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Regional landslide susceptibility mapping has an important role in guiding linear
engineering optimization. Based on the geographic information system (GIS) platform
and R language MaxEnt software, in this research, the China National Highway 109 New
Line Expressway (Beijing Sixth Ring Road-City Boundary Section) was taken as an
example. Using the maximum entropy (MaxEnt) model, with ten evaluation indicators,
including the elevation, slope, aspect, relief, topographic wetness index (TWI), roughness,
lithology, distance to road, normalized difference vegetation index (NDVI), and land use
type, a landslide susceptibility mapping was completed to support linear engineering
optimization. The ROC value of the prediction model was 82.1%, and the %LRclass was
2.25, which strongly demonstrated the reliability of the landslide susceptibility mapping
results. Then, the percentages of two roads with different landslide probability levels were
calculated. It was found that only 10% of the new line was in a very high class, which was
much lower than 26% of the existing line. This study proved that the regional landslide
susceptibility mapping can be used to support optimization of the construction plan of the
new line and provided a broader basis for decision-making for similar linear projects in
future engineering projections.

Keywords: landslide susceptibility mapping, MaxEnt (maximum entropy), landslide, highway, maximum entropy
model

INTRODUCTION

Landslides, one of the major types of geological hazards, are widely distributed all over the world.
Landslides have caused severe damage to infrastructures and several casualties (Fan et al., 2018; Lin
and Wang, 2018; Qu et al., 2020). It has been found that as a useful tool to support governments in
making smart decisions, landslide susceptibility mapping has shown great effects for many aspects
(He et al., 2020; Maharjan et al., 2021; Su et al., 2021; Zhao et al., 2021).

Currently, landslide susceptibility mapping is applied primarily in risk assessment, monitoring
and early warning, urban planning, and land use (Reichenbach et al., 2018; Janalipour et al., 2021).
For example, Remondo et al. (2005) took landslide susceptibility mapping as an indispensable layer
to develop a map of the hazard potential of landslides and then combined this layer with the value of
goals influenced by landslides to determine the landslide risk mapping to aid city risk management.
Additionally, Huang et al. (2020) integrated the monitoring data from a synthetic aperture radar
(SAR) satellite and landslide susceptibility mapping and produced a dynamic regional landslide
monitoring model with consideration of the slope resistance and landslide activity. At the same time,
many researchers (Intrieri et al., 2012; Keefer et al., 1987; Liu, 2004; Osanai et al., 2010; Baum and
Godt 2010; He et al., 2020) coincidentally tried to find a novel model to combine the rainfall data
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from satellites or rainfall recorders with landslide susceptibility
mapping to produce a regional real-time landslide warning
system. Furthermore, to guide urban planning work and land
use, Yao et al. (2018) mixed landslide susceptibility mapping into
the definition of urban affordability and then clearly showed the
developed and undeveloped areas around the county of Suide,
Shaanxi Province in China. Less work has been attempted for
linear engineering, which is commonly called lifeline engineering.

Compared with other engineering projects, linear engineering
projects such as gas lines, highways, and railways have a unique
feature: one point of damage will cause failure for the entire
system (Das et al., 2011). Highway work is always accompanied
by large slope cutting engineering, which results in the occurrence
of more landslides (Laimer 2017; Zhang and Zhang, 2014; Li et al.,
2020). More importantly, Hakan (2022) monitored the evolution
of a road network during an 11-year time-space in Arhavi and
found that road extension works were associated with the large
majority (90.1%) of mass movements in the area, which was
similar to the possible effect of a theoretical earthquake, with a
magnitude greater than Mw = 6.0. Therefore, road engineering
has to face more threats from landslides, and route optimization
must always be performed after a period of operation. Therefore,
it is necessary to find a better method to easily support regional
linear engineering optimization using proven useful tools such as
landslide susceptibility mapping.

Considering the aforementioned aspects, in this research, the
National Highway 109 New Line Expressway (Beijing Sixth Ring
Road-City Boundary Section) project in China was taken as an
example. The maximum entropy model of machine learning was
used to evaluate the landslide susceptibility mapping function to
perform a reasonable quantitative analysis of the existing
highways and proposed new highways to support linear
engineering optimization. First, all data, including digital
elevation models (DEMs), landslide points, and other original
data, were used as input into the open-source MaxEnt software
program (https://biodiversityinformatics.amnh.org/open_
source/maxent/) after preprocessing to export the landslide

susceptibility value of each pixel. Second, the landslide
susceptibility value in the ASCII format was opened on the
QGIS platform and divided into five grades using the natural
breakpoint method after the predictive accuracy was checked
using the value of the area under the curve of the receiver
operating curve (AUC–ROC) and %LRclass. Third, the lengths
of the new and existing roads in each susceptible class were
calculated, and the rationality of the new route was analyzed.

Study Area
The China National Highway 109 New Line Expressway (Beijing
Sixth Ring Road-City Boundary Section) (Figure 1), with a total
length of 69.2 km, starts from the Beijing Sixth Ring Road to the
east and ends at the Zhangjiajie city of Hebei Province. It serves
the two cities and plays a vital role in communication and social
development. To better include and assess the existing landslides
and potentially related geohazard chain, the watersheds of the
mountains on both sides of the line are taken as the research
boundary. Compared with the equidistant expansion of 200 m
along both sides in the traditional manner, it was helpful to take
high-level disasters into account (Fan et al., 2019a).

The total study area of 628 km2 was a typical mountainous
landform with sandstone and basalt as the main strata, with only
a few small inactive faults. According to remote sensing
interpretation and the on-site investigation, 126 landslide
disasters were found. All landslides were randomly distributed
on two sides of the highway.

METHODOLOGY

Model Choice
Different assessment models have significant impact on the
results of landslide susceptibility mapping. At present, the
commonly used landslide susceptibility evaluation models can
be divided into knowledge-driven, data-driven, and physical
model-driven models (Reichenbach et al., 2018). The

FIGURE 1 | Location of the study area and distribution of the landslides.
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knowledge-driven type of model has greater subjectivity, while
the physical model-driven type requires a large number of
accurate mechanical parameters, which limits the application
of these two methods. Practice has proven that data-driven
models have higher accuracy than the other two types
(Reichenbach et al., 2018; Chen and Li, 2020). With the
development of artificial intelligence, the machine learning
model has become the most popular model in data-driven
models, and a large amount of work has proven that the
evaluation result of the machine learning model is better than
that of the traditional statistical model (Reichenbach et al., 2018;
Chen et al., 2021; Zhao et al., 2021). The common machine
learning models include the random forest model, decision tree
model, support vector machine, Bayesian model, and god-level
network model. Each model has its advantages and disadvantages
(Table 1).

Recently, scientists have also begun to apply the maximum
entropy model, which was originally used and is still popular in
the field of species habitat suitability assessment (Merow et al.,
2013), in the evaluation of landslide susceptibility. The evaluation
results have been effective and better than models as support
vector machines and artificial neural networks (Chen et al., 2017;
Teimouri and Nalivan, 2020). At the same time, according to the
basic theory of landslide assessment, future landslides will occur
in similar areas where landslides have occurred in the past, which
is consistent with the basic theory of species habitat suitability
assessment (Reichenbach et al., 2018). Therefore, the choice of a
maximum entropy model could achieve a better result to support
linear engineering optimization and further verify the suitability
of this interdisciplinary evaluation model for landslide
assessment to enrich the optional model and guide actual
production.

Theory of the Maximum Entropy Model
MaxEnt is amachine learningmodel that quantitatively calculates
the probability of landslide occurrence in the evaluation area
using the Bayesian rule based on the geological environment
indicators of the training landslide (Rahmati et al., 2016). The
specific calculation principle is that the study area is divided into a
finite pixel set X, with the assumption that x represents each
computing unit. Then, x∈X in the study area and π(x) represents
the probability distribution value of landslide occurrence in each

computing unit 0<P(x) < 1. The sum of the probability values of
all computing units is 1. The landslide value of the calculation
grid is taken as the response variable y, if the calculation unit has a
landslide, y = 1, otherwise it is 0. Therefore, the probability of the
landslide conditional distribution P(y|x) can be expressed as
follows:

P(y � 1|x) � P(x∣∣∣∣y � 1)P(y � 1)
P(x) , (1)

where P(y = 1|x) is the probability of a landslide at a specific
point x; P(y|x = 1) is the probability of a landslide at a specific
point x under the landslide distribution conditions, which is also
π(x); P(y = 1) is the overall incidence of landslides; and P(x) is the
probability of landslide occurrence at any point x.

Since P(x) indicates that any point x of all calculation units X
in the study area is equal to 1/|x|, the aforementioned formula can
be transformed into the following equation:

P(y � 1|x) � π(x)P(y � 1)|X|. (2)
Considering the probabilities of landslide occurrence and

nonoccurrence are equal, namely [P(y = 0) = P(y = 1) = 0.5],
the equation can be further simplified as follows:

P(y � 1|x) � P(x∣∣∣∣y � 1)
P(x∣∣∣∣y � 1) + P(x∣∣∣∣y � 0). (3)

The application of the MaxEnt model directly depends on the
conditional probability P(y = 1|x). The larger the conditional
probability is, the greater the possibility of landslide occurrence
will be. The event occurrence data π(x) can be used for modeling,
instead of directly estimating P(y = 1|x). The value of π(x)
estimated with the principle of maximum entropy is equal to
the Gibbs probability distribution represented by the exponent. If
n features (fi, i = 1, 2,. . .,n) are considered, the Gibbs probability
distribution can be defined as follows:

qλ(X) �
exp(∑n

i�1
λifi(x))
Zλ

. (4)

In the formula, Zλ is a normalization constant to ensure that
the sum of qλ(x) is 1. In the estimation of qλ(x), the model uses the

TABLE 1 | Advantages and disadvantages of common machine learning modes in landslide susceptibility assessment.

Model Difficulty Advantages Disadvantages

Decision trees Easy–middle Simple understanding and operation, visual decision tree, fewer data
required

Unstable, greatly affected by data classification

Artificial neural
networks

Easy–middle Fit for multidimensional problems need fewer input data, the
optimization model can be fitted in real time

Black box, the model parameters need to be manually selected,
and the dimensions need to be pre-reduced

Maximum entropy
model

Easy Open-source independent software, easy to operate, just need point
samples, the influence between each factor, and the target can be
seen

The operation process is prone to fall for inconsistencies in data
dimensions

Support vector
machines

Easy–middle Parameter dimension can be greater than the number of samples, a
multi-class kernel function can be chosen

Easy to overfit, cannot provide probability estimates

Bayesian model Middle Fewer training samples are required, speed is fast, performance is
good for the reduction of the dimension problem

Requires a sample independence test in advance, low precision
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regularization I2 to find the distribution closest to the constraints
to avoid overfitting. Therefore, the MaxEnt model maximizes the
processing of log-likelihood. If the event occurs m times within

the study area, the difference between the log-likelihood and the
regularization should be maximized, which is expressed as
follows:

FIGURE 2 | Landslide condition factors. (A)Lithology, (B)NDVI, (C)distance to road, (D) roughness, (E)TWI, (F) landuse type, (G) relief, (H) slope, (I) aspect and (J) elevation.
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1
m
∑n
i�1

In[qλ(xi)] −∑n
j�1
βj
∣∣∣∣λj∣∣∣∣, (5)

where βj is the regularization parameter of the jth feature fj. The
maximum entropy model finds that the Gibbs distribution not
only conforms to the existing data but also has good
generalization significance.

Data Processing and Parameter Settings
The landslide susceptibility mapping based on the MaxEnt model
mainly included the following steps.

1 Building an assessment index system: collecting landslide
database elements, such as geological maps, digital elevation
models, and other data, to determine the evaluation index
system;

2 Data preprocessing in the QGIS platform: making the
coordinate system of all evaluation indicators uniform,
determining the type and size of the evaluation unit, and
outputting it in an ASCII format;

3 Importing the MaxEnt software for calculation: importing the
indicators obtained in the previous step and setting the training
and verification ratio, and training times;

4 Landslide susceptibility classification and analysis: the
calculation results were imported into the GIS platform, and
the natural breakpoint method was used for susceptibility
classification to achieve the landslide susceptibility mapping
in the study area. The specific process is shown in Figure 2.

The data source of used indexes in this study is given in
Table 2. All the layers are resampled to 30 m resolution on the
pixel. All the indicators can be seen in Figure 2. The quantitative
evaluation of the landslide susceptibility could be achieved by
setting the distribution ratio of the training data and the
verification data, the number of training times, and the output
type recommended by Merow et al. (2013). The main parameters
that needed to be set were the data split ratio and the training
times. The rest of the parameters were related options such as
whether to produce the ROC curve and the output type.
According to the previous studies (Merow et al., 2013; Chen
et al., 2017; Reichenbach et al., 2018), 80% of the landslide data of
the 126 landslides, about 111 landslides, were used for the
training of the model, and the remaining 20% landslide were
used for the verification model. The number of training times for
the model was 100. The calculation output type was a logical
calculation, and the output format was the ASCII type. The line
for jackknife analysis options was selected (Figure 3).

RESULTS

Accuracy of Model Training and Testing
Using the receiver operating characteristic curve and the area
under the curve, themodel accuracy and the partition results were
tested. As shown in Figure 4, the training model value reached
80.2%, and the verification accuracy reached 82.1%. According to
the evaluation standard of the ROC–AUC value (Reichenbach
et al., 2018), the value of the ROC–AUC was good when the value
was calculated between 0.8 and 0.9. Therefore, both model
training and verification achieved good prediction accuracy,
and the results had a certain credibility.

Landslide Susceptibility Mapping
The calculated value of the MaxEnt model was in the range
from 0 to 1. The larger the value was, the greater chance there
was that the landslide was prone to happen. The results were
divided into five categories using the natural breakpoints,
namely, the very low-susceptibility area (0–0.144), low-
susceptibility area (0.114–0.296), medium-susceptibility area

TABLE 2 | Data source.

Type Source Resolution/scale Index

DEM http://www.gscloud.cn/ 30 m Elevation, aspect, slope, TWI, roughness, relief
Geological map http://geocloud.cgs.gov.cn/#/portal/home 1:500,000 Lithology
Remote sensing images https://scihub.copernicus.eu/dhus/#/home 10 m NDVI, distance to road
Land use type http://www.resdc.cn/Default.aspx 30 m Land use type

FIGURE 3 | Flowchart of landslide susceptibility mapping using the
MaxEnt model.
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(0.296–0.436), high-susceptibility area (0.436–0.584), and very
high-susceptibility area (0.584–0.993). The spatial distribution
of the landslide susceptibility grades is shown in Figure 5. It
can be seen that very high-susceptibility areas of landslides
were mainly distributed on two sides of the middle section of
the newly built line, and the ends of the east and west sides near
the cities experienced heavy human activity. The very low- and
low-susceptibility areas were distributed in places without
human influence or with few human influences.

With the help of grid statistical analysis tools on the GIS
platform, the areas of different levels can be quantified. As shown
in Figure 6, very low-susceptibility landslide-prone areas
accounted for 2% of the total, the low-susceptibility landslide-
prone areas accounted for 10%, the medium-susceptibility
landslide-prone areas accounted for 16%, the high-

susceptibility landslide-prone areas accounted for 32%, and the
area of very high-susceptibility level accounted for 40%. In the
results of the landslide susceptibility mapping, 90 (72%) of the
126 landslides were located in two categories: high-susceptibility
area and very high-susceptibility area.

At the same time, to better evaluate the usefulness of the
results, we used the %LRclass index to evaluate the prediction
performance. The criterion of the %LRclass index was defined
according to the area ratio of each grade predicted by the model
and the proportion of predicted landslide points. The greater the
value of %LRclass was, the better the prediction result of the model
would be. This index %LRclass = S/A, where S is the proportion of
landslide sites in each stability grade and A is the area of each
stability grade predicted by the model. After calculating the index
to be 2.25, it was determined that the evaluation results had an
excellent performance (Chen et al., 2017; Viet et al., 2018).
Therefore, the assessment results were comprehensively
evaluated in terms of the performance of the model from
different aspects. All the results showed good directness,
and they could be used to support linear engineering
optimization.

FIGURE 4 | Analysis of the ROC curves of the train and test data.

FIGURE 5 | Landslide susceptibility map.

FIGURE 6 | Percentages of landslides and road lengths for each
landslide susceptibility level.
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Quantitative Analysis of Susceptibility of
New and Old Highways
Using the GIS extraction tool, the pixels of the different susceptibility
levels of the new and old highways were passed through. It was
found that for the new highway, asmarked by a continuous dark line
in Figure 7, only 10% was in the very high-susceptibility area, and
the other four levels were distributed evenly, at about 20%. However,
for the old highway, as marked by a dash dark line in Figure 7, 26%
of the highway was in a very high level, 32% was in the high-
susceptibility areas, 25% was in the medium-susceptibility areas, and
the low- and very low-susceptibility areas together only made up
17%. Therefore, the newly built road faced fewer threats than the old
road, especially in very high- and high-susceptibility regions, which
had reduced threats of about 16% and 13%, separately, which also
supported the necessity of building the proposed road and the
rationality of the new route selection work.

DISCUSSION

Evaluation of the Contribution of Different
Factors to the Model
Selecting the jackknife option in the MaxEnt model could reveal
the impact of different evaluation indicators on the susceptibility
evaluation results (Merow et al., 2013; Chen et al., 2017). After the
calculation of the changing relationship between one index and
the corresponding ROC value, the contribution rates of all the
assessed indexes could be exported. As shown in Figure 6, all the
indexes for the evaluation results were greater than zero,
indicating that all of the indicators had certain roles for the
model. Additionally, it could be seen that the six indexes, namely,
the slope, aspect, distance from the road, NDVI, elevation, surface
roughness, and land use type, had nearly a 90% impact on the
landslide evaluation results in total, while the other indexes
contributed less to the landslide rate.

The results of this analysis were consistent with field surveys
and related experiences (Su et al., 2021). The slope aspect affected
the weathering of the rock and soil, which in turn affected the

internal mass movement after the infiltration of rainwater. The
distance from the road reflected the negative effect of human
activities on the local environment. The NDVI represented the
ecological restoration after the occurrence of landslides
(Tehraniand Janalipour, 2020). Sparser than the stable slope
area, the corresponding NDVI value was also smaller, and it
could thus be used to distinguish the landslide area and the non-
landslide area (Tehrani et al., 2021). The elevation affected the in
situ stress distribution, weathering, and other factors of the slope.
The surface roughness indicated the difference between the
landslide occurrence area and the non-landslide area after
mass transport.

Earthquake and Road Construction
The facts determined by Hakan (2022) are interesting and
remarkable. Compared with the study area in Arhavi and this
research, it was clearly shown that the roads passed through
different landforms and construction technology (Tanyas et al.,
2020). The former road was mainly located on the mountainside,
which caused two more types of damage to the upper and lower
slopes, compared to the majority on the slope toe in the road for
this research. At the same time, the road in this research was
planned to have a low retaining wall at the foot of the slope
influenced by cutting regions and vegetation recovery actions,
rather than simply leaving the soil and rock exposed.

It should be noted that while humans have caused many
deadly landslides for engineering projections, there have also
been numerous conveniences for people’s lives. However,
compared with earthquake-induced landslides that have almost
occurred during a short period, road-related landslides need a
longer time to evolve to an unstable status. Hence, this provides
more time and opportunities to prevent unfortunate events.
Previously determined facts (Fan et al., 2019b; 2019c) have
strongly proven that proper low-cost monitoring equipment
can achieve successful landslide warnings before landslide
failure to prevent property damage.

At the same time, as shown in Figure 7, the new road shows a
better situation than the existing road from the aspect of length
percentages in different susceptibility levels, but it should be
noted that the situation may change from a low threat to a middle
or high threat with new road and frequency of human activities
involved.

CONCLUSION

Taking the China National Highway 109 New Line Expressway
(Beijing Sixth Ring Road-City Boundary Section) project as an
example, in this research, the watersheds on both sides of the
non-traditional line were used as the evaluation boundary; the
landslide susceptibility evaluation index of 10 evaluation
indicators for 126 landslides was constructed. The system
adopted the machine learning MaxEnt model to evaluate the
susceptibility mapping of landslide geological hazards along the
way. To support linear engineering optimization, the landslide
susceptibility zoning of the old and the new roads was analyzed,

FIGURE 7 | Contribution of different indexes to landslide susceptibility
results.
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which provided a theoretical basis for route optimization and
route selection. The main conclusions were as follows:

1) The MaxEnt models performed well for landslide
susceptibility mapping. The training and verification
accuracies of the landslide susceptibility mapping based on
the GIS and MaxEnt models reached 80.2% and 82.1%,
respectively. At the same time, the %LRclass index was used
to verify the results, and the value was 2.25, which also proved
the validity of the result. This further revealed that theMaxEnt
model used for the spatial assessment of vegetation and
animal analysis could also be applied to landslide
susceptibility mapping across disciplines.

2) The use of the jackknife tool could reveal the different index
contributions to landslide susceptibility mapping. In this
research, the landslides were mainly affected by the slope,
aspect, distance from road, NDVI, elevation, roughness, and
land use type, and their cumulative contribution rate
reached 90%.

3) Landslide susceptibility mapping could be used to support
linear engineering optimization. After the completion of the
susceptibility mapping, the relationships between the newly
planned routes and the existing roads passing through the
different landslide susceptibility levels were innovatively

calculated. Overall, 24% of the newly built roads were
located in the high-susceptibility area, and 10% were
located in the very high-susceptibility area. Furthermore,
26% of the existing roads were in the very high-
susceptibility area, and 32% were in the high-
susceptibility area.
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