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There are more than 20 types of dynamometer card measured of sucker rod pumping
(SRP) wells in oil fields, and some working conditions are very complicated. The common
diagnosis model of SRP well based on dynamometer card recognition has low accuracy
and recall rate of complicated working conditions. In order to improve the accuracy and
recall rate of multi-condition diagnosis of SRP well and solve the problem of inseparable
data attributes caused by traditional dynamometer card normalization methods, a new
dynamometer card preprocessing method is proposed, which uses a clustering analysis
algorithm to obtain multiple normalized dynamometer cards of the original dynamometer
card and at the same time, adds a set of time-series dynamometer cards to enhance the
separability of data. The dynamometer card preprocessing method combined with four
deep convolutional neural networks are used to build a diagnosis model. Experiments are
conducted under 24 different working conditions, the accuracy of our method is up to
95.8%, and the average recall rate of complicated working conditions is up to 93.1%,
which is 13.6 and 35.3% higher than that of the model (AlexNet) built by the traditional
preprocessing method. In addition, the preprocessing method of dynamometer card
proposed is applicable to all deep learning models and machine learning models. Field
applications show that our method is very effective for recalling abnormal working
conditions, which is of great significance to the real demand for intelligent diagnosis of
SRP well.
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Abbreviations: ANN, artificial neural network, which simulates neuron activity with a mathematical model, is an information
processing system based on imitating the structure and function of the brain neural network; CNN-SVM, a model composed of
CNN and SVM; CNN is used to extract features, and SVM is used as classifier; SRP, sucker rod pumping, also referred to as
“beam pumping,” provides mechanical energy to lift oil from the bottom-hole to surface; CNN, convolutional neural network. It
is a kind of feedforward neural networks with depth structure including convolution calculation. It is one of the representative
algorithms of deep learning; GBDT, gradient-boosted decision tree. It is a kind of decision tree with better performance; SVM,
support vector machine. It is a kind of generalized linear classifier that classifies data in a binary way according to supervised
learning; k, the number of normalized scales of dynamometer card, which is obtained by clustering algorithm; m, used to
represent the number of dynamometer cards selected in different time points.
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INTRODUCTION

The sucker rod pumping (SRP) is the main artificial lifting
method for oil wells. Because the rods, pipes, and pumps of
SRP work in a harsh environment, the SRP wells frequently fail
after long-term operation. Real-time diagnosis of downhole
working conditions and finding the causes of production
changes in abnormal working conditions can help avoid
further deterioration. The dynamometer card is a closed
curve diagram composed of the relationship between load
and displacement. The dynamometer card showing the
relationship between the polished rod load and the
displacement is called the surface dynamometer card.
Generally, the surface dynamometer card is used as the
main basis for analyzing the working conditions of the SRP
well (Eickmeier 1967) because it can reflect the downhole
working condition, which includes a pump, sucker rod, and
wellbore. With the development of artificial intelligence
technology and the petroleum industry’s emphasis on
digitization and intelligence, technologies such as machine

learning and deep learning-based working condition diagnosis
and early warning of SRP well have been applied and
developed. There are two different types of diagnosis
models based on dynamometer card classification. The first
is the tow-step model, which includes dynamometer card
feature extraction and pattern classification. Many
dynamometer card feature extraction methods are used,
such as centroid, curvature descriptor, Fourier descriptor
and geometric moment vector (de Lima et al., 2012), and
Freeman chain code (Li et al., 2013a); Fourier descriptor
has good calculation speed and feature description ability
(Yu et al., 2013). Pattern classification methods include
support vector machines (SVMs; Li et al., 2013b), gradient-
boosted decision tree (GBDT; Bangert et al., 2019), and
artificial neural network (ANN; Xu et al., 2007; Bezerra
et al., 2009; Abdalla et al., 2020). However, this kind of
method is less effective in multi-condition diagnosis tasks
because the feature extraction method itself will lose more
information. The second model uses a convolutional neural
network to complete feature extraction and classification in

TABLE 1 | Performance test results of each mainstream model.

Model Fourier
descriptor
and SVM

(%)

Geometric
moment

vector and
SVM (%)

AlexNet
(%)

LeNet5
(%)

CNN–SVM
(%)

Accuracy 75.4 78.3 82.2 81.3 81.8

Recall rate of complicated working
conditions

Sucker rod break 8.3 10.5 11.6 9.7 12.4
Pumping while flowing 16.8 17.8 20.8 29.4 28.6
Severe leakage of the standing valve 18.3 19.6 21.3 23.8 21.9
Pump bumping (downstroke) 32.1 36.4 78.9 74.6 75.4
Pump bumping (upstroke) 18.5 23.7 82.9 79.6 80.2
Rod vibration and insufficient liquid
supply

68.4 71.3 79.4 74.2 74.9

Rod vibration and gas influence 64.4 68.0 75.6 70.1 70.9
Insufficient liquid supply and sand
production

64.4 68.3 75.8 70.6 71.5

Insufficient liquid supply and gas
influence

61.9 65.2 71.5 66.8 68.1

Average recall 39.2 42.3 57.5 55.4 55.9

FIGURE 1 | Normalized dynamometer card for the four working conditions.
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one step without human effort and prior knowledge.
Boguslawski et al. (2018) used a variety of deep learning
fusion models in edge computing to realize the diagnosis of
eight downhole conditions, combining the advantages of all
models to get the best result; Wang et al. (2021) used two-time
overlay dynamometer card as the CNN input to enhance the
data classification features. However, there are actually a
variety of working conditions in the oil field, which are
complicated and diverse, and the dynamometer card types
can reach more than 20 types. There are a large number of
complicated dynamometer cards other than typical
dynamometer cards; it is difficult to identify the

dynamometer cards of these complicated working
conditions with those models. Although the complicated
working conditions occur in a small number of oil wells,
they seriously affect the production of the oil wells. Wrong
diagnosis of a small number of wells with complicated working
conditions as normal production wells will not significantly
affect the accuracy rate of the model, only reduce the recall rate
of the corresponding working conditions. Therefore, the recall
rate of complicated working conditions is also an important
indicator to measure the performance of the diagnostic model
except the accuracy rate. The recall rate reflects the ability to
check the complicated working conditions that have occurred.

TABLE 2 | Normalized dynamometer card combining two normalization methods.

Working conditions Normalized by actual load Normalized by theoretical load

Normal

Sucker rod break

Severe leakage of the standing valve

Pumping while flowing
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The larger the value, the more accurately all the oil wells that
have complicated working conditions can be identified, and
timely maintenance measures are taken, which is of great
significance for ensuring production. Using 19,510 samples
of labeled dynamometer cards from 1,226 wells in the
Changqing Oilfield in China as the dataset (including
twenty single working conditions and four compound
working conditions), the abovementioned mainstream
models were reproduced, and the experimental results are
shown in Table 1.

Analyzing the data in Table 1, it can be found that when faced
with a variety of working condition diagnostic tasks, the accuracy
and recall rates of the SVMmodel based on feature extraction are
low, and the performance of the model based on deep learning
CNN is slightly improved. The two types of models have low
recall rates for complicated working conditions such as sucker
rod break, pumping while flowing, and serious leakage of
standing valves and cannot meet the actual needs of the oil
field. In order to solve the abovementioned problems, this
article analyzes the reasons for the low recall rate of all models
for complicated working conditions. A new dynamometer card
preprocessing method is proposed; that is, multiple normalized
scales are determined by a clustering analysis algorithm to obtain
multiple normalized dynamometer cards of the original data,
which add spatial features of dynamometer card, and using
dynamometer card data at multiple time points to add time
features. Based on this dynamometer card preprocessing method,
we build four CNN architectures to test performance and
compare with other models. We also explored the influence of
hyperparameters of our method and demonstrated good results
in field application.

DATA PREPROCESSING METHOD OF
DYNAMOMETER CARD

The surface dynamometer card data collected at the oilfield
production site is a sequence of polished rod load Y (kN) and

displacement X (m) in a stroke, with 120 or 240 data points.
The downhole working conditions are diagnosed according to
the surface dynamometer card. The pump depth and stroke of
different oil wells are different, so the position and size of the
drawn dynamometer in the image coordinates are different.
Before building the intelligent diagnosis model of SRP well, the
first thing is performing the dynamometer card data
preprocessing. Each dynamometer card data will be
normalized to (0, 1) to obtain a fixed-size normalized
dynamometer card to eliminate the difference in
displacement and load. It makes the dynamometer card of
the same working condition have the same shape feature,
which is important for the algorithm model to learn the
classification features. SVM and CNN are both excellent
classification models; they have achieved good performance
in many image classification scenarios, but perform poorly on
the dynamometer card classification task, especially for some
complicated working conditions, which are caused by
improper data preprocessing methods. The traditional
normalization method is based on the maximum and
minimum of Y and X value of current dynamometer card
data. We will analyze the shortcomings of this method and
propose a new method.

THE NORMALIZATION METHOD BASED
ON THE MAXIMUM AND MINIMUM OF X
AND Y
Normalization is performed based on the maximum and
minimum of X and Y, as shown in the following equations:

�X � X −Xmin

Xmax −Xmin
, (1)

�Y � Y − Ymin

Ymax − Ymin
. (2)

For each point in the dynamometer card data sequence, �X and
�Y are the normalized displacement and load value. X and Y are

FIGURE 2 | Use of theoretical load normalization.

FIGURE 3 | Cost function value of different k.
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the actual displacement and load value of the current
dynamometer card data. Xmin, Xmax, Ymin, Ymax are the
maximum and minimum values of displacement (m) and load
(kN), which is called the normalized scale. It makes the different
normalized dynamometer cards of one working condition show
consistency in shape features, which is conducive to the model to
better learn the classification features of this working condition
and eliminate the noise in the data.

However, the dynamometer card of the working conditions
such as sucker rod break, severe leakage of the standing valve, and
pumping while flowing is the suspension point load change (see
Figure 1A), and the position is different from that of the normal
dynamometer card. Observing the normalized dynamometer
cards of these working conditions (see Figure 1B), intuitively,
they all present the same graphic features as the normal
dynamometer cards, and the normalized dynamometer cards
of different working conditions are confused and
indistinguishable. This normalization method causes the
inseparability of the data itself; therefore, no matter what
model is used, the recall rate of sucker rod break, pumping

while flowing, and serious leakage of standing valves working
conditions are extremely low.

For each SRP well, there is a group of theoretical (Ymax, Ymin)
of normal working conditions. When this is used as the
normalized scale, the normalized dynamometer card is as
shown in Figure 2.

This method retains the information about the position, shape,
and size of the current dynamometer card relative to the normal
dynamometer card. The normalized dynamometer cards of the
two working conditions of pumping while flowing and serious
leakage of standing valve are obviously separable. However,
because the load Y of the dynamometer card of the rod
breakage condition is lower than Ymin, there is no geometric
figure in the interval (0, 1) after normalization, resulting in the
loss of image information; problems such as sensor failures and
well shutdown operations can also cause loss of image
information. Therefore, using theoretical (Ymax, Ymin) alone as
the normalization scale, it is still impossible to obtain a
normalized dynamometer card with good separability for all
working conditions.

FIGURE 4 | Cluster distribution of different k clusters.
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TABLE 3 | Normalized dynamometer card of three working conditions (k = 10).

Normalized scale uk, kN Sucker rod break Severe leakage of the standing valve Pumping while flowing

u0 � (max(y),min(y))

u1 � (13.84, 5.32)

u2 � (19.40, 8.91)

u3 � (23.90, 13.87)

u4 � (29.51, 12.74)

u5 � (30.05, 18.70)

(Continued on following page)
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MULTI-SCALE DYNAMOMETER CARD
NORMALIZATION BASED ON CLUSTER
ANALYSIS
We simultaneously use the (Ymax, Ymin) of actual load and
theoretical load to obtain two normalized dynamometer cards

as the input of the diagnostic model (Table 2). Through the
complementarity between the feature information of the two
normalized dynamometer cards, the dynamometer card for
working conditions such as rod break, pumping while flowing,
and severe leakage of the standing valve can be effectively
distinguished (taking sucker rod break as an example, the first

TABLE 3 | (Continued) Normalized dynamometer card of three working conditions (k = 10).

Normalized scale uk, kN Sucker rod break Severe leakage of the standing valve Pumping while flowing

u6 � (34.21, 16.02)

u7 � (37.29, 21.45)

u8 � (43.69, 25.48)

u9 � (55.12, 27.61)

u10 � (70.26, 46.20)
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one is shown as the normal dynamometer card, and the
second obtains a blank image, which means the rod
breakage has occurred). Therefore, the data have
classification separability.

The theoretical (Ymax, Ymin) can be obtained in two ways. One
is to calculate the polished rod load through a theoretical model.
Due to the complexity of the downhole environment and fault
working condition, the calculated theoretical load usually differs
greatly from the actual theoretical load of the oil well. The second
is to use the load measured by the dynamometer under normal
working conditions and get the maximum and minimum values,
but the oil well may be in abnormal working conditions at the
beginning, and it is difficult to obtain effective value. In addition,
(Ymax, Ymin) of normal working conditions is a group values that
changes with the production performance of the oil well, and it
has different values in different periods; actually, we cannot get a
group of constant values, and it needs to be updated frequently.
Considering that the use of multiple normalization methods of
different scales is essentially to extend the classification features of
one dynamometer card data, a stable set of normalized scales is
required. Therefore, a new normalization method of
dynamometer card is proposed; in addition to normalizing the
current dynamometer card data with the (Ymax, Ymin) of the
actual load, k different normalization scales are used to obtain
another k normalized dynamometer cards, introducing enough
classification features to enhance the separability of the data. For
the current dynamometer card dataset, clustering algorithm
(k-means) is used to obtain k normalized scales ui �
(Ymax, Ymin)i, i ∈ [1, k].

The dataset for clustering is a collection of the vectors
(ymax, ymin) of each dynamometer card data, and the number
of clusters k ∈ [2, 30] is selected for clustering. Figure 3 shows the
cost function of clustering with different k values. The cost
function is the sum of the degree of distortion of each class.
The degree of distortion of each class is equal to the sum of the
squares of the distance between the centroid of the class and its
internal members. The larger the k is, the more normalized scale
ui can be obtained. Figure 4 shows the cluster distribution of
different k values. Each color represents a cluster, and the black
dots in the cluster represent the mean vector (centroid) of each

cluster, that is, the normalized scale. However, obtaining too
many normalized dynamometer cards will increase the
calculation amount of model training and prediction, but the
enhancement of data separability is limited. In order to get a
reasonable value of k, it is necessary to consider the cluster
distribution of the cluster and the change trend of the cost
function at the same time.

According to the elbow rule, the value of the elbow of the cost
function is selected as the reasonable value of k (the value of the
cost function initially drops quickly, and the elbow starts to
decline gradually). From Figure 3, it is observed that the
elbow value is k = 5. Observing Figure 4, it is found that the
clusters obtained by k ∈ [5, 10] gradually become compact, and
the quality of the cluster distribution is already good, which can
obtain multiple effective normalization scales without excessively
increasing the computational cost.

In addition, follow-up experiments verified the rationality of
the k value range and explored the performance of the diagnostic
model when selecting k = 15, 20, and 30 for normalization.
Table 3 shows 11 normalized dynamometer cards for each
working condition when k = 10. k0 represents the normalized
dynamometer card obtained by (Ymax, Ymin) of the actual load,
and k1 ~ k10 represent 10 normalized dynamometer cards
obtained by u1 ~ u10. From Table 3, although k0 of the three
working conditions is very similar, it can be distinguished by
combining k0–k10. Multi-scale normalization introduces
multiple normalized dynamometer cards with significant shape
differences to greatly enhance data quality, and it provides the
relative variation features of the dynamometer card on the y-axis
(for simplification, it is called spatial features). The model can
extract spatial features from k0 ~ k10, and this will help the
model to recognize the originally inseparable working conditions,
which improves the overall accuracy and the recall rate of
complicated working conditions in the following experiments.

ADDING TIME-SERIES FEATURES

During the production of SRP well, the current dynamometer
cards of some working conditions are very similar, such as

FIGURE 5 | The change trend of dynamometer card of two different working conditions.
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seriously insufficient liquid supply and pump bumping
(upstroke), sucker rod break, and pumping while flowing.
The traditional method uses the dynamometer card data at
a single time point as the input data of the model, which is
unable to distinguish effectively. The change trend of the
dynamometer card of different working conditions is totally
different; Figure 5 shows the change trend of dynamometer
card of two different working conditions, and the change trend
can also be used as a classification feature. In order to use the
change trend features of dynamometer cards of different
working conditions, the dynamometer cards at multiple
time points are taken as the input data. In order to capture
the short-term, mid-term, and long-term change features, in
addition to the current dynamometer card, five dynamometer
cards’ data 1T, 3T, 1 day, 10 days, and 30 days before are
selected (T represents the data collection time interval of each
dynamometer card, and 1 day means 24 h ago). The
dynamometer card sequence contains the time-series change
features of the working conditions, further enhances the data
classification features, and provides a solid foundation for
building a more robust model. m is used to represent the
number of selected time points, and m can be dynamically

adjusted independently according to the characteristics of the
dataset being used; in this article,m = 5, and the time points are
shown above.

CNN-BASED DIAGNOSIS MODEL

In recent years, convolutional neural networks have been
widely used in the field of image recognition, including
many typical applications in the petroleum industry, such
as offshore oil slick detection (Kubat et al., 1998; Corucci
et al., 2010), reservoir physical property detection (Ahmadi
2015), using CNN as an automatic well test interpretation
approach for infinite acting reservoirs (Liu et al., 2020), and
pipeline network internal image detection (Loskutov et al.,
2006; Smola et al., 2004). For the problem of dynamometer
card classification, the use of convolutional neural networks
does not require artificially designed feature extraction
methods, and the performance is generally better than that
of models such as SVM and BP. You can find the basic concepts
and working principles of CNN in many studies (LeCun et al.,
1998; Krizhevsky et al., 2012; Zeiler and Fergus, 2014); we will
no longer give a basic introduction to it, and we will show how
to build a CNN diagnostic model from three aspects in this
article.

Preparing the Dataset
The data used in this study are collected from more than 1,200
sucker rod pumping wells in an oil field in China. One

TABLE 4 | The amount of data dropped in each step.

Step 1 Step 2 Step 3

Amount of data dropped 45483 17682 781901

TABLE 5 | Classification of the working conditions and the number of samples for each working condition.

Working condition Number of samples Percentage
of total (%)

Normal 8,156 41.8
Wax deposition 1,360 7.0
Rod vibration 1,314 6.7
Insufficient liquid supply 1,093 5.6
Rod vibration and insufficient liquid supply 1,010 5.2
Rod vibration and gas influence 948 4.9
Insufficient liquid supply and sand production 752 3.9
Seriously insufficient liquid supply 626 3.2
Gas influence 608 3.1
Sand production and gas influence 547 2.8
Standing valve leakage 335 1.7
Delayed closing of the traveling valve 308 1.6
Pump bumping (upstroke) 307 1.6
Gas locking 302 1.5
Traveling and standing valve leakage 282 1.4
Sucker rod break 268 1.4
Insufficient liquid supply and gas influence 252 1.3
Pump bumping (downstroke) 246 1.3
Traveling valve leakage 216 1.1
Sand production 212 1.1
Tube leakage 178 0.9
Severe leakage of the standing valve 175 0.9
Piston goes outside of the cylinder 130 0.7
Pumping while flowing 81 0.4
Plunger stuck 56 0.3
Total 19510 100.0
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dynamometer card record is collected every 10 min for each oil well
and stored in the database, and each record contains 200 points of
load vs. displacement. The data from June 1, 2020, to July 31, 2020,
are derived from the database and used as the original data for this
study, and there are 864,576 data records in total. The original data
preprocessing includes the following steps:

Step1: outlier data analysis: generally caused by the drift of the
polished rod load, the slope of the dynamometer card curve changes
suddenly. We calculate the slope between adjacent points and give
a threshold. If the number of slopes exceeds the threshold and
accounts for more than 1/3 of the total, the dynamometer card data
are determined to be an outlier and deleted.

Step2: missing data analysis: for the missing data of load
and displacement points, it is generally completed by
interpolation of adjacent points. In this study, we only use
interpolation to complete a single missing point, and data
with two or more consecutive missing points will be deleted.

Step3: deleting similar data: in order to ensure the non-
redundancy of data samples, we will delete similar
dynamometer card data produced by the same oil well. The
similarity function is often used to remove data duplication. The
similarity calculation formula is as follows:

Rij � exp( − 1
δ

����xi − xj

����2), (3)

where Rij is the similarity between any two samples of data, δ is
the normalized parameter, xi and xj are any two groups in the
sample data, i, j � 1, 2, . . . n, ‖ · ‖ is the 2-norm of the vector, and
δ is calculated by

δ � ∑n

i�1(maxDi −minDi), (4)
where Di is the value of the ith feature of the sample; for our
sample data, it is the ith value of one dynamometer card. The

FIGURE 6 | Preprocessing method combined with the CNN architecture solution diagram.

TABLE 6 | Four kinds of network architecture parameters.

Output size ResNet50 ResNet50Ⅱ SE-ResNet50 SE-ResNet50Ⅱ

112 × 112 conv, 7 × 7, 64, stride 2

56 × 56 max pool 3 × 3, stride 2⎡⎢⎢⎢⎢⎢⎣ conv, 3 × 3, 64
conv3 × 3, 64
conv3 × 3, 256

⎤⎥⎥⎥⎥⎥⎦ × 3 ⎡⎢⎢⎢⎢⎢⎣ conv,3 × 3, 128
conv3 × 3, 128
conv3 × 3, 512

⎤⎥⎥⎥⎥⎥⎦ × 3 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv,3 × 3, 64
conv3 × 3, 64
conv3 × 3, 256
fc, [16, 256]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv, 3 × 3, 128
conv3 × 3, 128
conv3 × 3, 512
fc, [32, 512]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3

28 × 28 ⎡⎢⎢⎢⎢⎢⎣ conv, 3 × 3, 128
conv3 × 3, 128
conv3 × 3, 512

⎤⎥⎥⎥⎥⎥⎦ × 4 ⎡⎢⎢⎢⎢⎢⎣ conv,3 × 3, 256
conv3 × 3, 256
conv3 × 3, 1024

⎤⎥⎥⎥⎥⎥⎦ × 4 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv,3 × 3, 128
conv3 × 3, 128
conv3 × 3, 512
fc, [32, 512]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv, 3 × 3, 256
conv3 × 3, 256
conv3 × 3, 1024
fc, [64, 1024]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3

14 × 14 ⎡⎢⎢⎢⎢⎢⎣ conv, 3 × 3, 256
conv3 × 3, 256
conv3 × 3, 1024

⎤⎥⎥⎥⎥⎥⎦ × 6 ⎡⎢⎢⎢⎢⎢⎣ conv,3 × 3, 512
conv3 × 3, 512
conv3 × 3, 2048

⎤⎥⎥⎥⎥⎥⎦ × 6 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv,3 × 3, 256
conv3 × 3, 256
conv3 × 3, 256
fc, [64, 1024]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv, 3 × 3, 512
conv3 × 3, 512
conv3 × 3, 2048
fc, [128, 2048]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3

7 × 7 ⎡⎢⎢⎢⎢⎢⎣ conv, 3 × 3, 512
conv3 × 3, 512
conv3 × 3, 2048

⎤⎥⎥⎥⎥⎥⎦ × 3 ⎡⎢⎢⎢⎢⎢⎣ conv,3 × 3, 1024
conv3 × 3, 1024
conv3 × 3, 4096

⎤⎥⎥⎥⎥⎥⎦ × 3 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv,3 × 3, 512
conv3 × 3, 512
conv3 × 3, 2048
fc, [128, 2048]]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
conv, 3 × 3, 1024
conv3 × 3, 1024
conv3 × 3, 4096
fc, [256, 4096]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 3

1 × 1 Global average pool, 24-d fc, softmax
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similarity of load Rl
ij and displacement Rd

ij between two groups in
the dynamometer card sample data is calculated; if the similarity
is Rl

ij + Rd
ij > ε, the two data contain most of the same

information, then one is eliminated. Some data will be
dropped in the abovementioned three steps, the amount of
data dropped in each step is shown in Table 4, and most of
the data is dropped in step 3.

Step 4: drawing normalized dynamometer card: the
dynamometer card data after three steps can be drawn into an
image according to the data preprocessing method of
dynamometer card, and each image be drawn with size 224 ×
224 and line width 1 pixels. As we do not need the color
information, the image adopts the gray-scale image format.
Finally, a gray-scale pixel matrix of 224 × 224×(k + m +1) is
obtained as the input of the model.

Once the normalized dynamometer card for each data is
drawn, a team of experienced oilfield experts and field
engineers begin to analyze and mark the working conditions
corresponding to each data. According to the oil well production
and operation records and the shape of the 16 normalized
dynamometer cards, we divide the oil well working conditions
in this dataset into 24 types, containing 20 single working
conditions and 4 compound working conditions. The
classification of working conditions and the amount of each
type are shown in Table 5, a total of 19,510 samples.

From Table 5, we can find that the number of samples is
unevenly distributed. Some common working conditions have a
large number (accounting for the majority of the number of
samples, called head classes), and some uncommon working
conditions have a relatively small number of samples
(accounting for the majority of the class, called tail classes).
Such a sample dataset is called long-tail data. Models that
directly use long-tail data to train tend to overfit the head data,
thereby ignoring the tail class when predicting (Kang et al., 2019).
This work adopts the method proposed by Tang et al. (2020) to
optimize the long-tail effect, reduce the impact of long-tail data on

the model performance, and make the model perform better in the
prediction stage.

CNN Architecture Design
The classic deep CNNs include GoogLeNet (Szegedy et al.,
2015), ResNet (He et al., 2016), and SENet (Hu et al., 2019).
They have achieved “sota” results in the 1,000 image
classification competition (ILSVRC: ImageNet Large Scale
Visual Recognition Challenge). In deep learning, the optimal
network architecture often depends on your goals and the
characteristics of the dataset. For this reason, it is extremely
difficult to design a new CNN with the optimal architecture.
The differences between the working condition diagnosis task of
SRP well and ILSVRC image classification are as follows: (1) the
first only has 24 class, which is much less than the last; (2) the
traditional image is represented by three RGB pixel matrices, so
the model input has three channels, and the working condition
diagnosis model input is multiple normalized dynamometer
cards with (k + m+1) channels, which means that the model
needs to process more feature maps at the input. What we know
is that these classic models are a general paradigm and have
achieved the best universal results. Therefore, this research will
build a working condition diagnosis model based on these
classic CNN architectures. Considering that our input data
are multiple normalized indicator diagrams, what we need is
to use a deep CNN with multiple input channels to extract the
spatial and time-series features of the input data; the solution
diagram is as shown in Figure 6, and k0 ~ k10 are 11 pixel
matrices of 11 normalized dynamometer cards from the multi-
scale dynamometer card normalization process. Also, m
dynamometer cards at different times are added, and those
dynamometer cards are normalized by scale of the dynamometer
card data 31 days ago. In this way, m normalized dynamometer
cards have the relative change trend features with time.

The following criteria should be followed when selecting the
basic CNN backbone: (1) In the image recognition task, the

FIGURE 7 | Cure of test accuracy vs. iterations. FIGURE 8 | Curve of loss vs. epoch.
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residual architecture has become an important architecture
commonly used, and the deep network built on this has
excellent performance and fewer parameters (such as ResNet
and SENet). (2) The identification of the dynamometer card is
based on the features of the contour of the curve. Using the
method in this work to obtain multiple normalized dynamometer
card data has good separability, and a deepmulti-channel residual
network can be used to meet the needs of dynamometer card data
classification. Based on the abovementioned considerations, this
study constructed four CNN backbones as working condition
diagnosis models: ResNet50, SE-ResNet50, ResNet50Ⅱ, and
SE-ResNet50Ⅱ. The network architecture is shown in Table 6.
ResNet50 and SEnet50 are the original architectures.
ResNet50Ⅱ and SEnet50Ⅱ expand the number of channels in
the middle layer of the entire network, which is twice the
original number to cope with the increased input channels.
The shapes and operations with specific parameter settings of a
residual building block are listed inside the brackets, and the
number of stacked blocks in a stage is presented outside. The
inner brackets followed by fc indicate the output dimension of
the two fully connected layers in an SE module (for detailed
introduction of these modules, please refer to He K et al., 2016,
and Hu J et al., 2018).

Training and Testing
The deep learning framework pytorch is used to implement four
models. After each convolutional layer, batch normalization (BN,
Ioffe et al., 2015) and activation function ReLu (Glorot et al.,
2011) are used, and Eq. 5 is used to randomly initialize the
network weight parameters.

Wl � R(dl, dl−1) ×
��
2
dl

√
, (5)

Wl is theweight parameter of the lth layer,dl anddl−1 are the number
of neurons in the lth and previous layers, the R function generates a
random function with a normal distribution between [0, 1].

The network is trained with 70% data, and 30% is tested. k is
10, and m is 5. The network model training parameters are as
follows: Optimization method: Adam (betas = (0.9, 0.999), eps
= 1e-08, and weight decay = 8e-4), batch size: 64, learning rate:
0.001, and epoch: 20. Due to alleviating the long-tail effect of
the data, the method of Tang et al. (2020) is used to calculate
loss and train the model. The SE-ResNet50 model is taken as
an example. Figure 7 shows the accuracy vs. iterations, and
Figure 8 shows the loss vs. epoch. The results show that the
model is convergent for the dynamometer card dataset

FIGURE 9 | The change trend of model performance with k value.

TABLE 7 | Model performance under different multi-scale normalized k values.

k 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 15 (%) 20 (%) 30 (%)

Accuracy 91.9 92.5 93.9 95.1 95.4 95.6 95.6 95.7 95.8

Recall rate of complicated working
conditions

Sucker rod break 93.8 95.6 97.8 98.1 99.3 99.3 99.3 99.4 99.7
Pumping while flowing 91.2 93.2 94.5 95.0 96.1 96.4 96.5 96.6 96.8
Severe leakage of the standing valve 90.4 90.8 91.8 93.7 93.9 94.3 94.4 94.8 95.1
Pump bumping (downstroke) 86.1 88.2 91.1 92.4 93.6 94.1 94.7 95.1 95.2
Pump bumping (upstroke) 89.4 91.7 93.0 94.3 95.1 95.5 95.8 95.9 95.9
Rod vibration and insufficient liquid supply 84.8 85.5 85.6 85.6 85.8 86.0 86.1 86.1 86.2
Rod vibration and gas influence 80.7 81.8 82.0 82.1 82.6 82.9 83.0 83.2 83.4
Insufficient liquid supply and sand
production

89.5 90.4 90.6 91.2 91.3 91.7 91.8 91.9 92.0

Insufficient liquid supply and gas influence 92.7 93.0 93.8 93.9 94.3 94.9 95.1 95.2 95.4

Average recall 88.7 90.0 91.1 91.8 92.4 92.8 93.0 93.1 93.3
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TABLE 8 | Test results of different working conditions.

Working condition Without time-series features
(%)

With time-series features

Normal 99.60 99.6% (+0%)
Wax deposition 76.50 92.4% (+15.9%)
Rod vibration 84.30 87.5% (+3.2%)
Insufficient liquid supply 96.10 98.4% (+2.3%)
Rod vibration and insufficient liquid supply 84.20 86% (+1.8%)
Rod vibration and gas influence 81.30 82.9% (+1.6%)
Insufficient liquid supply and sand production 91.50 91.7% (+0.2%)
Seriously insufficient liquid supply 89.40 92.1% (+2.7%)
Gas influence 90.40 90.8% (+0.4%)
Sand production and gas influence 82.80 85.3% (+2.5%)
Standing valve leakage 95.10 95.2% (+0.1%)
Delayed closing of the traveling valve 83.40 85.6% (+2.2%)
Pump bumping (upstroke) 95.50 95.5% (+0%)
Gas locking 91.30 98.7% (+7.4%)
Traveling and standing valve leakage 95.40 95.5% (+0.1%)
Sucker rod break 99.30 99.3% (+0%)
Pump bumping (downstroke) 94.10 94.1% (+0%)
Traveling valve leakage 90.10 90.8% (+0.7%)
Sand production 96.70 96.7% (+0%)
Tube leakage 83.50 84.6% (+1.1%)
Severe leakage of the standing valve 91.50 94.3% (+2.8%)
Piston goes outside of the cylinder 98.10 98.1% (+0%)
Pumping while flowing 96.40 96.4% (+0%)
Plunger stuck 96.70 98.9% (+2.2%)
Insufficient liquid supply and gas influence 93.50 94.9% (+1.4%)

FIGURE 10 | Accuracy and recall of different models.
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obtained by using multi-scale normalization. The Adam
optimization method can obtain good results, and the
accuracy rate on the test set can reach 95.6%. The model
has a good generalization performance.

EXPERIMENT ANALYSIS

The Influence of k Value on Model
Performance
In the multi-scale normalization method, k determines the
number and value of the normalization scale, which affects the
performance of the diagnostic model. In order to optimize k,
different k values are selected for normalization, and the same
CNN backbone (SE-ResNet50) is used for training and testing. A
total of nine values have been tested. Table 7 give the specific
values of the experimental results, and Figure 9 shows its
changing trend.

From Figure 9 and Table 7, it can be found that various
indicators show an upward trend with the increase of k, and
the model performance is positively correlated with k. It shows
that the increase in the k value helps the data introduce more
feature information, enhance the separability of the data itself,
and greatly improve the accuracy of the model and the recall
rate of complicated working conditions. However, when
the value of k is greater than 10, increasing k has a small

improvement in model performance. Different datasets have
different thresholds, and k = 10 is the most suitable value while
taking into account the computational efficiency and
performance.

The Influence of Time-Series Features on
Model Performance
In this study, besides utilizing multi-scale normalization based on
cluster analysis, the time-series features are also utilized. The
influence of the time-series features is explored by setting up a
control experimental group. We drop the time-series features,
only use the k+1 feature map matrix as the input, and test its
performance on the SE-ResNet50, and the recall rate of all
working conditions with or without time-series features is
shown in Table 8.

From Table 8, we can find that the recall rate of most working
conditions has been improved with using time-series features,
especially some working conditions have a long development
term, such as wax deposition and gas locking. Because the
dynamometer cards of these working conditions gradually
change when they are finally formed, introducing time-series
features by using dynamometer card data of multiple time points
will help catch the change feature. In this way, the model will
enhance the ability to recognize working conditions which have
medium and long formation cycle.

TABLE 9 | Test results of different models.

Models SVM
(%)

AlexNet
(%)

ResNet50
(%)

ResNet50Ⅱ
(%)

SE-
ResNet50 (%)

SE-
ResNet50Ⅱ (%)

Accuracy 82.4 91.6 90.8 93.5 95.6 95.8

Recall rate of complicated
working conditions

Sucker rod break 91.0 94.0 94.3 98.2 99.3 99.8
Pumping while flowing 81.1 85.4 86.4 91.3 96.1 96.4
Severe leakage of the standing
valve

87.5 90.8 90.3 92.0 94.3 94.8

Pump bumping (downstroke) 76.6 85.8 86.1 90.9 94.1 94.4
Pump bumping (upstroke) 78.0 87.2 87.5 90.7 95.5 95.6
Rod vibration and insufficient
liquid supply

76.7 81.5 82.0 84.2 86.2 86.3

Rod vibration and gas influence 72.0 78.8 79.9 80.3 82.9 83.1
Insufficient liquid supply and sand
production

80.6 88.3 90.7 91.4 91.7 92.2

Insufficient liquid supply and gas
influence

79.2 84.6 84.9 88.1 94.9 95.6

Average recall 80.3 86.3 86.9 89.7 92.8 93.1

TABLE 10 | Comparison of the monthly average number of wells recalled under severe working conditions.

Working conditions Average number of wells recalled per month

Previous After application

Sucker rod break 1.6 12.5 (+681.2%)
Pump bumping (upstroke) 12.3 17 (+38.2%)
Pump bumping (downstroke) 14.4 19.5 (+35.4%)
Severe leakage of the standing valve 4.3 20 (+365.1%)
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Performance Comparison of Different
Models
We have implemented six models using the dataset and
dynamometer card preprocessing method in this article and
using the 10-fold cross-validation method to compare the
performance of different models, and k = 10 and m = 5 are
set. This work adopts a radial basis function as the kernel function
of SVM, and error penalty parameter C and kernel function
parameter g are searched by particle swarm optimization (PSO,
the best parameters C = 100, g = 0.01). The structure and hyper-
parameter of AlexNet are same as those in the work of Krizhevsky
A et al. (2017) except the input channel which is k+1 + m.
Figure 10 and Table 9 give the experimental results. In Figure 10,
every color bar represents a model’s recall rate of the listed
working conditions in the horizontal axis and accuracy, and
each color corresponds to one model. The experimental results
are analyzed as follows: (1) using our data preprocessing method
of dynamometer card greatly improves the overall accuracy and
the recall rate. For example, the AlexNet model has increased by
9.4 and 28.8% which means that our method enhances the
separability of the data itself, solves the inseparable defect of
the data caused by the traditional normalization method, and is
applicable to all models; (2) among the six models, the
convolutional neural network is better than SVM, which
means that, in the identification and classification of the
dynamometer card, the automatic extraction of the
dynamometer card graphic features by the convolutional
neural network is better than the manually designed feature
extraction method; and (3) the performance of SE-ResNet with
both the residual module and the SE module is better than that
of the ResNet with only the residual module. We think that the
SE module improves the model’s sensitivity to channel features
and can learn the relationship between different channels.

Field Application Effect Evaluation
Starting from September 2020, the working condition diagnosis
model has been applied in the field, and the deployment model is
SE-ResNet50Ⅱ. From September 2020 to October 2020, there
have been a total of 128 recalls of sucker rod break, severe leakage
of the standing valve, pump bumping (upstroke), and pump
bumping (downstroke). After the application of this model, the
monthly average number of recalls of severe working conditions
well has been greatly improved, as shown in Table 10.

The field application shows that the diagnosis model can
accurately diagnose the working condition of each SRP well
and timely help on-site personnel locate the oil well that has
failed working condition, take correct countermeasures, and
improve production efficiency. Since the model was launched,
it has effectively improved the diagnosis accuracy and the recall
rate of complicated working conditions. The overall accuracy rate
can reach more than 95%, and the average recall rate for
complicated working conditions is more than 90%, which
meets the actual demand for intelligent diagnosis of working
conditions on the oil field.

CONCLUSION

1) The defects of the traditional dynamometer card normalization
method are demonstrated, and the experimental results show
that the working condition diagnosis model with it will get poor
results, not meeting actual needs.

2) We innovatively propose a new data preprocessing method of
dynamometer card and give its workflow, using multiple
normalized dynamometer cards of the original dynamometer
card data as the model input can introduce more feature
information and efficiently enhance the class separability of
the data. It can improve the performance of all machine
learning or deep learning models.

3) In 24 working condition diagnosis tasks, convolutional neural
network is better than SVM. The network with extended
middle layer width (ResNet50Ⅱ and SE-ResNet50Ⅱ) is
slightly better than the original network structure
(ResNet50 and SE-ResNet50). The SE-ResNet50 performs
better, and we think that is because SE-ResNet50 learns the
connection between different input channels.

k and m have different optimal values on different datasets. It
is difficult to explore each different combination of k and m. The
values given in this article are determined based on experience
and experimental analysis and are suitable for most cases, and the
influence of differentm on the performance of the model is worth
exploring. In the process of digital and intelligent development of
the petroleum industry, using deep learning or data mining to
analyze the internal relationship between data, we should first pay
attention to the characteristics and quality of the dataset and then
model structure and other optimization methods; this is what we
want people to pay attention to through this article.
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