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In this article, we considered the problem of M ≥ 3 earthquake (EQ) forecasting
(hindcasting) using a machine learning (ML) approach, using experimental (training)
time series on monitoring water-level variations in deep wells as well as geomagnetic
and tidal time series in Georgia (Caucasus). For such magnitudes’, the number of “seismic”
to “aseismic” days in Georgia is approximately 1:5 and the dataset is close to the balanced
one. However, the problem of forecast is practically important for stronger events—say,
events of M ≥ 3.5—which means that the learning dataset of Georgia became more
imbalanced: the ratio of seismic to aseismic days for in Georgia reaches the values of the
order of 1:20 and more. In this case, some accepted ML classification measures, such as
accuracy leads to wrong predictions due to a large number of true negative cases. As a
result, the minority class, here—seismically active periods—is ignored at all. We applied
specificmeasures to avoid the imbalance effect and exclude the overfitting possibility. After
regularization (balancing) of the training data, we build the confusion matrix and performed
receiver operating classification in order to forecast the next day probability of M ≥ 3.5
earthquake occurrence. We found that the Matthews’ correlation coefficient (MCC) is the
measure, which gives good results even if the negative and positive classes are of very
different sizes. Application of MCC to observed geophysical data gives a good forecast of
the next dayM ≥ 3.5 seismic event probability of the order of 0.8. After randomization of EQ
dates in the training dataset, the Matthews’ coefficient efficiency decreases to 0.17.

Keywords: water level in wells, earthquake forecast, magnetic variations, machine learning on imbalanced data,
receiver operating characteristics

1 INTRODUCTION

In this article (Chelidze et al., 2020), we considered the problem of earthquake (EQ) forecast using a
machine learning (ML) approach, namely, the package ADAM (Kingma and Ba 2014), based on
experimental (training) data on monitoring water-level variations in deep wells as well as
geomagnetic and tidal time series in Georgia (Caucasus). In the 2020 article, we used the low
EQ threshold value of magnitudeM≥ 3 as a forecast object. In this case, the number of days with EQs
of magnitude larger than 3 is less, but of the same order as the number of “aseismic” days, and
forecast for EQs ofM≥ 3 can be considered as the problem of the so-called slightly imbalanced sets;
namely, the ratio of “seismic” to “aseismic” days in Georgia is approximately 1:5 for this magnitude
range. The forecast problem is actually for stronger EQs, which can cause real damage, as small EQs
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are not dangerous. When we put the problem of the forecast in
this way, the learning datasets became more imbalanced and, for
example, the ratio of seismic to aseismic days for in Georgia
reaches values between 1:18 and 1:26, which means that the effect
of imbalance should be taken into account.

In this article, we apply the MLmethodology taking into account
the larger magnitude threshold and stronger imbalance in the data.

2 METHODOLOGY

2.1 Complexity Analysis and Machine
Learning in the Earthquake Forecast
Last decades, using modern methods of complexity analysis
allows us to reveal the existence of long-term correlations in
the spatial, temporal, and energy distributions in dynamical
systems such as seismicity, namely, these distributions in all
three domains follow power law (Chelidze et al., 2018). As a
result, hidden non-linear structures were discovered in seismic
data. These characteristics vary with time, which is in
contradiction with the memory-less purely Poissonian
approach (Chelidze et al., 2020). The analysis of temporal
variations in the complexity of seismic measures, namely, the
phase space portrait, can be used for forecasting strong
earthquakes (Chelidze et al., 2018).

On the other hand, during last years, the application of
machine learning (ML) gained increasing attention in the
forecasting laboratory and natural earthquakes (Rouet-Leduc
et al., 2017; Rouet-Leduc et al., 2018; Ren et al., 2020; Johnson
et al., 2021). By the way, one of the first publications devoted to
ML for the EQ forecast belongs to Chelidze et al. (1995), where
the generalized portrait method (now support vector machine,
SVM) (Vapnik and Chervonenkis, 1974; Vapnik, 1984) was
applied to forecast the EQs of magnitude 5 and more in
Caucasus for the 5-y period. As the training set, we used the
regional seismic catalog and several seismological predictors: the
density of seismoactive faults, the slope of the magnitude-
frequency relation, the seismic activity rate (the number of
events N per unit time), and the emitted seismic energy. As a
result, it was shown that the application of the generalized
portrait technique using the slope of magnitude-frequency
relation γ as a predictor allows forecasting retrospectively 85%
of 5-y periods with expected M5 events and 100% of calm periods
without strong events in Caucasus (Chelidze et al., 1995; Zavjalov,
2006). The addition of a less informative predictor—emitted
seismic energy—spoils the total forecast accuracy by 11%.

2.2 The Basic of ML Metrics for Forecasting
One of the main directions of ML is concerned with algorithms
designed to accomplish a certain task (forecasting), whose
performance improves with the input of more data (Mitchell
1997; Witten et al., 2017; Brunton and Kutz 2020; Brownlee
2021). ML implies that we get information on the future behavior
of the system analyzing the data obtained from previous
observations after the application of special statistical tools,
namely, regression or classification approach. The ML is often
used in such diverse fields, such as medicine, geophysics, disaster

management, and business (Witten et al., 2017). Applications of
ML techniques in the last years have become extremely
widespread in solving various problems of seismology, from
signal recognition and analysis to forecasting future acoustic/
seismic activity on the laboratory and regional scales (Rouet-
Leduc et al., 2017; Rouet-Leduc et al., 2018; Chelidze et al., 2020;
Ren et al., 2020; Johnson et al., 2021). In our analysis, we consider
the problem of forecasting EQs in a given magnitude range and a
given time interval using a supervised classification approach,
namely, forecasting the probability of occurrence/absence of the
seismic event using a previous day geophysical observations’
training dataset. For the analysis of observed data, we used the
algorithm of deep learning ADAM (Kingma and Ba, 2014), which
optimizes the target function by the combination of the
optimization algorithm designed for neural networks
(Karpathy, 2017) and a method of stochastic gradient descent
with momentum (Bottou and Bousquet 2012).

The classification model forecasts the class of each dataset; as a
result, every sample is attributed to one of the following four
classes: correctly predicted positives are called true positives (TP),
wrongly predicted negatives are called false negatives (FN),
correctly predicted negatives are called true negatives (TN),
and wrongly predicted positives are called false positives (FP).

2.3 Moderate and Strong EQ Are Rare
Events: The Corresponding Forecast Model
Is ML on the Imbalanced Datasets
The majority of ML applications are designed for the analysis of
the balanced datasets. In the bivariate case, we have two sets of
samples: one of them contains the class of events we are interested
in and another contains “void” samples without events. When the
numbers of each class representatives are about equal, the dataset
is considered as a balanced one. At the same time in many cases,
the real-world datasets are imbalanced, and we have majority and
minority classes; this means that without applying special
algorithms, our classification will be biased toward the
majority class, and sometimes, the minority class is ignored at
all. Such imbalanced classification poses a problem, as quite often
just the minority class is of the major interest—say, in disaster
forecast, medical diagnostic, business, etc. (Mena and Gonzales,
2006; Malik and Ozturk, 2020). Some widely used classifiers, such
as accuracy, are useless if the data are imbalanced. To assess the
accuracy classifier, one needs to consider its formulation using the
confusion matrix [Chicco and Jurman (2020)], namely, taking
into account that accuracy is the total number of correct
predictions divided by the total number of predictions:

Accuracy � TP + TN

TP + FP + TN + FN
. (1)

It is clear that if the term TN is much larger than TP, FP , and
FN , the accuracy can be very high, which is due to high TN
values: if TN >> TN, TP, FN , and FP , the expression (1) is
always close to 100%, which demonstrates that accuracy is not the
appropriate classifier for imbalanced data. The imbalance should
also be taken into account when using such popular metric as
receiver operating characteristic (ROC).
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In the seismically active region, such as Georgia, choosing as
the forecast object events of larger magnitudes with longer time
intervals leads to an increasing imbalance between “seismic” and
“aseismic” days. In Georgia, for example, in 2020, the imbalance
for events ofM≥ 3.5 is of the order of 1:20. The imbalances in the
range M>6–M<7 and M>7 for the last century increase
correspondingly between 1:12250 and 1:36500.

In the present article, we do not use the weak seismic event as
precursors of strong EQs, restricting ourselves by other predictor
data—hydrodynamic, geomagnetic, and tidal variations.

2.4 EQ Forecast in the Laboratory and in
Numerical Models
The stick-slip process, especially under weak periodic forcing,
reveals a quite regular pattern in the time domain, if even in
the natural stick-slip process, the distribution of waiting times Tw

centers on the most probable value, the distribution became much
more narrow under weak periodic forcing (Chelidze and
Matcharashvili, 2015). Predicting not a statistical distribution of
events but the time and amplitude of the next event is much more
difficult. New studies show that ML allows prediction of waiting
time Tw and amplitude A of the next spike (slip) for laboratory
earthquakes more or less exactly having the long enough recording
of the previous slip history. Rouet-Leduc et al. (2017, 2018) and
Johnson et al. (2021) used the ML random forest algorithm for the
analysis of 80 statistical features of acoustic signals before slips
(mean value of signal, its variation around mean, etc.) in order to
find the time left before the next failure. According to Ren et al.
(2020); Johnson et al. (2021), ML can help to resolve the problem,
using different AI methods at least for laboratory EQs as well as for
specific models of seismicity (namely, cascade or preslip models),
where the strong EQs occur after some premonitory aseismic slip
(Rouet-Leduc et al., 2018; Ren et al., 2020).

3 NETWORKS, DEVICES, AND DATA

Themost systematic work oriented to regional short- andmiddle-
term forecast studies in Georgia is connected with a regular
monitoring of the water level (WL) in the network of deep
wells, operated by the M. Nodia Institute of Geophysics, which
began in 1988. Moreover, we analyzed geomagnetic time series
recorded by the Dusheti Geophysical Observatory. In the
previous work (Chelidze et al., 2020), we analyzed the
precursory data of the water level and geomagnetic field
variations collected one day before events of magnitudes
M≥ 3.5 in 2017–2019 on the territory of Georgia. Here, we
present the results of the next-day forecast using
multiparametric (hydrodynamic, magnetic, and tidal)
monitoring data collected one day before events of magnitude
M≥ 3.5 carried out in 2020 on the territory of Georgia.

The WL monitoring network in Georgia includes several deep
wells, drilled in a confined sub-artesian aquifer (Figure 1)—here,
we use the data of the five stations with themost systematic records
(Table 1). The sampling rate at all these wells is 1/min.
Measurements are carried out by sensors MPX5010 with

resolution 1% of the scale (company: Freescale Semiconductor;
www.freescale.com) and recorded by the XR5 SE-M Data Logger
(company: Pace Scientific; http://www.pace-sci.com/data-loggers-
xr5.htm). The data are transmitted remotely by the modem,
Siemens MC-35i Terminal (company Siemens) using program
LogXR. The data logger can acquire WL data for 30 days at the
1/min sampling rate. Variations of the water level represent an
integrated response of the aquifer to different periodic and
quasiperiodic (tidal variation and atmosphere pressure) as well
as to non-periodic influences, including the generation of
earthquake-related strains in the earth crust of the order of 0.
1–0.001 microstrain. The atmosphere pressure factor was
subtracted from the summary WL variations. Magnetic
variations were recorded at Dusheti Geophysical Observatory
(Lat 42.052°N, Lon 44.42°E), by the fluxgate magnetometer
FGE-95 (Japan), registering x, y, and z components at a count
rate of 1/sec with accuracy 0.1 nT. The data are representative for a
whole territory of Georgia. All these field data present the so-called
ground truth, that is, the information obtained on the site, which is
used as reality check for the used ML analysis.

We are looking for hydraulic (Wang and Manga, 2010) and
geomagnetic anomalies (Zotov et al., 2013; Buchachenko, 2021)
in the “quasiepicentral” or a precursor interaction area R. We
choose the interaction length R = 200 km for hydraulic
precursors of EQs of M≥ 3.5 for a given well. Note that
there are different assessments of the EQ precursors’ area.
According to the widely used static strain model
(Dobrovolsky et al., 1979), the radius R of the anomalous
precursory “static” strain area is of the order of 20–30 km for
EQs of M3 and 50–70 km for M4. In the “dynamic strain”model
(Pregean and Hill, 2009), seismic waves of an initial EQ (source)
triggers (induce) secondary seismic events at different distances
from the source from meters to thousands of km and with
different delays due to dynamic stress perturbations. This
approach actually does not restrict the interaction length and
the delay range for the inducing event of the hydraulic
precursor. We presume that there are at least two physical
mechanisms, which can explain the accepted long radius of
action of hydraulic precursors (R = 200 km): 1) long-range fluid
diffusion from the stressed formation to the well due to
poroelastic effects and 2) fast squirt-flow (Dvorkin et al.,
1994) of pore water from the impending EQ source to the
well, excited by the foreshocks of the imminent event—such
signals can travel a long distance (Chelidze et al., 2019).

At the same time, we did not restrict the interaction length at
all for geomagnetic precursors. In practice, this means that we
accept R for geomagnetic data of the order of 300 km (this is the
distance from Dusheti observatory to the most remote well).

4 RESULTS

4.1 Training and Test Datasets
The sequence of actions during machine learning is presented in
Figure 2. The first four stages illustrate the process of collection
and preliminary processing of training/testing data, and the
following three stages show the machine learning process.
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4.1.1 Geophysical Datasets Preparation Stage
In this article, we consider the statistical values (mean, mean standard
deviation, minimal and maximal values, etc.) of the input data—the
daily time series of geophysical data (attributes/features), namely, the
input data were as follows: water level in the network of boreholes,
tidal variations, geomagnetic field intensity, and atmospheric pressure
in five circular (overlapping) regions of Georgia centered on the
following borehole locations: Ajameti, Akhalkalaki, Kobuleti,
Marneuli, and Nokalakevi during 2020 (see Figure 3). We
compare these daily values with the data of daily occurrence of
EQs of magnitude M≥ 3.5 using the machine learning (ML)
classification approach (Chelidze et al., 2020): to the days with
events ofM≥ 3.5 , we assign value one and to “quiet” days, value 0.

4.1.2 Generation and Preparation of Statistical
Characteristics for Training/Test Bases Separately
As a result, we obtain 32 inputs/attributes—the values of monitoring
data for a given day (namely, the day, before the seismic event), and
one output with two possible values for the next day—the occurrence

(one) or absence (zero) of EQ. For each region, we obtained the table
of dimension 33 × 365, where the 33-th column is the target EQ
column—that is, the information on occurrence/absence of events in
the 200 km radius from the given well. According to our data, in the
output columns of regions, the imbalance values are minimum 1:18.

Analysis of Figure 2 leads to the unexpected result—namely, the
machine learning approach assigns the largest EQ predictive weight
to geomagnetic data. We would like to note here that the recent
research (Zotov et al., 2013) made interesting discovery on the
magnetic precursors of EQs. According to their data, big magnetic
pulses are followed by increase in the number of relatively weak
seismic events with a maximum at the magnitude M = 3.9 a few
hours after the onset of magnetic anomaly. Balasis et al. (2011) also
observed similarity in the universality in solar flares, magnetic
storms, and earthquakes using Tsallis statistical mechanics and
suppose that these diverse phenomena have a common physical
mechanism. It seems that our data (Figure 2) support thementioned
observations: the geomagnetic field intensity is the leading one in the
list of precursors of the next day EQ of M≥ 3.5.

FIGURE 1 | Map of Georgia with the location of deep wells’ network (red circles) for water-level monitoring and Dusheti Geomagnetic Observatory (blue circle).

TABLE 1 | Locations and depths of wells in Georgia.

Location Name Depth of the well, m Interval of the screen, m Aquifers’ lithology

Nokalakevi Nak 600 255–367 Fractured andesite–basalts

Kobuleti Kblt 2,000 187–640 Fractured andesite–basalts

Marneuli Marn 3,505 1,235–1,600 Fractured mergels

Akhalkalaki Akh 1,400 100–1,400 Fractured andesite–basalts

Ajameti Ajmt 1,339 520–740 Fractured limestones
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4.1.3 The Used Machine Learning Methodology:
Imbalance Problem for Seismic Events
Thus, we have separate datasets (tables) for five regions
(Figure 4). For training, we decided to cluster four regions’
data (here, Ajameti, Akhalkalaki, Kobuleti, and Marneuli) and

use these data as a training set for machine, where the output is
the occurrence (one) or absence (zero) in the next day of EQ of
magnitude M≥ 3.5 in the fifth (target) region (Nokalakevi). As a
result, after the application of this procedure to all five regions, we
obtained 1,445 records, where statistical values of the previous

FIGURE 2 |Weights of different statistical measures obtained in the process of machine learning using average input data for all five regions (blue columns). The red
curve shows the cumulative percent of separate weights.

FIGURE 3 | Map of five separate circular regions around wells with water-level stations.
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days’ oversampled geophysical data are collected and the original
(not oversampled) information on the occurrence/absence of
seismic events in the target region next day.

As there is a high imbalance in our data with prevalence of
“quiet” days without next day events (zero), we used the
recommended random oversampling approach (He and Garcia
2009; Brownlee, 2021), where the rare events—(one)—are
duplicated in order to increase the minority class.

4.1.4 Modification of Training Data to Avoid the
Problem of Imbalance
Some authors note that oversampling of the initial dataset can
cause the overfitting effect (Chawla et al., 2018; Brownlee, 2021).
In order to avoid the overfitting effect, we integrate the database,
obtained in the mentioned four regions and considered it as a
joint training base. The fifth region was considered as a testing
object, which contains zero or one event, as well as the statistical
parameters (precursors) obtained on the previous day.

According to this scheme, after finishing machine learning,
the ROC for the testing region was compiled; this shows if the
model is adequate for learning on the integrated predicting
base of four regions instead of the separated data for a given
region. In other words, we trained the model on the four
different regions and applied it to the fifth testing region. The
aforementioned procedure was carried out for all the possible
combinations of four training and fifth testing regions. Finally,
we carried out five tests and revealed that resulting ROC
diagnostics results are quite close to each other. We
presume that due to this procedure, the overfitting effect in
all five regions is less probable.

During integration, we used the Python library, namely, the
recipe “imblearn.over_sampling” and obtained a new training
database with 2,792 artificially replicated ensemble of “seismic”
days (due to replicated—added—1 values) with unchanged
statistics of “zero” days.

Based on the training ML experience obtained on the
ensemble of four regions, we applied to the fifth one
here—Nokalakevi, where we tried to forecast EQs, occurred in
the target region using the original (non-oversampled) testing
part of seismic catalog. Actually, we apply the experience,

obtained by training on the four regions’ oversampled data, to
a new region in order to carry out the model verification on the
original (testing) seismic data for the Nokalakevi region, where 14
EQs of M ≥ 3.5 occur in 2020.

4.2 ML Algorithms
4.2.1 Decision Tree and SVM for the Balanced
(Oversampled) Sets
As a forecasting method, we used decision tree (DT)—a
supervised machine learning algorithm, applied in both
classification and regression problems. The DT is preferable
because 1) it does not need special pretreatment of data, such
as data normalization, addition, or exclusion of data, and special
equipment for handling big data; 2) DT allows assessing the
reliability of the model using statistical tests. We used the
following library: imblearn.over_sampling import SMOTE in
Python (Fernández et al., 2018) in order to transform our
imbalanced dataset into a balanced one. We illustrate below
graphically how the input dataset change after application of
this approach; Figure 5A presents the initial imbalanced dataset,
where orange points are events (one) and blue points correspond
to the quiet state (zero). After the application of SMOTE, the
previous graph transforms to Figure 5B, where the dataset
became a balanced one.

Finally, our ML workflow for five regions—objects for
forecast—is as follows (see also Figure 4).

1) The training data for the chosen four regions are collated and
the fifth—testing region with its EQs—is left for further
training.

2) The same procedure is repeated for all other five
combinations of training and testing regions.

3) As a result, we get five training tables with the following
dimensions: 1,464 readings in columns with data (total 33
columns, including the 33rd column for the output—EQ).

4a) The same dimensions have the data in the target (fifth)
region. The three training parameters in Python are as follows:
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.3, and random_state = 1) # 70% training
and 30% tests.

FIGURE 4 | Scheme of the used machine learning procedure.
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4b) We also made an attempt to use other training version: clf
= DecisionTreeClassifier(criterion = “entropy”, max_depth
= 3) for different depths and found that the max_depth = 3
version was optimal, but for all five models the results were
slightly worse than for the standard 4a model parameters. In
addition, when we are using entropy parameter, the results for
different regions were non-stable, so we preferred version 4a.

After dividing the data into training and testing sets, the
forecast was carried out and the corresponding five models
were compiled.

In order to assess the confidence interval of the trained model
for the Akhalkalaki region (with presumption that classification
accuracy/error is distributed according to the Gauss model), the
following code was used:

Code (95%): from statsmodels.stats.proportion import
proportion_confint
lower, upper = proportion_confint(360, 365, 0.05)
print(’lower = %.3f, upper = %.3f’ % (lower, upper))
lower = 0.974, upper = 0.998

Naturally, the confidence interval depends on accuracy. Here,
we remind that our bases are sufficiently imbalanced and zero
value—the marker of “no-EQ” event—and lead to almost 100% of
confidence interval’s upper and lower values. Note that from
365 days’ records for the Akhalkalaki region, only 20 days contain
EQs and our program recognizes 17 of them. If we consider the
confidence interval of recognition for EQ events (ones), we obtain
for the confidence interval (of course, this method is better to use
when the number of events n is > 30).

lower, upper = proportion_confint(17, 20, 0.05)
lower = 0.694, upper = 1.000

Correspondingly, the confidence intervals’ values for other
four regions are in the same range.

After transforming the imbalanced datasets into balanced
ones, we used the program tree.DecisionTreeClassifier
(Pedregosa et al., 2011; Brownlee 2021). Taking into account

the stochastic nature of the algorithm and the type of data, we
decided that for testing the algorithm and assessing its reliability,
it is reasonable to repeat the learning procedure several times and
to analyze the resulting confusion matrixes and averaged ROC
AUC values.

We choose the algorithm “sklearn” for ML from the library
“DecisionTreeClassifier” of Python Scikit-learn package
(Pedregosa et al., 2011; Brownlee, 2021) in order to test its EQ
forecasting potential on the original (not oversampled) testing
data in the fifth—Nokalakevi—region. The results of testing,
which we present as the confusion matrix and the receiver
operating classification (ROC) graph (Figure 6), show that the
applied methodology leads to quite satisfactory result: according
to the confusion matrix, ML success cases amount to 12 from
total 14 events with two false forecasts.

We carried out similar calculations for all five regions and
compiled the confusion matrixes and averaged ROC AUC, where
the observed imbalanced dataset was transformed into a balanced
one. According to the confusionmatrix, ML success cases amount
to 12 from total 14 events with 2 false forecasts, that is, the hit rate
is 0.86, which is quite encouraging.

Presented results show that machine learning allows
forecasting the next day EQs of magnitude 3.5 and larger in
the 200 km area around the well in the Noqalaqevi region with a
high probability.

Apart fromDT, we also tried the SVM program for forecasting
EQ using the same training/testing datasets—the results were
close to these of the DT approach. Exactly, by the SVM, we
obtained slightly less (by 2%) successfully forecasted seismic
events. Therefore, we do not present these results in detail here.

4.2.3 Forecast of the Next Day Earthquakes of the Fifth
Independent Region Using Previous Day Data of Other
Four Regions and Robust Metrics (MCC, ROC)
Using the same approach, we can consider any four of five regions
as a training base and the fifth one—as a target (test) region. In
this way, we were able to test the validity of the chosen model in
more or less independent way to other four regions. Using the
results of the earlier analysis, we present as the confusion matrix
(Table 2) forecasting EQs of M≥ 3.5 in the area with radius

FIGURE 5 | (A, B)Graph of the data point distribution (A) presents the initial imbalanced dataset, where orange points are events (one) and blue points correspond
to the quiet state (zero); (B) after the application of SMOTE the previous graph transforms to a balanced one.
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200 km around the Axalkalaki, Adjamerti, Marneuli, and
Kobuleti boreholes for 2020.

It is evident that in addition to good enough forecasting the
model demonstrates in the training region—Nakalakevi (Figures
6A,B), it reveals applicability to the other four testing areas
(Table 2); otherwise, taking into account the existing strong
imbalance, it would be impossible to achieve forecasting of
most of the occurred EQ events.

5 CHOOSING APPROPRIATE METRICS
FOR THE IMBALANCED DATASETS

In solving the ML binary classification problem for the rare
events, it is important to use the correct metrics, which takes
into account the imbalance of the datasets (Mena and Gonzalez
2006; Johnson and Khoshgoftaar 2019; Malik and Ozturk, 2020).
Previously, we show that the accuracy is not a good classifier, if
there are high TN values. Chicco and Jurman (2020) and Chicco
et al. (2021) show that in addition to accuracy, F1 also provides
misleading information, though some authors claim that it is
applicable to imbalanced data.

The appropriate metrics for the imbalanced data case is the
Matthews’ correlation coefficient (MCC), a special case of the phi
(φ) coefficient (Matthews, 1975; Chicco and Jurman, 2020;
Chicco et al., 2021):

MCC � TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN). (2)

The MCC varies in the range (−1, 1); the model is optimal if the
MCC = 1. The MCC classifier is preferable to use, when the
statistics of both negative and positive classes are important for
the prediction problem. The MCC is a balanced measure, which
can be used even if the negative and positive classes are of very
different sizes. MCC close to +1 provides high values of all main
parameters of the confusion matrix.

Let us consider the results of application of the MCC classifier
(Table 3). It is evident that the results of the MCC test for the
original data indicate that the applied methodology allows
forecasting events of M≥ 3.5 quite satisfactorily—the values of
the MCC are close to one. According to Chicco and Jurman
(2020), the MCC criterion gives correct predictions on a majority
of both positive and negative cases independent on their ratios in
the dataset. On the other hand, in the following article, Chicco

FIGURE 6 | Confusion matrix (upper graph) and ROC curve (lower graph) obtained at forecasting the next day EQs of M=>3.5 in the area with the radius 200 km
around the Nokalaqevi borehole using the previous day data. According to the confusion matrix, ML success cases amount to 12 from total 14 events with two false
forecasts.
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et al. (2021) conclude that “if the positive data instances are more
important than negative elements in classification (both for
ground truth classification and for predictions), the F1 score
can be more relevant than the MCC.” As we believe that the
correct prediction of positive cases—“events”—are more
important than correct prediction of negative cases—“quiet
days,” below in Table 3, we present the corresponding scores
for F1 also and several other characteristics: accuracy, precision,
and recall, using the confusion matrix data (Table 3).

From the data presented inTable 3, it follows that the values of
the MCC, precision, recall, and F1 score are close to each other,
when the accuracy assessment is overoptimistic due to the
negligence of significant imbalance in the data (large values of
true negatives TN—see Eq. 1 and comments below).

6 TESTING MCC RESULTS:
RANDOMIZATION OF EQ CATALOG

For testing the MCC approach validity, we randomized the input
training data for the Nakalakevi station. In order to assess the

accuracy of our approach, we used the following method: the 32
columns with training data were held constant and only in the
testing data on EQs dates of events were randomized. Namely, in
the majority (aseismic) datasets, we implanted randomly the
additional seismic events according to the following rule: in
the middle of the quiet days cluster, we placed one event
ofM≥ 3.5. According to the theory, the MCC for randomized
datasets should decrease significantly, taking values close to zero
or (−1). In the following text, we show the results of MCC testing
on the randomized Nokalakevi station data. The MCC for
original data is 0.851. After randomization the MCC test
shows (Figure 7) that for the Nokalalkevi station, the MCC
value is very small: MCC = 0.174, which means that the
applied forecasting method is quite promising.

7 FUTURE RESEARCH

It seems promising in the future research to include more
predictors, expand the training/testing periods, and aim to the

TABLE 3 | Classification performance measures in EQ forecast: MCC, accuracy, precision, recall, and F1

WL station Matthews coefficient Accuracy Precision Recall F1 score

Akhalkalaki 0.841 0.984 0.85 0.85 0.85

Nokalakevi 0.889 0.989 0.895 0.895 0. 89

Marneuli 0.806 0.984 0.765 0. 867 0.81

Adjameti 0.825 0.984 0.833 0.833 0.83

Kobuleti 0.739 0.978 0.75 0.75 0.75

FIGURE 7 | Confusion matrix for the randomized training EQ catalog at
the Nokalakevi station—the timings of EQs in the corresponding output
column are randomized (the occurrence times were displaced according to
the rule—see before). Compare with the original Figure 6A.

TABLE 2 | Final confusionmatrixes calculated on the original EQ data of four target
stations using the remaining four stations as the training set.

Confusion matrix WL station

Akhalkalaki

343 3

3 17

Nokalakevi

350 2

2 17

Marneuli

347 2

4 13

Adjameti

345 3

3 15

Kobuleti

346 4

4 12

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8478089

Chelidze et al. Earthquake Forecast as a Machine Learning Problem

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


forecast of stronger events, namely, one could try the following
schemes of forecast: including dataset of weak seismic events of M
less than 3.5 in the predictors’ list (class); expanding the
predicting datasets of weak seismicity, WL, magnetic, etc. for
several years; expanding the training input interval to several
days; using longer seismic catalogs; and forecasting stronger
events (magnitudes M≥ 3.5). It is also interesting to operate
the model in the real-time regime, namely, to give a (zero or one)-
type forecast of the event of M≥ 3.5 on the distance of 200 km
from a well for the next day using the previous day data.

8 CONCLUSION

The problem of the next-day forecast for events of M≥ 3.5 in
Georgia and elsewhere should take into consideration the
imbalance between the days with earthquakes and quiet
days in the output data. For example, the ratio of seismic
to aseismic days for in Georgia reaches the values of the order
of 1:20 and more, which mean that the dataset is significantly
imbalanced. In this case, some accepted ML classification
measures, such as accuracy, lead to wrong predictions due
to a large weight of true negative cases. As a result, the
minority class, here—the seismically active periods—is
ignored at all. We applied specific measures to avoid the
imbalance effect and exclude the overfitting possibility.
After regularization (balancing) of the training data, we
build the confusion matrix and performed receiver

operating classification in order to forecast the next-day
probability of M≥ 3.5 earthquake occurrence. We found
that Matthews’ correlation coefficient (MCC) gives good
results even if the initially negative and positive classes are
of very different sizes, namely, the next day M≥ 3.5 seismic
event probability is of the order of 0.8. After randomization of
EQ dates in the training dataset, the Matthews coefficient
efficiency decreases to 0.17.
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