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The Cretaceous Normal Superchron (CNS) was first defined in the 1960s to explain the
Cretaceous Quiet Zone in marine magnetic anomaly profiles, which includes no or
fewer geomagnetic reversals. This ~37 million years period is considered the most
unique and extreme geomagnetic feature for the last 160 Myr. Superchrons may be
caused by the geodynamo operating at peak efficiency with a unique heat flux at the
core-mantle boundary (CMB). Previous studies suggest that the CNS is a sign of the
connection between Earth’s interior and surface. During the CNS, the geomagnetic
intensity may have fluctuated significantly, and the average may have changed with
time, and the paleosecular variations had unique features. The warm climate around
the CNS may have been caused by volcanic activity associated with active mantle
convection. Such mantle convection increases heat flux at the CMB during the CNS,
but geodynamo simulations predict small heat flux, which are inconsistent. This
discrepancy may be resolved by the growth and collapse of a superplume or by
an increase and decrease in the subduction flux.
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INTRODUCTION

The Cretaceous Normal Superchron (CNS) is an irregular stable polarity period in which no or
few geomagnetic reversals occurred, lasting from 120 to 83 million years ago (Ma) (e.g., Ogg,
2020). Marine magnetic anomaly (MMA) includes the Cretaceous Quiet Zone (KQZ), which is
considered evidence for the absence of geomagnetic reversals, defined as superchron. Until
now, the absence of magnetic stripes in the KQZ made it challenging to use them for plate
reconstructions. In 2012, two time-markers (named Q1 and Q2) were discovered by deep-tow
magnetic anomaly observations in the Atlantic Ocean and the Southwest Indian Ridge (Granot
et al., 2012). These possible time-markers are expected to be helpful for plate reconstructions
during the CNS. Other superchrons during the Phanerozoic have also been actively discussed,
of which the CNS is the most well-studied. The CNS is generally considered a consequence of
the thermal effects of mantle activity on the outer core (e.g., McFadden and Merrill, 1984).
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Superchrons may result from the geodynamo operating at
peak efficiency with a unique heat flux at the core-mantle
boundary (CMB), as suggested by geodynamo numerical
simulations and paleointensities estimated from single
silicate crystals (Tarduno et al., 2006).

ITS DISCOVERY

From the 1960s, terrestrial paleomagnetic data and MMA began
to reveal periods of no or fewer reversals. By summarizing
published paleomagnetic measurements of igneous and
sedimentary rocks at more than 35 sites in North America
and elsewhere, Helsley and Steiner (1968) found that there
was a period when normal magnetic polarity was dominant
for at least 25 million years (Myr) in the Cretaceous. Between
~150 Ma and ~110 Ma, Larson and Chase (1972) revealed that
there are reversal periods sandwiched between periods of normal
polarity (KQZ and the Jurassic Quiet Zone, JQZ). In fact, during
the JQZ, geomagnetic reversals were frequent and the
geomagnetic intensity was weak, as shown by MMA (e.g.,
Tominaga et al., 2021) and the absolute paleomagnetic
intensity (paleointensity) of volcanic rocks (e.g., Tauxe et al.,
2013). Larson and Pitman (1972) pointed out that the CNS
corresponded in time to the KQZ of previous studies (e.g.,
Helsley and Steiner, 1968), designating C34n as the KQZ.

POSSIBLE SHORT EVENTS

Here, I introduce a short reversal event that may exist during the
CNS. Ryan et al. (1978) summarized three events or clusters of
brief reversed polarity during the CNS that have been reported
from drill cores, particularly in deep-sea sediments: (1) Late
Aptian Chron M″-1r″, referred to as the ISEA event
(Tarduno, 1990); (2) the Chron M″-2r″ event group during
the mid-Albian; and, (3) the Chron M″-3r″ event group in the
late Albian. The details of these short events are enigmatic
because they have not been resolved in surveys of coeval
MMA (Ogg, 2020). The paleomagnetic directions of possible
ISEA event have also been found from Chinese lavas (Rao and
Rao, 1996; Zhu et al., 2004a; Shi et al., 2004). The name of the
ISEA event comes from the name of a section of the Umbria
Apennines in northern Italy (VandenBerg et al., 1978).
Furthermore, a recent study reports multiple geomagnetic
reversals during the CNS (Zhang et al., 2021). Using
paleomagnetic direction and U-Pb ages, they conclude that
samples from two sections of Laos, and other
magnetostratigraphy from previous studies indicate that there
are at least five global and two single reversals during the CNS.
However, no reversals such as the ISEA event have been found
from deep-tow observations of MMA around the Atlantic Ocean
(Granot et al., 2012). The altitude from the seafloor of deep-tow
observations and the slow rate of seafloor spreading around the
Atlantic Ocean may prevent the detection of such events shorter
than 0.1 Myr (Granot et al., 2012).

Even if we consider potential short geomagnetic reversal
events, the geomagnetic reversal frequency during the CNS is
likely to be significantly lower than in other periods (Figure 1A).
For example, if 6 to 14 reversals occurred during the CNS
(37.3 Myr, Ogg, 2020), a simple calculation gives a reversal
frequency range of 0.16–0.37/Myr for the period. In Constable
(2000), the reversal frequency appears to be mainly above 1/Myr
for all ages except the CNS. Considering them, perhaps we should

FIGURE 1 | (A) Geomagnetic polarity time scale for 0–154.9 Ma based
on Ogg (2020) and geomagnetic reversal frequency curve calculated using
fixed kernel density estimation (Constable, 2000). Possible short geomagnetic
reversal events during the CNS are shown as dashed white lines based
on the summary of Zhang et al. (2021). Note that the duration of the events are
not reflected in this figure. Constable (2000) calculated the reversal frequency
from Harland et al. (1990) and Cande and Kent (1995). Pink zone expresses a
range of the geomagnetic reversal frequency during the CNS (Chron C34n)
calculated from short geomagnetic reversal events during the Superchron
suggested by Zhang et al. (2021). Dotted gray lines express a time interval of
the CNS. The CNS, Cretaceous Normal Superchron. (B) Virtual (axial) dipole
moments during the CNS (Cottrell and Tarduno, 2000; Pick and Tauxe, 1993;
Juarez et al., 1998; Thomas et al., 2000; Riisager et al., 2001; Tarduno et al.,
2001; Tanaka and Kono, 2002; Tarduno et al., 2002; Zhu et al., 2002; Riisager
et al., 2003; Tauxe and Staudigel, 2004; Zhu et al., 2004a; Zhu et al., 2004b;
Zhao et al., 2004; Shi et al., 2005; Tauxe, 2006; Granot et al., 2007;
Shcherbakova et al., 2007; Shcherbakova et al., 2008; Zhu et al., 2008;
Shcherbakova et al., 2009; Tsunakawa et al., 2009; Qin et al., 2011;
Shcherbakova et al., 2011; Shcherbakova et al., 2012; Di Chiara et al., 2021).
The long-termmedian value and themedians of 5Myr bins for the last 200Myr
by Tauxe et al. (2013) and Tauxe and Yamazaki (2015) are displayed by the
solid blue line and the blue stars, respectively. The present field intensity is
indicated by the solid gray line.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 8340242

Yoshimura Cretaceous Normal Superchron

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


call the KQZ period the “Cretaceous Reversal Minimum” rather
than the CNS.

PALEOINTENSITY AVERAGE AND
VARIATION

It has been investigated whether the paleointensity during the
CNS is strong or weak because a strong geomagnetic intensity
may have suppressed geomagnetic reversals (Cox, 1968).
However, while the geomagnetic reversal frequency during the
CNS is relatively well understood from the geomagnetic polarity
time scale (e.g., Constable, 2000), the paleointensity during the
CNS remains ambiguous.

I summarize previous paleointensities during the CNS of
submarine basaltic glass (SBG) (Pick and Tauxe, 1993; Selkin
and Tauxe, 2000; Riisager et al., 2003; Tauxe and Staudigel, 2004;
Tauxe, 2006; Di Chiara et al., 2021), subaerial volcanic whole
rocks (Thomas et al., 2000; Riisager et al., 2001; Tanaka and
Kono, 2002; Zhu et al., 2002; Zhu et al., 2004a, 2004b; Zhao et al.,
2004; Shi et al., 2005; Shcherbakova et al., 2007; Shcherbakova
et al., 2008; Zhu et al., 2008; Qin et al., 2011; Shcherbakova et al.,
2011; Shcherbakova et al., 2012), baked contact (Shcherbakova
et al., 2008; Shcherbakova et al., 2009), and gabbro (Granot et al.,
2007). Virtual (axial) dipole moments (V(A)DMs) in the CNS
have been reported from 1.1 to 19.9 × 1022 Am2 (Figure 1B). The
average of these paleointensities is 5.6 ± 3.2 × 1022 Am2 (140
sites), which is stronger than ~4 × 1022 Am2 recently reported as
reliable time-averaged V(A)DMs for other periods (Yamamoto
and Tsunakawa, 2005; Yamazaki and Yamamoto, 2014; Ahn
et al., 2016; Yoshimura et al., 2020), and the median V(A)DM
of 4.2 × 1022 Am2 for the past 160 million years (Tauxe et al.,
2013). However, this average value is weaker than the
paleointensity of granite (~9 × 1022 Am2) (Tsunakawa et al.,
2009; Kato et al., 2018), which average out paleosecular variations
of paleointensity due to its slow cooling rate (e.g., Bono et al.,
2019). The reported time-averaged dipole moments vary from
study to study. Considering these results, perhaps the average
geomagnetic intensity during the CNS varied with time. Besides,
Granot et al. (2007) found quasi-cyclic paleointensity variations
around 5.4 ± 2.0 × 1022 Am2. This paleointensity variability is
consistent with the temporal changes in the amplitude of MMA
during the CNS (Granot et al., 2012).

On the other hand, absolute paleointensities estimated from
single plagioclase crystals from the CNS show a different pattern.
Two coincident strong paleomagnetic intensities have been
estimated from two flood basalts that erupted in the CNS,
12.5 ± 1.4 × 1022 Am2 (Tarduno et al., 2001) and 12.7 ± 0.7 ×
1022 Am2 (Tarduno et al., 2002). They concluded that the average
geomagnetic field strength of the CNS was stronger than the
present strength, and its variability was small based on the two
studies. This feature is consistent with the geodynamo simulation
(Driscoll and Olson, 2011). If the strong average of the CNS is
true, it could be caused by the large heat flux heterogeneity of the
CMB with equatorial symmetry (Takahashi et al., 2008).

I propose that there is a possibility that the number of
paleomagnetic units used for time-averaging is insufficient.

Tauxe and Staudigel (2004) presented the minimum number
as 25 sampling sites required to average the paleosecular
variations (PSVs) of paleointensity. Based on this required
number of paleointensities, the studies using single plagioclase
crystals lack the number of paleointensities required for the
average PSVs. A sufficient time span is also required to
average out PSVs. Future studies should estimate a lot of
paleointensities using single plagioclase crystals with a
sufficient time span, and test whether time-averaged
paleointensity during the CNS is strong or weak.

PALEOSECULAR VARIATIONS

The primary characteristic of the CNS is the dearth of geomagnetic
reversals. It is essential to investigate the PSVs during this period
because it may have been a different style of PSVs compared to other
periods when reversals are relatively common. The analysis of PSV is
usually analyzed by collecting virtual geomagnetic poles from a large
number of lava flows and using dispersion curves of the virtual
geomagnetic poles, in which the angular dispersion of the poles is
plotted against the paleolatitude of the samples. McFadden et al.
(1991) reported that there are apparently large differences in the
dispersion curves of virtual geomagnetic poles at different times of the
mean geomagnetic reversal frequency over the past 195million years.
They found that the VGP scatter tends to be lower at low
paleolatitudes during periods of low reversal frequency than
during periods of high reversal frequency and that the scatter
significantly increases with high paleolatitude in the former
compared to the latter. In other words, during periods of low
reversal frequency, the slope of the dispersion curve of the virtual
geomagnetic pole is larger than during periods of high reversal
frequency. However, it has been reported that the slope of the
dispersion curve is significantly smaller than McFadden’s result
based on more reliable research results (Tarduno et al., 2002;
Biggin et al., 2008; Doubrovine et al., 2019).

PALEOENVIRONMENT

The mid-Cretaceous had a warm climate, with carbon dioxide
concentrations of ~1,000 ppm, more than twice the present-day
levels (Foster et al., 2017). The sea level of 160–85Ma was the
highest (>150m) during the Phanerozoic (van der Meer et al., 2017).
There was a temperate rainforest in Antarctica during the Turonian-
Santonian period (92–83Ma) (Klages et al., 2020).Why did thewarm
climate of the mid-Cretaceous occur? Lee et al. (2013) proposed the
hypothesis that the Cretaceous to Paleogene was a period when the
continental arc was dominant and that the mid-Cretaceous
greenhouse Earth was caused by the release of carbon dioxide
into the atmosphere due to the interaction of ancient carbonates
and magma in the continents. Brune et al. (2017) proposed that the
length of the Cretaceous continental rift may have been a driving
force for carbon dioxide release and warming, based on
reconstructions of the length of the continental rift over the past
200Myr and numerical carbon cycle models. Both hypotheses may
have contributed to thewarming of themid-Cretaceous. On the other
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hand, Lee et al. (2013) explained that Large Igneous Provinces (LIPs)
would have to erupt every 1Myr for LIPs to cause the Cretaceous
global warming, which is based on the response time of CO2

withdrawal from the exogenic system (<1Myr) and the typical
duration of LIPs (<2Myr). However, it has recently been found
that there were some LIPs with long eruption durations that lasted for
tens of millions of years during the CNS (Dockman et al., 2018; Jiang
et al., 2021). In addition, Johansson et al. (2018) suggested that there is
a link between the timing of LIPs eruptions around 90–50Ma and the
increase in atmospheric CO2. Therefore, it is possible that the
activities of LIPs had an influence on the warm climate during
the mid-Cretaceous.

LARGE IGNEOUS PROVINCES

LIPs are massive volcanic complex formed by the eruption or
intrusion of giant, mainly mafic magmas, which was not formed
by the spreading or subduction of the ocean floor (Coffin and
Eldholm, 1994). On the continent, it is often called a continental

flood basalt, and on the ocean floor, it is called an oceanic plateau.
At the time of the CNS, the eruption of LIPs was frequent
(Figures 2A,B). This has been termed the “pulse” during the
mid-Cretaceous by Larson (1995), and discussions of its relevance
to the effects on the geomagnetic field through the CMB, as
indicated by the occurrence of the CNS, have been continued
(Courtillot and Olson, 2007; Biggin et al., 2012; Olson and Amit,
2015). Based on geochronological data, the LIPs known to have
erupted during the CNS period include the Ontong-Java Plateau
(Mahoney et al., 1993; Timm et al., 2011), the Kerguelen Plateau
(Duncan, 2002; Jiang et al., 2021), Rajmahal, Bengal, Sylhet Traps
(Coffin et al., 2002; Kent et al., 2002; Ray et al., 2005), the High
Arctic LIP (Dockman et al., 2018), the Caribbean LIP (Serrano
et al., 2011), Madagascan flood basalts (Storey et al., 1995;
Cucciniello et al., 2021), the Agulhas Plateau, the Northeast
Georgia and Maud Rise (Parsiegla et al., 2008), and the Hess
Rise (Pringle and Dalrymple, 1993). It is interesting to note that
volcanism in China (Zhu et al., 2008), production of granite
(Yokoyama et al., 2016), and kimberlites (Griffin et al., 2014) were
active during the CNS. Besides, seamount volcanism was active in

FIGURE 2 | (A,B) Distribution of Large Igneous Provinces at 120 Ma (A) and 84 Ma (B) with paleogeography based on Johansson et al. (2018), which erupted
during the CNS. LIPs, Large Igneous Provinces. (C,D) Two hypotheses for the cause of the CNS. (C) Equatorial cross-sections of the core (red and orange) and lower
mantle (green) illustrating superplume growth and collapse in the D″-region (light green) above the core-mantle boundary based on Olson and Amit (2015). Arrows
indicate the lower mantle circulation patterns. Superplume growth thins the D″-region below lower mantle downwelling, which increases the heat flux average at the
core-mantle boundary. The geodynamo expresses a higher geomagnetic reversal frequency at that time. On the contrary, superplume collapses reduces the heat flux
average at the core-mantle boundary and reduce reversal frequency, which is Superchron. (D) Cross-sections of the core (red and orange) and lower mantle (green)
illustrating changing of the subduction flux (the volume of slabs) based on Hounslow et al. (2018), which reaches the D″ layer (light green) above the core-mantle
boundary. Higher subduction flux increases the volume of slabs reaching the D″ layer, increases the heat flux average at the core-mantle boundary, and increases
geomagnetic reversal frequency. On the contrary, lower subduction flux reduces the volume of slabs reaching the D″ layer, reduces the heat flux average at the core-
mantle boundary, and reduces reversal frequency, which is Superchron.
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the Western Pacific during the Cretaceous of 115–60 Ma
(Koppers et al., 2003). What they show is the fact that mantle
convection was unusually active during the CNS. East et al. (2020)
proposed that high subduction fluxes before the CNS caused the
mantle return flow, which increased the activity of LIPs.

DISCUSSION OF THE CAUSE OF THE CNS

The cause of the CNS is an open question in earth science. The
influence of mantle convection has long been considered as a
cause of the CNS (McFadden and Merrill, 1984; Larson, 1991;
Larson and Olson, 1991; Larson, 1995; Glatzmaier et al., 1999;
Courtillot and Olson, 2007; Olson et al., 2010; Amit and Olson,
2015; Olson and Amit, 2015). During the CNS, there was a lot of
volcanic activity and seafloor production. These activities imply
vigorous mantle convection, which could have affected the outer
core. The numerical geodynamo simulation predicts a minimum
heat flux at the CMB during the CNS (Olson et al., 2010), while
the mantle convection simulation predicts a maximum heat flux
(Zhang and Zhong, 2011). This is a contradiction.

Changes in the CMB heat flux due to growth and collapse of
the superplume were proposed as the cause of the CNS, which can
resolve the above contradiction (Olson and Amit, 2015)
(Figure 2C). When superplumes (they referred it as Large
low-shear-velocity provinces, LLSVP) grow, the D″ layer is
pulled down by superplumes and becomes thinner.
Conversely, when superplumes collapse, the original shortage
returns to the D″ layer and thickens it. The thicker the D″ layer,
the harder it is for slabs to affect the outer core thermally, which
reduces geomagnetic reversals. On the other hand, as it becomes
thinner, the outer core becomes more strongly influenced by the
slabs, and geomagnetic reversals increase. The change in the
thickness of the D″ layer is predicted by viscose fluids
experiments (Olson and Kincaid, 1991) and numerical
thermochemical convection simulation (Li et al., 2018). When
a superplume collapses, a hot plume is thought to be generated
from its edge (Steinberger and Torsvik, 2012). Olson and Amit
(2015) argued that it was a reasonable scenario because the time-
lag (30–60 Myr) that the hot plume reaches the lithosphere and
erupts LIPs is consistent with the time lag between the
geomagnetic reversal frequency and the frequency of LIPs.
Such correlation was also pointed out by Biggin et al. (2012).
However, can the shape of the superplume (LLSVP) and D″ layer
variable with time? Whether the shape of LLSVP is vertically
variable or remains stable is still inconclusive (Garnero et al.,
2016).

Another candidate for the cause of the CNS is the change in
subduction rates (Figure 2D). Hounslow et al. (2018) found a
120 Myr time lag between the subduction flux and the
geomagnetic reversal frequency. This time lag is
intermediate between the seismologically expected long
time lag for the subducted slab to reach the CMB from the
surface (~150–300 Ma) and the short time lag predicted by
numerical mantle convection models (~30–60 Ma), which
may be real value. More recently, Williams et al. (2021)

found that the two peaks of oceanic heat flow were roughly
consistent with the onset of two superchrons (CNS and the
Permian-Carboniferous Reversed Superchron), respectively.
These results are consistent with Hounslow et al. (2018). In
summary, the subduction flux may control the reversal
frequency. This means that the occurrence of the CNS may
be due to low subduction flux.

Why do subduction fluxes vary so widely and periodically
on a scale of tens of millions of years? Based on the
relationship between the subduction zone lengths and the
convergence rates (Ruff and Kanamori, 1980), the long
subduction zone would have accelerated the plate
spreading rate since 180 Ma. Or, as an exotic idea, a true
polar wander (TPW) might change the regime of mantle
convection and affect its convection speed. In addition,
when the spreading rate of the mid-ocean ridge becomes
high like around the CNS, the density and temperature of the
subducting plate are lower and hotter than in other periods.
In the future, we will also have to consider the effect of this
hot and low-density plate subduction on mantle convection. I
think it is more likely that a relatively hot slab would reach the
CMB but not cool it, which decreases the heat flux average at
the CMB, which may also cause the CNS. The slab effect on
the CMB must be tested by the slab-sinking model.

SUMMARY

The small CMB heat flux would cause the CNS. The mantle
convection was active during the CNS and may have affected the
geomagnetic field and the Earth’s environment. Future studies
need to elucidate the effects of active mantle convection on
the CMB.
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