
Calcium Carbonate Dissolution
Triggered by High Productivity During
the Last Glacial–Interglacial Interval in
the Deep Western South Atlantic
Jaime Y. Suárez-Ibarra1,2*, Cristiane F. Frozza1, Pâmela L. Palhano1, Sandro M. Petró3,
Manuel F. G. Weinkauf2 and Maria A. G. Pivel 4

1Programa de Pós-Graduação Em Geociências, Instituto de Geociências, Universidade Federal Do Rio Grande do Sul, Porto
Alegre, Brazil, 2Ústav Geologie a Paleontologie, Přírodovědecká Fakulta, Univerzita Karlova, Prague, Czech Republic, 3itt
OCEANEON, Instituto Tecnológico de Paleoceanografia e Mudanças Climáticas, Universidade Do Vale Do Rio Dos Sinos, São
Leopoldo, Brazil, 4Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Studies reconstructing surface paleoproductivity and benthic environmental conditions
allow us to measure the effectiveness of the biological pump, an important mechanism in
the global climate system. In order to assess surface productivity changes and their effect
on the seafloor, we studied the sediment core SAT-048A, spanning 43–5 ka, recovered
from the continental slope (1,542 m water depth) of the southernmost Brazilian continental
margin, deep western South Atlantic. We assessed the sea surface productivity, the
organic matter flux to the seafloor, and calcite dissolution effects, based on
micropaleontological (benthic and planktonic foraminifers, ostracods), geochemical
(benthic δ13C isotopes), and sedimentological data (carbonate and bulk sand content).
Superimposed on the induced changes related to the last glacial–interglacial transition, the
reconstruction indicates a significant and positive correlation between the
paleoproductivity proxies and the summer insolation. From the reconstructed data, it
was possible to identify high (low) surface productivity, high (low) organic matter flux to the
seafloor, and high (low) dissolution rates of planktonic Foraminifera tests during the glacial
(postglacial). Furthermore, within the glacial, enhanced productivity was associated with
higher insolation values, explained by increased northeasterly summer winds that
promoted meandering and upwelling of the nutrient-rich South Atlantic Central Water.
Statistical analyses support the idea that productivity is the main cause for seafloor calcium
carbonate dissolution, as opposed to changes in the Atlantic Meridional Overturning
Circulation (at least for the 25–4 ka period). Further efforts must be invested in the
comprehension and quantification of the total organic matter and biogenic carbonate
burial during time intervals with an enhanced biological pump, aiming to better understand
their individual roles.
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INTRODUCTION

The oceanic biological pump is a primary mechanism to
exchange CO2 between the atmosphere and the oceans, and is
therefore critically important for the acidity of the sea water and
associated carbonate dissolution (Riebesell, 2004). An intensified
biological pump in the oceans leads to an increase of exported
biogenic carbon and carbonate burial in the sediments (Brummer
and van Eijden, 1992). Since planktonic Foraminifera are
important contributors to the pelagic calcium carbonate flux
(Milliman et al., 1999; Schiebel, 2002; Kučera, 2007) they
represent an important component of the global climate
system through their role in the oceanic carbon and carbonate
pump. The connection between strong changes in the oceanic
biological pump and calcite dissolution is difficult to study in
modern oceans, as sample areas with sufficient differences in
bioproductivity also differ in several other environmental factors,
thus confounding the results. In contrast, Pleistocene climate
scenarios offer the possibility to investigate a relatively stable
ecosystem under intensely changing bioproductivity scenarios.

The Late Quaternary climate is characterized by orbit-related
glacial–interglacial fluctuations (EPICA Community Members,
2004; Jouzel et al., 2007) associated with CO2 variations (Petit
et al., 1999; Shakun et al., 2012). Nevertheless, the orbital forcing
alone is not strong enough to induce the observed temperature
changes and, thus, feedback mechanisms in the Earth’s climate
system are expected to have amplified (or reduced) the primary
signal (Lorius et al., 1990; Shackleton, 2000). The oceanic
carbonate pump system is critically influenced by changes in
bioproductivity. High biological surface productivity can boost
population densities and biomass of benthic communities,
increasing the respiration processes and leading to the
remineralization of higher percentages of organic matter
(OM), resulting in the release of CO2 and a reduction of the
biologic carbon burial (Cronin et al., 1999; Hales, 2003). Besides,
higher CO2 release at the seafloor can lead to increased
dissolution of biogenic carbonate, (e.g., planktonic
Foraminifera tests; Schiebel, 2002). Therefore, an enhanced
biological pump can have an unexpected effect, both
decreasing the OM burial and dissolving biogenic carbonates,
inhibiting higher quantities of C to be stored in the seafloor
sediments (e.g., Zamelczyk et al., 2012; Naik et al., 2014).

Supra-lysoclinal pelagic carbonate dissolution has been
described from the western South Atlantic in the past, being
related to changes in bottom water masses (Petró et al., 2018a;
Petró and Burone, 2018; Petró et al., 2021). Nevertheless, the
relation between calcium carbonate dissolution and sea surface
productivity has not yet been approached in the studied area. In
this paper, we 1) reconstruct past changes in primary and export
productivity during the last glacial–interglacial interval, 2)
determine mechanisms that triggered calcium carbonate
dissolution, and 3) investigate the role of productivity changes
on carbonate corrosion from a core retrieved above the lysocline.

Oceanographic Setting
The studied sediment core was recovered off Santa Marta Cape in
the western South Atlantic (Figure 1A,B). The proximal portion

of the continental shelf of the Pelotas Basin represents a
submerged coastal plain (Martins, 1984) that was exposed
during the last Pleistocene regression (Marine Isotope Stage 2)
and dissected by drainage networks from fluvial systems
(Weschenfelder et al., 2014), which contributed to larger
nutrient inputs from continental outflows compared to the
Holocene.

Surface circulation in the shelf portion of the study area is
dominated by the northward flowing Brazil Coastal Current,
which carries the Coastal Water (CW), a mixture of oceanic
and continental drainage waters. Offshore, the Brazil Current
(BC) transports the warm (temperature, T > 20°C) and salty
(salinity, S > 36) Tropical Water (TW) southwards within the
surface layer. The BC flows along the South American margin
slope until it converges with the Malvinas Current (MC), a
northward flowing surface current carrying the cold (T <
15°C) and fresher (S < 34.2) Subantarctic Water, forming the
Brazil/Malvinas Confluence (BMC) close to 38°S (Gordon and
Greengrove, 1986). The BMC forms a large meander, which
separates southward of the continental margin (Peterson and
Stramma, 1991; Piola and Matano, 2017), and varies seasonally
and interannually, moving to the north in austral autumn and
winter, and to the south in spring and summer. This variation
influences the nutrient distribution along the continental shelf of
the Argentinian, Uruguayan, and south Brazilian coasts
(Gonzalez-Silvera et al., 2006). Presently, two main continental
sources of nutrients and freshwater for the area are the Río de la
Plata Estuary (RdlPE) and the Patos-Mirim Lagoon System
(PMLS). Although the configuration of continental drainage
certainly changed under the varying sea-level conditions of the
late Quaternary, they both represent sources of continental
drainage and, thus, nutrients to the study area.

The water masses that circulate in the subsurface (Figure 1C)
immediately below the TW are: the South Atlantic Central Water
(SACW), the Antarctic Intermediate Water (AAIW), the Upper
Circumpolar Deep Water (UCDW), the North Atlantic Deep
Water (NADW), and the Antarctic BottomWater (AABW) (Reid
et al., 1976; Campos et al., 1995; Hogg et al., 1996; Stramma and
England, 1999). The NADW promotes the preservation of
carbonate, due to its oversaturation with carbonate ion
(CO3

2−) when compared to the overlying UCDW and the
underlying AABW. Both, the UCDW and AABW, are
undersaturated in CO3

2− and, therefore, may lead to the
dissolution of carbonate (Frenz et al., 2003). Indeed, Frenz and
Henrich (2007) have shown that the depth of the interface
between the NADW and the AABW defines the lysocline,
below which carbonate dissolution occurs.

MATERIALS AND METHODS

The piston core SAT-048A was collected by FUGRO
Brasil–Serviços Submarinos e Levantamentos Ltda for the
Agência Nacional do Petróleo (ANP, Brazilian National Agency
of Petroleum, Natural Gas and Biofuels) at 29°11′ S and 47°15′W
at 1,542 m water depth (Figure 1). The core, with a total recovery
of 315 cm, was sampled at intervals of about 6 cm, for a total of 54
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samples. The core was missing the top 20 cm and the 196–217 cm
interval. Each sample was washed over a 63 µm sieve and oven
dried at temperatures below 60°C. The taxonomical identification
of the planktonic Foraminifera species, from subsamples of at
least 300 specimens larger than 150 µm split with a microsplitter,
followed Bé (1967), Bé et al. (1977), Bolli and Saunders (1989),
Hemleben et al. (1989), Kemle-vonMücke and Hemleben (1999),
Schiebel and Hemleben (2017), and Morard et al. (2019).

We used a revised version of the Frozza et al. (2020) age model,
based on the rbacon package (Blaauw and Christen, 2011; version
2.4.2) for the R software (R Core Team, 2019). The age model
(Supplementary Material) used the ten AMS radiocarbon dates

presented by Frozza et al. (2020), carried out on monospecific
samples of planktonic Foraminifera, and the Laschamp
geomagnetic excursion (J. Savian, personal communication,
June 5, 2020) as an additional control point.

Past sea surface temperatures (SST) at 100 m water depth
(SST100m) were estimated using the modern analogue technique
(MAT; Hutson, 1980) in the software PAST (version 4.05;
Hammer et al., 2001). The paleo-SST100m were calibrated with
a dataset composed of: 1) relative abundances of planktonic
Foraminifera of surface sediments from the South Atlantic
Ocean extracted from the ForCenS database (Siccha and
Kučera, 2017) as training data and 2) modern mean annual

FIGURE 1 | Location of sediment core SAT-048A and other mentioned cores (GeoB2107-3, Gu et al., 2017, Pereira et al., 2018; GeoB2104-3, Howe J. N. W.
et al., 2016) in the studied area, in map view (A,B) and as latitudinal cross section (C). Seasonal variation of average sea surface salinity (measured on the psu scale) for
the months of (a) January–March (austral summer) and (b) July–September (winter) are based on data from the World Ocean Atlas 2013 (WOA13, Zweng et al., 2013).
The isohalines 32, 34, and 36 (dashed lines) highlight the northward intrusion of less saline water from the south during winter (b) when compared to summer (a)
conditions. This is related to seasonally predominating wind regimes, indicated as white arrows. The present Río de la Plata Estuary (RdlPE) and Patos-Mirim Lagoon
System (PMLS) represent important continental nutrient sources in the study area. Dissolved oxygen concentrations (c; µmol/kg) in a transect along the South American
continental margin show the South Atlantic water masses that circulate in the region: Tropical Water (TW), South Atlantic Central Water (SACW), Antarctic Intermediate
Water (AAIW), Upper Circumpolar Deep Water (UCDW), North Atlantic Deep Water (NADW), and Antarctic Bottom Water (AABW).
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temperature estimates for 100 m below sea level, obtained from
theWorld Ocean Atlas 2013 (Locarnini et al., 2013) and extracted
with the software Ocean Data View (Schlitzer, 2020). For the
weighting parameter, we used the inverse dissimilarity based on
the squared Chord dissimilarity index with a threshold of 0.28
and five analogues.

Sea surface paleo-productivity was assessed from the relative
abundances of the species Globigerinita glutinata (Conan and
Brummer, 2000; Souto et al., 2011) and the ratio between
Globigerina bulloides and Globigerinoides ruber (albus and
ruber) (G.bull:G.rub; Conan et al., 2002; Toledo et al., 2008).
The OM flux to the seafloor, as a response to sea surface
productivity, was estimated based on the benthic:planktonic
Foraminifera ratio (B:P; Berger and Diester-Haass, 1988;
Loubere, 1991; Gooday, 2002). While this parameter was
applied on different size fractions in the past, with no clearly
defined standard, it was shown that small size fraction differences
do not impact analyses considerably (Schönfeld 2012; Weinkauf.
2018). As long as data for benthic and planktonic communities, as
in our case, were extracted from the same sieve size fraction. The
resulting B:P ratios will be comparable, indeed, being used in the
literature (e.g., de Almeida et al., 2022). The ostracod valves
abundances (number of valves in the >150 µm fraction per gram
of sediment), and the δ13C record of Uvigerina spp. (δ13CUvi;
Mackensen, 2008) were also used to infer the OM flux to the
seafloor. Part of these data (relative abundances of G. bulloides
and G. ruber, δ13CUvi) were previously published by Frozza et al.
(2020). For the δ13CUvi measurements, approximately seven
specimens of the benthic foraminiferal genus Uvigerina were
selected from the 250 µm sediment fraction from each sample.
The geochemical analyses were performed with a Thermo
Scientific MAT-253 mass spectrometer, coupled to a Kiel IV
carbonate device, by the Laboratory of Stable Isotopes of the
University of California–Santa Cruz (SIL-UCSC). All results are
expressed in δ-notation relative to the Vienna Pee-Dee Belemnite
(VPDB) standard.

Dissolution effect proxies for this core were published by
Suárez-Ibarra et al. (2021) and were based on the 1) the
planktonic Foraminifera fragmentation intensity, which follows
Berger (1970)’s fragments and broken shells counting, 2) the bulk
sand fraction (%; Berger et al., 1982; Gonzales et al., 2017), 3) the
number of whole planktonic Foraminifera tests per Gram of
sediment (PF/g, Le and Shackleton, 1992), and 4) the relative
CaCO3 content of the sediment. Bulk sand contents were
determined using a laser diffraction particle size analyzer
Horiba Partica-LA-950 at the Climate Studies Center Centro
de Estudo de Geologia Costeira e Oceânica (CECO) of the
Universidade Federal do Rio Grande do Sul (UFRGS). The
calcium carbonate content for the samples was determined by
weight loss after reaction with 10% hydrochloric acid (HCl) at the
Calcareous Microfossils Laboratory of the UFRGS.

All statistical analyses were conducted in the software PAST
(version 4.05; Hammer et al., 2001). An overall relation between
productivity and dissolution proxies was quantified using
Spearman rank-order correlation. To objectively define phases
of changing conditions through the analyzed time interval, a
principal component analysis (PCA) on the correlation matrix

including all the correlatable paleo-productivity proxies (PCAP)
and all dissolution proxies (PCAD), respectively, was carried out.
Using the first principal component of PCAP (PC1P), we
objectively defined the borders between the three phases using
a piecewise ordinary least-squares regression (OLS; Weinkauf
et al., 2013): 1) We subdivided the PC1P vs age date into three
subsets. The age-borders for each subset varied over a range of
reasonable values (25.11–31.46 ka for the phase 1–Phase 2 border,
18.274–15.515 ka for the phase 2–Phase 3 border); 2) for each
possible combination of phase borders, we calculated three
independent OLS regression lines and their associated R2-
value; 3) we calculated the overall fit of the solution as the
product of the three individual R2-values; 4) the best phase
border solution was the one that showed the highest overall
R2-value. The relationship between summer insolation and paleo-
productivity, represented by the score of PC1P, was analyzed
using a reduced major axis regression. To study the interaction
between productivity (PC1P), bottom water intensity
(reconstructed by the 231Pa/230Th ratio; McManus et al., 2004;
Böhm et al., 2015), and dissolution (PC1D), a multiple linear
regression was carried out.

RESULTS

Sediments from core SAT-048A represent hemipelagic muds rich
in carbonate. The average grain size of the samples is slightly
sandy mud, and in general, ranges from slightly clayey mud to
muddy sand in some cases. The recovered sediments correspond
to the latest Pleistocene and early/middle Holocene muds of the
Imbé formation. The age model (Supplementary Material)
indicates sample ages ranging from 43 to 5 ka.

Planktonic Foraminifera species indicate two contrasting
temporal distribution patterns: 1) species with higher
abundances during the Late Pleistocene that decreased in
abundance towards the Holocene, Globigerinita glutinata
(Figure 2C), Globigerina bulloides, Globoconella inflata, and
Neogloboquadrina incompta (Supplementary Material); 2)
species with lower abundance values during the Late
Pleistocene and higher abundances in the Holocene,
Globigerinoides ruber albus and G. ruber ruber, Trilobatus
sacculifer, Globorotalia menardii, Globigerinella calida,
Orbulina universa, Globorotalia tumida, and Globigerinoides
conglobatus (Supplementary Material).

The performance of the MAT (shown in the Supplementary
Material) was generally very good, with an R2 of 0.993. The
annual mean paleo-SST100m estimates for core SAT-048A are
shown in Figure 2E (residuals shown in Supplementary
Material). The annual mean reconstructions show lower
values from the bottom of the core until 37 ka (on average
16°C), although the lowest value occurred at 25 ka (15.2°C).
For the 37–15 ka period, the observed temperature variation was
larger and fluctuated faster than during the rest of the record,
spanning from 15 to 19°C. A warming trend is indicated to have
occurred before the Last Glacial Maximum (LGM) at 25 ka, with
values between 19 and 23°C and the warmest SST100m value
(22.5°C) observed at 7 ka.
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FIGURE 2 | Fluctuations in summer insolation, paleoenvironmental proxies for surface productivity, organic matter (OM) flux to the seafloor, CaCO3 dissolution,
Atlantic Meridional Overturning Circulation (AMOC) speed, and relative sea level. (A) Austral summer (February) insolation at 31° S (Laskar et al., 2004) (B–C) relative
abundance of G. glutinata in cores GeoB2107-3 (b; Pereira et al., 2018) and SAT-048A (c; this study); (D) G. bulloides/G. ruber ratio (G.bull:G.rub); (E) SST100m (°C)
(F–G) relative abundance of T. quinqueloba (f) and G. falconensis (g); (H) δ13CUvi (‰); (I) Benthic/Planktonic Foraminifera ratio (B:P) (J) CaCO3 content of the
sediment (K) number of planktonic Foraminifera tests per gram of sediment (PF/g) (L) sand bulk content (%) (M) fragmentation intensity (N) 231Pa/230Th values from
McManus et al. (2004; squares), Lippold et al. (2009; circles), and Böhm et al. (2015; triangles) (O) Ostracods per gram of sediment (valves/g) (P) relative sea level (RSL;
Waelbroeck et al., 2002). Note the inverted y-axes in (f), (g), and (i–k) to aid visualization. Proxies printed in black belong to sediment core SAT-048A. The three phases
indicated in the plot are based on a principal component analysis of all productivity values, as shown in Figure 3.
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All reconstructed paleoenvironmental proxies are shown
in Figure 2. Paleo-productivity shows highest values in the
43–32/34 ka interval (superimposed on a decreasing trend),
when reconstructed from G. glutinata abundances
(Figure 2C) and the G. bull:G.rub ratios (Figure 2D),
respectively. A relative plateau is witnessed for both
proxies from 32/34 to 25 ka. The following time interval
(25–17 ka) is characterized by an increasing trend. From
17 to 5 ka, G. glutinata and the G. bull:G.rub ratio show a
decreasing trend with some of the lowest values of the entire
record. The abundance of ostracods valves (Figure 2) is low
during the 43–27 ka interval, then increases until 10 ka, and
decreases afterward.

We ran a Spearman rank-order correlation to test the
relationship between different productivity and dissolution
proxies (Table 1). When the correlation was significant at the
α = 0.05-level, the correlation coefficients ρ were categorized as
either weak (|ρ| = 0–0.33), medium (|ρ| = 0.34–0.66), or strong (|ρ|
= 0.67–1). The paleo-productivity proxies G. bull/G.rub and G.
glutinata (%) are not significantly correlated (p = 0.556),
nevertheless, the correlations between productivity and OM
flux proxies are all significant, ranging from medium to strong
correlations. All the dissolution proxies are significantly
correlated, also ranging from medium to strong. The
correlation between productivity, OM flux and dissolution
proxies are all significant, ranging from weak to strong
relations, except for the FI vs G. glutinata (%) and the bulk
sand (%) vs G. glutinata (%) proxies. The OM flux proxy
Ostracod valves only showed a medium correlation with the
G. bull/G.rub proxy and was also weakly–moderately correlated
to three dissolution proxies.

These results indicate that all these proxies are also influenced
by other environmental parameters, not just productivity and

dissolution, respectively. Therefore, not any single proxy is
suitable to provide an unbiased picture of the past
environment. We, thus, aimed to develop synthetic
productivity and dissolution proxies by combining all
information in a PCA, which on its first axis amplifies the
direction of largest variation in both parameters. PCAs were
run both for productivity/OM flux (G.bull/G.rub, G. glutinata
(%), δ13CUvi, and B:P; PCAP) and dissolution proxies (CaCO3, FI,
PF/g, and bulk sand (%), PCAD) on the data centered at zero and
scaled to unit variance (Supplementary Material). The first
principal component of the productivity/OM flux analysis
(PC1P) explains 62.14% of the variance in the data, while the
first principal component for the dissolution proxies (PC1D)
captures 74.88% of data variance. The trends of PC1P and
PC1D are shown in Figure 3, where the borders between three
phases are based on the best solution of a set of piecewise OLS
regressions with combinations of 70 feasible phase border
scenarios. The loadings of the components on the principal
component axes and the individual R2-values from the
piecewise regressions on which the phase borders are based
are shown in the Supplementary Material. The optimal phase
borders were determined by the R2-product of 0.251 as follows:
phase 1 (42.32–29.12 ka), where PC1p values decreased,
indicating a reduction in productivity; phase 2
(28.56–16.15 ka), with stable to slightly increasing paleo-
productivities; and phase 3 (15.51–5.77 ka), where productivity
decreased again during the Holocene.

A reduced major axis regression between summer insolation
and PC1P (Supplementary Material) yielded a significant (p <
0.001) correlation value of 0.476. A multiple linear regression
between the independent variable PC1P and bottom water
velocity (231Pa/230Th) and PC1D as dependent variable was
carried out and results are shown in Table 2. Only PC1P is

TABLE 1 | Correlation coefficient (ρ) and statistical significance (p) for productivity and dissolution indices in sediment core SAT-048A from the western South Atlantic. G.
glutinata (%): Relative abundance of Globigerinita glutinata; δ13CUvi: VPDB δ13C-values of shells of the benthic foraminifer genus Uvigerina; B:P: Ratio between benthic
and planktonic Foraminifera; CaCO3 (%): Relative CaCO3 content of the sediment; FI: Planktonic foraminifera fragmentation intensity; PF/g: Number of Planktonic
foraminiferal tests per gram of sediment; bulk sand (%): Relative sand content of the sediment; Ostracod valves: Number of Ostracod valves per Gram of sediment.
Significant p-values (at α = 0.05) are highlighted in bold; for these, the correlation coefficient was marked as weak (italics), medium (bold), or strong (bold-italics).

— G.bull/
G.rub

G.
glutinata

(%)

δ13CUvi B:P CaCO3

(%)
FI PF/g Sand

bulk
(%)

G. glutinata (%) ρ 0.086 — — — — — — —

p 0.556 — — — — — — —

δ13CUvi ρ −0.441 −0.508 — — — — — —

p 0.002 <0.001 — — — — — —

B:P ρ 0.458 0.511 −0.795 — — — — —

p 0.001 <0.001 <0.001 — — — — —

CaCO3 (%) ρ −0.518 −0.430 0.777 −0.914 — — — —

p <0.001 0.002 <0.001 <0.001 — — — —

FI ρ 0.329 0.287 −0.304 0.452 −0.567 — — —

p 0.024 0.05 0.038 0.001 <0.001 — — —

PF/g ρ −0.371 −0.302 0.703 −0.811 0.831 −0.53 — —

p 0.009 0.035 <0.001 <0.001 <0.001 <0.001 — —

Sand bulk (%) ρ −0.389 −0.204 0.473 −0.579 0.629 −0.606 0.576 —

p 0.006 0.16 0.001 <0.001 <0.001 <0.001 <0.001 —

Ostracod
valves

ρ −0.354 0.129 0.187 −0.229 0.24 −0.334 0.479 0.304
p 0.015 0.387 0.207 0.121 0.104 0.022 0.001 0.038
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significantly influencing dissolution, and explains around 51% of
the observed dissolution signal.

DISCUSSION

Radiocarbon Reversals
The occurrence of reversals in planktonic Foraminifera
radiocarbon dates are not rare in the studies of the south
Brazilian continental margin (SBCM, e.g., Sortor and Lund,
2011; Hoffman and Lund, 2012; Portilho-Ramos et al., 2019),
being related either to: 1) morphological features of the sea
bottom that remobilize sediments (such as turbidity or
contour currents), or to 2) post-depositional chemical
processes that affect the 14C concentrations. The age model of
core SAT-048A here presented (Supplementary Figure S3)
indicates three intervals where samples yielded mean older
ages (Supplementary Table S3). Nevertheless, the only
significant difference is shown in the sample at 183.5 cm depth
(31.1 ka before calibration), between 217 and 149 cm
(27.8–22.7 ka), an interval constituted by hemipelagic mud

rich in carbonate. According to Kowsmann et al. (2014),
features of geological instability for the SBCM usually
occurred between 28 and 15 ka, during relative low sea levels.
Nevertheless, reversals of AMS 14C planktonic Foraminifera dates
from core SAT-048A are not associated to abrupt changes on the
grain size record (Supplementary Figure S4). Moreover, the
action of contour currents in the proximities of the study area
(Viana, 2001; Duarte and Viana, 2007; Hernández-Molina et al.,
2016) could, have gradually remobilized older particles (such as
planktonic Foraminifera shells), masking the 14C ages and
increasing the temporal mixing.

Regarding the chemical processes, Rodrigues et al. (2020)
reported older radiocarbon dates likely due to the upward
migration of 14C-depleted methane fluids from gas chimneys,
as already reported for the south portion of the SBCM (Portilho-
Ramos et al., 2018; Ketzer et al., 2020), which can precipitate in
shell interstitial pores (Wycech et al., 2016), producing an
alteration in the radiocarbon dates. Given the above, we tried
to diminish the impact of radiocarbon reversals by using 1) a high
number of correlation points (10 radiocarbon dates and one
geomagnetic correlation point) and, 2) the rbacon package for
software R, which implements Bayesian statistics that calculate
mean ages for age model constructions, and has the capacity to
deal with 14C reversals.

Sea Surface Productivity
Three phases were defined from the PC1P trends (Figure 3). Phases
3 and 1 fall into time intervals with decreasing summer insolation
values, while phase 2 is characterized by increasing summer
insolation. The correlation between PC1P and summer insolation
values is supported by the significant (p < 0.001) values of a reduced
major axis regression (r = 0.476). This is supported by mechanisms,
reported in the literature, that drove the paleo-productivity changes
in the western SouthAtlantic. Portilho-Ramos et al. (2019) explained
the high glacial productivity by a combination of short – but highly
productive – austral summer upwelling periods and prolonged
winter conditions favorable to the intrusion of RdlPE.

The short summer upwelling periods resulted from the
enhanced northeasterly (NE) winds blowing along the shore
during intervals with high summer insolation, both directly, by
pushing surface waters offshore due to the Ekman transport
(Chen et al., 2019), and indirectly by strengthening the BC
meandering and, therefore, enhancing shelf break upwelling
(Portilho-Ramos et al., 2015; Pereira et al., 2018). This
interpretation is supported by the observed changes in the
relative abundances of: 1) Globigerinita glutinata (Conan and
Brummer, 2000; Souto et al., 2011), a species that feeds on

TABLE 2 | Results from a multiple linear regression between summarized paleo-productivity (PC1P; first axis of a principal component analysis including all correlatable
productivity proxies) and bottom water velocity231Pa/230Th and summarized dissolution (first axis of a principal component analysis including all dissolution proxies) as
dependent variable for sediment core SAT-048A from the South Atlantic. p-values significant at α = 0.05 are indicated in bold.

Coefficient Standard error t p R2 r

Constant 0.286 1.425 0.201 0.842 — —

PC1P −0.781 0.122 −6.402 <0.001 0.519 0.720
231Pa/230Th −4.141 20.458 −0.202 0.840 0.091 0.302

FIGURE 3 |Mean average for the first principal components of principal
component analyses on all productivity proxies (PC1P, black line) and all
dissolution proxies (PC1D, red line) in samples from sediment core SAT-048A
in the South Atlantic. The purple line represents the Austral summer
(February) insolation at 31° S (Laskar et al., 2004). The three phases defined by
productivity trends (decreasing in phases 1 and 3, increasing in phase 2) are
indicated. Dominant species of planktonic Foraminifera (Globigerina bulloides
in phase 1, Globigerinoides ruber in phase 3) are indicated.
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diatoms (Schiebel and Hemleben, 2017) and therefore benefits
from the glacial silicic acid-rich SACW intrusions in the area
(Portilho-Ramos et al., 2019) (Figure 2B,C); 2) Turborotalita
quinqueloba, which is associated with stronger intrusions of
cooler SACW into the photic zone (Souto, et al., 2011; Lessa
et al., 2014, 2016) (Figure 2F); and 3) Globigerina falconensis,
which is associated with eutrophic conditions (Sousa et al., 2014)
(Figure 2G). Additionally, a reconstructed SST100m cooler than
20°C (Campos et al., 2000; Silveira et al., 2000; Castelão et al.,
2004) along with a G. bull:G.rub ratio higher than 0.25 (Lessa
et al., 2014) for the Pleistocene portion of the record indicates a
constant presence of the SACW in the subsurface during the short
austral upwelling of the late glacial.

Prolonged winter conditions involved prevalent
southwesterly (SW) winds year-round which carried
outflows from the Río de La Plata (RdlPE) (Pimenta et al.,
2005; Piola et al., 2005) and other continental sources
(Camaquã, Jaguarão, and Jacuí rivers)—presently
converging in the PMLS–closer to the study area (Piola
et al., 2000; Nagai et al., 2014). Strengthened SW winds
would also displace the BMC to a location closer to the
area (Gonzalez-Silvera et al., 2006), which is supported by
the higher relative abundances of Globoconella inflata and
Neogloboquadrina incompta (Supplementary Material). The
abundances of these two species can be interpreted as an
indicator for a BMC closer to the study area (Boltovskoy et al.,
1996), induced by the enhanced SW winds during the late last
glacial.

Several authors suggest that during low relative sea levels
(glacial times), periods of higher nutrient availability and
increased terrigenous sediment input were favored due to
the more offshore position of the BC and the exposure of the
continental shelf (Mahiques et al., 2007; Gu et al., 2017;
Pereira et al., 2018, Portilho-Ramos et al., 2019). Moreover,
the Río de la Plata (Lantzsch et al., 2014) and Jacuí and
Camaquã river paleo-drainages (Weschenfelder et al., 2014)
were closer to the study area during this interval (higher
influence of the PMLS). Higher Fe/Ca values (Heil, 2006),
higher relative abundances of eutrophile dinoflagellate cysts
species (Gu et al., 2017), and high terrestrial palynomorph
proportions (Bottezini et al., 2022), are all evidence of the
greater influence of continental outflow in the study area
under lower relative sea levels during the late last glacial
(which approximately corresponds to our phases 1 and 2).
Medium paleo-productivity estimates during the LGM
(relative sea level approximately 120 m lower; Figure 3)
stand in contrast to the higher sea levels during phase 1
(relative sea level approximately 75 m below, Waelbroeck
et al., 2002), where higher (terrigenous-related) fertilization
was expected due the lower eustatic sea level. This suggests a
different influence for the continental terrigenous fertilization
for mid-depth cores retrieved from the continental slope. In
contrast, for the Holocene, the higher relative sea level and
onshore displacement of the BC, as well as the absence of the
SACW, inhibited the photic zone fertilization, leading to
oligotrophic conditions (Mahiques et al., 2007), witnessed
in the phase 3.

Organic Matter Flux to the Seafloor and
Carbonate Dissolution
Orbital to suborbital climate cycles can influence the
abundance of deep-sea benthic communities (Cronin et al.,
1999). Since abundance fluctuations of benthic Foraminifera
and ostracods are related to variations in particulate organic
carbon fluxes to the seafloor (Smith et al., 1997; Rex et al., 2006;
Rex and Etter, 2010), their use as surface paleo-productivity
indicators is widespread (Nees et al., 1999; Herguera, 2000;
Rasmussen et al., 2002; Gooday, 2003; Yasuhara et al., 2012).
The surface productivity fluctuations, indicated by the G.
glutinata abundance and G. bull:G.rub, are significantly
correlated to those of the OM flux recorded by the B:P ratio
and the δ13CUvi (Table 1). This effective OM export from the
surface to the seafloor revealed a high benthic–pelagic
coupling (Toledo et al., 2007). The B:P changes are
accompanied by a similar trend in inverse δ13CUvi

(Figure 2H,I), which are expected to decrease when higher
OM fluxes, rich in 12C due to the preferential incorporation of
the light isotope during photosynthesis (Wefer et al., 1999),
reach the seabed (Ravello and Hillaire-Marcel, 2007).
Nevertheless, the abundance of ostracod valves (Figure 2)
was only significantly correlated with G. bull:G. rub ratio
values. Intriguingly, ostracod valves showed a hump-shaped
relation with productivity (Yasuhara et al., 2012), where values
increased under moderate OM supply and declined under very
low and very high productive conditions. This is because under
high-productivity scenarios, oxygen levels at the sea floor tend
to decrease and deep-sea ostracods, which are mostly epifaunal
(Jöst et al., 2017), would not respond well to such an
environment. On the other hand, ostracods valves had a
significant (p > 0.001) strong correlation (ρ = −0.701) with
paleo-bathymetric variations, where abundances decreased
exponentially with water depth increase (Rex et al., 2006;
Rex and Etter, 2010).

Dissolution indicators suggest higher calcium carbonate
dissolution during the beginning of Phases 1 and the
transition of phases 2 and 3 (Figure 2, 3), related to the OM
flux. Enhanced dissolution could theoretically be triggered by two
different processes: 1) increase in CO2 concentrations (decreasing
the water pH) due to the remineralization of OM at the seafloor
(Jahnke et al., 1997; Schiebel, 2002) or 2) changes in the bottom
water mass configuration related to AMOC dynamics (speed or
geometry). Although the B:P ratios are also used as a dissolution
indicator (Berger and Diester-Haass, 1988; Conan et al., 2002),
Kučera (2007) states that this is only applicable for abyssal
depths. We also have evidence from regional studies (Petró
et al., 2018b) that benthic foraminifera are more prone to
dissolution in this setting than planktonic foraminifers. This
means that our observed B:P ratios are, in the worst case, an
underestimate of the real situation because dissolution would
attenuate it.

In the SBCM basins, the δ13CUvi values have been used to
infer oscillations of OM input (Toledo et al., 2007; Dias et al.,
2018; Rodrigues et al., 2018; Frozza et al., 2020). Nevertheless,
δ13CUvi values are influenced by several factors, such as
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accumulation rates of organic carbon, regional changes of
water masses, the global carbon cycle, photosynthesis
respiration processes, temperature, and pH (Ravelo and
Hillaire-Marcel, 2007; Hesse et al., 2014). Calcite dissolution
has, in contrast, no influence on the foraminiferal δ13C (Petró
et al., 2018b). Lund et al. (2015) suggested that lower values of
benthic δ13C during glacial times are associated with a weak
AMOC. Nevertheless, the fluctuations of δ13CUvi and the
carbonate preservation could be the result of the interplay
between the OM flux and water masses changes.

Based on εNd in planktonic Foraminifera at mid-depths in the
western South Atlantic, Howe et al. (2016, 2018) showed
variations of water masses at intermediate depths of
1,000–1,200 m (cores GeoB2107-3 and KNR159-3-36GGC)
during the Holocene, and at 2,200 m (core GL-1090) since
Heinrich Stadial 1. After the Heinrich Stadial 1, core GL-1090s
εNd values decreased, becoming less radiogenic and more related
to modern upper NADW values, while cores GeoB2107-3’s and
KNR159-3-36GGC’s εNd values increased after about 10 ka,
becoming more radiogenic and showing more affinity with
modern AAIW. Sediment core GeoB2104-3 (1,500 m) is
located between these aforementioned cores, at the same depth
as sediment core SAT-048A on which the present study is based,
at its εNd values remained stable during the 25–4 ka interval
(Howe J. N. W. et al., 2016). This indicates that SAT048A’s
δ13CUvi fluctuations were produced by the OM bottom flux rather
than water masses reconfigurations–at least throughout the
studied time interval.

In addition, the 231Pa/230Th ratio (Figure 2N) has been used to
track the intensity of the AMOC (McManus et al., 2004; Lippold
et al., 2009; Böhm et al., 2015), where lower values indicate a
strengthened AMOC. During periods of high 231Pa/230Th values
and indicating AMOC slowdown (like Heinrich Stadials), a
higher concentration of respired CO2 is accumulated in
seafloor water masses. As proposed by Howe JN. et al. (2016),
this is a possible explanation for the intervals of increased calcium
carbonate dissolution. Nevertheless, the results from the multiple
linear regression (Table 2) point to paleo-productivity as the
main factor to influence dissolution. The multiple linear
regression designates the sea surface productivity and OM flux
to the seafloor as the principal agents of the calcium carbonate
dissolution (Figure 4), at least for the 25–4 ka interval, which is
related to changes in the summer insolation. This is true, even
including the decoupling between productivity and dissolution
visible in our data during the last ca. 5 kyrs (Figure 3). We
hypothesize that the increasing dissolution at constantly low
productivity, high AMOC rates (Figure 2N) and stable water
mass configuration during this last segment of the record is
related to the rising temperatures in this period, which
increased the Mg/Ca values of the biogenic carbonate. Since
higher Mg content facilitates dissolution of calcite, shells
produced during this time would be more prone to
dissolution, so that other environmental parameters were no
longer the major factors that affected calcite dissolution.
Future studies should investigate possible changes in bottom
water mass configuration through εNd isotopes for the entire

FIGURE 4 | Schematic representation of two possible end-member scenarios affecting carbonate dissolution on deep-water assemblages of sediment core SAT-
048A (South Atlantic). The paleoceanographic changes could be triggered by: (A) Low organic matter (OM) inputs to the seafloor, which results in lower benthic
abundances and better preservation of CaCO3, or (B) high OM input that increases benthic abundances and CO2 concentrations, decreases the seawater pH, and
dissolves the planktonic Foraminifera tests (fragmentation on benthic Foraminifera was not assessed).
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studied section to 1) increase our understanding of
productivity-related carbon dissolution at the sea floor and 2)
quantify the impact of changes of the biological pump on the
total organic carbon and biogenic carbonates burial. This will
considerably aid the understanding of the glacial inorganic
carbon sequestration.

CONCLUSION

Planktonic Foraminifera assemblages from sediment core SAT-
048A, along with geochemical analyses and sedimentological
data, enabled us to reconstruct the surface and bottom water
conditions that occurred during the last 43 kyrs in the western
South Atlantic, and to contextualize the related production-
dissolution processes in the area. The Pleistocene–Holocene
transition was characterized by a shift from a glacial eutrophic
environment to more oligotrophic post-glacial conditions, as
suggested by the G. bull:G.rub ratio and the SST100m, where
intrusions of the nutrient-rich SACW were inhibited and the
RdlPE and local river discharges (nowadays PMLS) were placed
further away from the core site. The orbital-scale fluctuations of
the upwelling dynamics (indicated by the relative abundances of
G. glutinata and T. quinqueloba), modulated by insolation and
NEwind changes, directly influenced the surface productivity and
the OM fluxes to the seafloor (as shown by the B:P ratio and
δ13CUvi). Imposed on the mechanisms behind the
glacial–interglacial changes, stronger NE winds, generated by
higher summer insolation, fertilized the photic zone,
strengthened the BC, increased meandering, and enhanced
intrusion of cooler and nutrient-richer waters into the
subsurface layers. The enhanced upwelling conditions were
also registered at the sea floor, where the bacterial
decomposition of OM and the respiration of higher
abundances of benthic communities increased the CO2

concentration, which created more acidic conditions that
caused different levels of carbonate dissolution, evidenced in
the fragmentation of the planktonic Foraminifera tests. While
changes in the bottom water masses could hypothetically cause
the calcium carbonate dissolution, εNd analyses in a nearby
sediment core at the same depth suggest no changes in the
bottom water mass influence for the 25–4 ka interval, pointing
to sea surface productivity and the intensity of the AMOC as
possible causes of the carbonate dissolution. A multiple linear
regression between summarized productivity and 231Pa/230Th
(proxy for AMOC intensity), indicates that productivity is the
main controlling factor of calcium carbonate dissolution. The
continental influence (i.e., terrigenous input) must be better
assessed in future studies, since, in contrast to expectations, no
increased productivity was registered during the lowest relative
sea level (LGM), when terrestrial input should have been highest.
The dissolution of planktonic Foraminifera tests, induced by an
enhanced biological pump (evidenced in the high glacial surface
productivity and the high OM fluxes to the sea floor), must call
the attention to future research, since a strong biological pump

influences biogenic carbonate burial and CO2 sequestration and
burial at the seafloor.
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