and blades were recorded from the
~1700 Ma to ~1,600 Ma shales of the Changcheng Group,
China (Yan and Liu, 1997; Gao et al., 2011; Zhu et al., 2016)
and ~1,600 Ma Olive Shale Formation, India (Sharma, 2006), and
~1,500 Ma Singhora Group, India (Babu and Singh, 2013) were
also claimed as eukaryotic fossils. However, their affinity with
green, brown, and red algae is not confirmed in the absence of
favorable diagnostics (Figure 10). Existing compilations of global
taxonomic diversity suggest that eukaryotic fossils with complex
morphology began to appear in the late Palaeoproterozoic. An
eukaryotic nature has also been claimed for the large (>100 µm)
sphaeromorphic acritarchs documented from the ~1800 Ma
Changzhougou Formation, North China (Lamb et al., 2009).
Singh and Sharma (2014) have documented the oldest
eukaryotic body fossil, Shuiyousphaeridium, from the latest
Palaeoproterozoic-early Mesoproterozoic (>1,600 Ma)
succession of the Chitrakoot Formation of the Vindhyan
Supergroup, India. Similar fossils were known from younger
sequences (1744 Ma–1,639 Ma) of the Ruyang Group, China
(Yin, 1997; Pang et al., 2020), and (1,500 Ma – 1,400 Ma)

Roper Group, Australia (Javaux, 2007; Javaux and Knoll,
2017). Therefore, at present, the Chitrakoot acritarchs are
possibly the oldest eukaryotic remains in the world. Attempts
have been made in this direction after the first record of extant
Bangiophyte red algae Bangiomorpha pubescens from the late
Mesoproterozoic (~1,200 Ma) Hunting Formation of Canada
(Butterfield, 2000; Gibson et al., 2018). In the fossil records
before the Cryogenian (c. 800 Ma), the Bangiomorpha
pubescens was the only taxonomically unresolved crown-group
eukaryote considered the earliest known expression of extant
multicellular forms and eukaryotic photosynthesis (Butterfield,
2000; Cohen and Macdonald, 2015). Recently, based on Re-Os
geochronology, a precise ~1,047 Ma age has been set for the
origin of Bangiomorpha pubescens (Gibson et al., 2018)
(Figure 10). In addition, Bengtson et al. (2017) have reported
uniquely well-preserved fossils interpreted as probable crown-
group rhodophytes from the ~1,650 Ma Tirohan Dolomite of the
lower Vindhyan (Semri Group) sediments of Son Valley in the
Chitrakoot region (Figure 10). This report includes the discovery
of two new fossils: namely, Rafatazmia chitrakootensis,
Denaricion mendox and lobate form Ramathallus lobatus.
Demonstrably, Rafatazmia is a non-branching filamentous
thallus that has uniserial rows of large cells, which grow
through diffusely distributed septation. This report predated
the minimum age of the last eukaryotic common ancestor
(LECA) and increased the antiquity of rhodophytes by about
400 Ma (Butterfield, 2015). However, in the absence of distinct pit
plugs within the cells, red algae’s affinity with the fossil
Rafatazmia is questionable (Carlisle et al., 2021). Recently,
Tang et al. (2020) have predated the antiquity of chlorophyte
algae (green algae) ~200 Ma after reporting the multicellular
macroscopic carbonaceous compression filamentous fossil
Proterocladus antiquus from the ~1,000 Ma Nanfen Formation
of the Xihe Group, China (Figure 10). The Proterocladus was
originally known from the early Neoproterozoic (Tonian)
Swanbergfjellet Formation, Spitsbergen (Butterfield et al.,
1994) (Figure 10). Together with its large size and
morphology, integrated isotopic, geochemical, and
ultrastructural studies on carbonaceous compressions of the
~1,630 Ma Tuanshanzi Formation of North China support
that the early benthic macroscopic multicellular eukaryotes
evolved and prevailed in the sulphidic and low-oxygenated
Palaeo- and Mesoproterozoic oceans (Qu et al., 2018).
Cyanobacteria is long-ranging and considered a primary
producer in Proterozoic Photosynthetic microorganisms
(Sergeev et al., 2012) (Figure 10).

The fossil records of Phaeophyta (brown algae) evolution in
the Precambrian successions are not well established. This is due
to a generally soft-bodied nature and little occurrence of
calcified taxa. A few millimeters of long carbonaceous
compressions, typically preserved as flattened outlines or
fragments, have been described from Ediacaran successions
and their possible affinity as Phaeophyta claimed. The
carbonaceous macroalga Eoholynia (Gnilovskaya, 1975)—–a
cord or ribbon-like branched thallus, known from Vendian
deposits in Russia, was considered eukaryotic algae remains.
Its possible affinity was assigned as Phaeophyta or Rhodophyta
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(Gaucher et al., 2003). Similarly, based on the morphological
and taphonomic assessment of Miaohephyton bifurcatum
carbonaceous compressions―dichotomously branched
multicellular thalli, known from the Ediacaran Doushantuo
Formation, China―Steiner placed them among the brown
algae (Xiao et al., 1998). Available records suggest that
Phaeophytes may have diverged much later (the Mesozoic) in
the geological past compared with red and green algae. In
previous publications, claims have been made for many
carbonaceous compressions as Phaeophyta, documented from
the Mesozoic, Palaeozoic, and Ediacaran successions (Loeblich,
1974; Fry, 1983). However, the taxonomic affinity of these
impression fossils is far from certain and has been discarded
in the absence of key morphological characteristics (Kawai and
Henry, 2016).

In the present study, two well-preserved macroscopic
carbonaceous compression fossils: namely, Palaeoscytosiphon
shuklaii n. gen, n. sp., and Jiuqunaoella sergeevii, n. sp., are
described for the first time from the Saraipali Formation of
the Singhora Group. Carbonaceous compressions of the fossil
P. shuklaii represent all morphological characters in a single
specimen, characterized by ribbon/tubular filaments with a
distinct holdfast, sharing a similar morphology to the modern
brown algae Scytosiphon lomentaria (Figure 7). Nevertheless, our
present observations on Palaeoscytosiphon’s palaeobiologic
affinities require a more detailed study that would exceed the
scope of this study.

Similarly, carbonaceous compressions of Eoholynia
corumbensis Gaucher et al. assigned as remains of eukaryotic
algae are probably the class Phaeophyceae (brown algae)/
Rhodophyceae (red algae) and considered as benthic seaweeds
(Gnilovskaya, 1979; Gnilovskaya et al., 1988; Hofmann, 1994).
Further, the present findings also suggest that the Phaeophyta
evolved during the early Mesoproterozoic Era (~1,500 Ma)
instead of the previously suggested late Neoproterozoic
(Gnilovskaya, 1975) (Figure 10). In addition, these studies
also support the molecular clock analyses that suggest the
divergence of Phaeophyta, Rhodophyta, and Viridiplantae in
the Palaeoproterozoic–Mesoproterozoic Eras. Further, the
crown-group Chlorophyta diverged during the late
Mesoproterozoic to early Neoproterozoic eras; however,
siphonous, multicellular, and siphonocladous chlorophytes
evolved repeatedly in the late Neoproterozoic and Palaeozoic
(Tang et al., 2020; Maloney et al., 2021).

CONCLUSIONS

In summary, abundant macroscopic carbonaceous
compressions and impressions of macroalgal fossils,
attributed to benthic seaweeds, are recorded from the shales
and siltstone of the Saraipali and Chhuipali Formations of the
Mesoproterozoic Singhora Group, Chhattisgarh Supergroup,
India. The presence of exceptionally well-preserved distinct
complex morphological features, including holdfasts,
parastem, and thalli of different shapes and sizes suggest that

the Singhora carbonaceous compressions are derived from the
stem group of eukaryotic macroalgae. Two new taxa,
Palaeoscytosiphon shuklaii n. gen., n. sp. (Phaeophyta), and
Jiuqunaoella sergeevii n. sp. are established for the first time
in the present finding. P. shuklaii n. gen., n. sp., Eoholynia
corumbensis and Tyrasotaenia podolica most likely belong to
brown algae (Phaeophyceae). If our interpretations are correct,
both forms may predate the antiquity of Phaeophyta in the early
Mesoproterozoic Era (~1,500 Ma). Analysis using Laser Raman
Spectroscopy (LRS) and Energy Dispersive X-ray Spectroscopy
(EDX) of fossiliferous material demonstrate that the Singhora
carbonaceous compressions of macroalgae are typically made
up of organic carbon. Additionally, high carbon enrichment and
depletion of Al, Si, K, and O in the carbonaceous compressions,
as well as high enrichment of Al, Si, Fe, O, and K and low carbon
in the shale matrix qualifies Burgess Shale-type preservation
(BST) for the studied carbonaceous remains. Further, the
carbonaceous macrofossils from the rocks of the Singhora
Group provide evidence of benthic macroalgae inhabited in
the shallow water of the low-oxygenated Mesoproterozoic
Ocean.
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Supplementary Figure S1 | Schematic drawings showing carbonaceous remains
described from the Chhattisgarh Supergroup.1–3, 5. Tuanshanzia lanceolata; 4.
Tuanshanzia fasciaria; 6. Baculiphyca taeniata; 7, 8. Changchengia stipitata; 9.
Chuaria circularis; 10. Eopalmaria pristina; 11. Tyrasotaenia podolica; 12, 17.
Jiuqunaoella sergeevii n. sp.; 13. Eoholynia corumbensis; 14, 15. Unnamed
forms; 16. Synocylindra yunnanensis. Scale bar is 1.0 mm for each.

Supplementary Figure S2 | Schematic drawing showing mode of preservation of
Palaeoscytosiphon shuklaii at different stages (1–4). Scale bar is 2.0 mm for each.

Supplementary Figure S3 | Raman spectra of organic matter of Saraipali
fossiliferous shale extracted from HF maceration. Organic matter shows a
distinct D- (1344 cm-1) and G- (1607 cm-1) band of organic carbon.

Supplementary Figure S4 | 1–2. Large fossiliferous specimens from the
Saraipali Shale showing both large carbonaceous films and fragments on the
bedding plane. Scale bar: 2.0 mm. 1. Specimen no. BSIP 42034; 2. Specimen
no. BSIP 42045b.

Supplementary Figure S5 | 1–2. Large fossiliferous specimens from the
Saraipali Shale showing both large carbonaceous films and fragments on the
bedding plane. Scale bar: 2.0 mm. 1. Specimen no. BSIP 42045c; 2. Specimen
no. BSIP 42045d.

Supplementary Figure S6 | 1–2. Fossiliferous slab from the Saraipali Formation
showing the repeated morphology of carbonaceous films on the bedding plane. 1.
Specimen no. BSIP 42045e; 2. Specimen no. BSIP 42045f.
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