
Deformation Feature Extraction for
GNSS Landslide Monitoring Series
Based on Robust Adaptive
Sliding-Window Algorithm
Guanwen Huang, Duo Wang*, Yuan Du, Qin Zhang, Zhengwei Bai and Chun Wang

College of Geology Engineering and Geomatics, Chang’an University, Xi’an, China

Global navigation satellite system technology has beenwidely used for high-precision, real-
time monitoring of landslides. To improve forecasts and early warnings, the true
deformation features must be extracted from the global navigation satellite system
monitoring series. However, as the deformation rate changes at different creep stages,
the relationship between noise and true deformation may also change, making it difficult to
accurately describe the deformation. In this study, an adaptive sliding window algorithm is
proposed to account for this relationship change. First, the window was defined with an
equal window width and step length, which improved the efficiency of feature extraction.
Second, the median and normalized interquartile ranges were used to estimate the
window samples and obtain a continuous and reliable series. Finally, the window
sample breakdown point was defined to adjust the window parameter. These steps
were repeated for the adjusted window to achieve adaptive processing of the monitoring
series. The results based on both simulated and real landslide monitoring series
demonstrated that the proposed method can provide adaptive, robust, and reliable
deformation information for landslide warnings. The adaptive sliding window method
also successfully assisted in the early warning of a loess landslide in Heifangtai, Gansu
province, northwest of the Chinese Loess Plateau, indicating its practical application
potential.

Keywords: adaptive sliding window, breakdown point, landslide monitoring, deformation feature extraction, time
series, GNSS

1 INTRODUCTION

Many countries worldwide suffer from recurring geological disasters, particularly landslides, and the
loss of life and property caused by landslides has increased each year (Froude and Petley, 2018).
Because of the complexity of landslides, predicting the failure time of a landslide remains challenging.
Previous studies showed that most landslides conform to a three-stage creep curve from the initial to
final failures (Tavenas and Leroueil, 1981; Dok et al., 2011). According to the creep curve
interpretation, the first stage is primary creep, in which the strain rate decreases logarithmically,
followed by steady-state creep with a constant strain rate and accelerating creep with an increasing
creep rate that leads to rupture (Figure 1). For a three-stage creep curve, time-to-failure predictions
can be made using existing methods (Xu et al., 2011; Intrieri et al., 2019). The global navigation
satellite system (GNSS), which captures global, continuous, and high-precision geospatial data, has
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been widely used for monitoring landslides and obtaining creep
curves (Benoit et al., 2014; Du et al., 2020). However, GNSS
positioning technology is often affected by the external
environment, multipath effect, atmospheric delay, receiver
noise, and other hardware influences, causing the monitoring
series to create noise (Amiri-Simkooei, 2008; Li et al., 2016; Han
et al., 2018).

Various methods have been applied to preprocess landslide
monitoring series to reduce the effect of noise and improve
prediction accuracy. Kalman filtering is a method used to
describe the dynamic deformation process of a monitoring
body by calculating the optimal value of the state vector.
However, the GNSS monitoring series includes colored
noise, which cannot satisfy the white-noise assumption of
the Kalman filter (Ince and Sahin, 2000; Li and Kuhlmann,
2013; Zhao et al., 2016). The wavelet analysis method
decomposes the different frequency components of the
signal and extracts useful deformation information from the
series. However, wavelet analysis is used for data series of equal
intervals and cannot be directly used for data of non-equal
intervals. Additionally, the preprocessing methods depend on
the experience of those implementing the method (Yang et al.,
2012). The sliding window method applies a finite time
window to select the dataset for preprocessing. The window
is then incrementally moved forward in time, resulting in
estimates for each window (Song and Lee, 2015; Banerjee
and Bansal, 2017). Based on sliding-window methods,
various creep curve features, such as deformation speed,
tangential angle, and acceleration, are widely used for
deformation feature extraction in GNSS landslide
monitoring series because of the need for a certain time
interval.

The conventional sliding-window method with fixed
coefficients is typically applied to extract the signal if the
mean and covariance of the dataset do not change as the
window moves. Inevitably, as the landslide evolves, the true
deformation increases and gradually occupies the main
component of the monitoring results, and the mean and
covariance of the dataset constantly change. Thus, window
estimation can lead to errors and reduce the real-time
performance of monitoring. Therefore, as the true deformation

changes, preprocessing strategies should be considered. Ren et al.
evaluated the moving average method only for a slow
deformation monitoring sequence (Ren and Xu, 2018). Zhu
et al. proposed a self-adaptive data-acquisition method to
dynamically adjust the output rate of the sensor to reduce the
power consumption of the sensor node (Zhu et al., 2017).
However, the crucial threshold delta of the method must be
set manually and the processing window kept fixed. In this study,
we present a new technology for adaptive adjustment of sliding-
window coefficients based on the window sample breakdown
point. This method may capture the entire displacement feature
of a landslide failure in a timely manner and assist in further early
warning.

We first describe the sliding-window technology; the concept
of the sample breakdown point is then introduced to derive the
technical process of the method. Next, the simulation experiment
results are presented to demonstrate the performance of the
sliding-window approach for different outliers and
deformation signals. The efficiency of this approach was
validated using a GNSS monitoring series, collected during
displacement monitoring of the Heifangtai landslide.

2 MATERIALS AND METHODS

2.1 Fundamental Sliding-Window
Parameters
The sliding window uses a time window to select the data for
processing and steps forward in regular increments to obtain a
series of estimates (Foster et al., 2005). Three parameters are
required to define a window: 1) position of the window, 2) width
of the window, and 3) the step by which the window moves
forward. For a GNSS monitoring series with duration of T, the
window position is defined as t, which is the central time of the
window. In this case, the processing result is closest to the real
deformation in that window.

The “width” of the window can be specified by the time width
(W), which determines the efficiency of sample estimation in the
window. A wider selected window contains more observations
and gives a more reliable estimation than a narrower window. In
contrast, because the position is the center of the window,

FIGURE 1 | Conventional three-state interpretation of landslide creep behavior, Shaded areas of different colors represent different stages.
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increasing the width causes a lag (τt) in the window position
(window position later than real data time):

τt � W
2
, (1)

The “step” by which the window moves forward can be
specified by the time step (S), which determines when the
window is obtained. It is possible to use either of the options:
step-by-step or equal to the width. In the former option, the
window is moved forward in steps, generating a full solution for
each step. Since each epoch participates in the estimation of
multiple windows, the option may lead to correlations between
the different estimates (Figure 2A). In the equal option, the
windowmoves forward in multiple steps and the estimated values
are independent of each other (Figure 2B). The final number of
estimates (N) was determined using Eq. 2:

N � f loor(T −W
S

) + 1 , (2)

where “floor” indicates that the resultant is rounded to the nearest
integer. According to the equation, an increase in the step length

reduces the final number of estimates, which can be used to
extract more useful features from the original series. In this study,
we focused on the second option, which avoids correlation and
provides a regularly spaced feature series for pre-warning analysis
of landslides.

2.2 Window Sample Estimation
The window sample was estimated after defining the window.
The sliding window method typically uses the sample mean and
standard deviation as estimators. The method can obtain an
optimal estimation result only when the window sample shows
a normal distribution. For real monitoring data, a window sample
affected by outliers and deformation may not meet this condition.
Using the median and normalized interquartile range (NIQR) is
another robust method for estimating the average and standard
deviation of the window sample. This method is suitable for
estimating symmetric and skewed distributions (Buch, 2014). If X
is a sample with values x1, x2, . . . , xn, then the median is
calculated as shown in Eq. 3.

med(X) � { x(i+1)(n � 2i + 1)(x(i) + x(i+1))/2(n � 2i) (3)
,

FIGURE 2 | Schematic diagram of a sliding-window process. The position of the window is the center time. (A) Step option 1: step by step; (B) Step option 2: equal
with the width.
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where i is the sorted value of the dataset. NIQR can be defined as
shown in Eq. 4 (Fried and Gather, 2007).

NIQR � 0.7413 × (Q3 − Q1) (4)
where Q1 (first quartile) represents the value at 25% of the
window and Q3 (third quartile) is at 75% of the window (Ismail
et al., 2013). The normalization factor “0.7413” is based on the
fact that, for a normal distribution, the interquartile range is
approximately 1.349-fold the standard deviation.

2.3 Sample Breakdown Point
As the deformation rate increased, the proportion of outliers also
increased, and the data obeyed a severely skewed distribution,
whereas the NIQR method could not overcome the influence of
outliers. To measure the robustness of an estimator in the
presence of outliers in the data (Schmitt et al., 2014), Donoho
and Huber introduced a finite sample breakdown point, which is
the largest fraction of contaminated data that the method can
withstand before providing estimates that are arbitrarily far off
(Donoho and Huber, 1983).

If X � (x1, . . . , xn) is a sample of size n, the sample can be
corrupted by replacing an arbitrary subset of the sample of sizem
with arbitrary values y1, . . . , ym. The fraction of “bad” values in
the corrupted samples X′ is ε � m/n. This method of sample
corruption is known as ε- replacement (Peter and Elvezio, 2009).

Now, let T � (Tn)n�1,2,... be an estimator with values in
Euclidean space, and let T(X) be the value at sample X. The
replacement breakdown point of T atX is εp, which is the smallest
value of ε for which the estimator, when applied to the ε-
corrupted sample X′, can take values arbitrarily far from
T(X). We first define the maximum bias that can be caused
by ε- corruption as

b(ε;X,T) � sup
∣∣∣∣T(X′) − T(X)∣∣∣∣ (5)

where “sup”means supremum, which is taken over the set of all ε-
corrupted samples X′. We then define the breakdown point as Eq.
6, where “inf” means infimum.

εp(X, T) � inf {ε|b(ε;X,T) � ∞ }. (6)
For example, consider the sample mean estimator:

AV(X) � 1
n
∑n
i�1
xn (7)

When xi is replaced with a number close to infinity, the
AV(X) value becomes meaningless for the mean estimator.
Therefore, this estimate has a breakdown point εp � 1

n.
Because the window sample may reach the breakdown point,

we defined a sample breakdown point for the window. In Eq. 5,
this method uses all-window sample NIQR estimators as T(X′)
to calculate bias rather than using arbitrary samples. T(X) is the
estimator of the window sample without outliers.
Correspondingly, the window sample breakdown point is
defined as

εp(X, T) � inf {ε|b(ε;X,T)≥ h0} (8)

For window sample estimation, h0 is three- or four-fold of the
standard deviation of T(X).

2.4 Adaptive Sliding-Window Method
Process
The window that reaches the breakdown point can be determined
based on the definition of the sample breakdown point. In the
window sample estimation problem, outliers are arranged in an
increasing pattern over time, which may be much more effective
at disturbing an estimator than outliers randomly placed among
the data. By arranging outliers based on time, the proportion of
outliers can be reduced by adjusting the window coefficients to
avoid disturbing the estimators and ensure that the covariance of
the dataset does not change as the window moves.

Thus, we can obtain the processing flow of the adaptive sliding
window method, which includes the following steps.

• Step 1: The monitoring series was segmented with equal
window widths and step lengths to divide the series into
mutually independent windows.

• Step 2: For each window, the median and NIQR were
estimated as the average and standard deviation of the
window sample, respectively.

• Step 3: According to the estimation results, several windows
with no obvious outliers were selected to calculate the
average value as T(X) and three-fold the standard
deviation as h0.

• Step 4: All window sample NIQR estimates were used as
T(X′) to calculate bias, where the first window was greater
than h0 the breakdown-point window.

• Step 5: The monitoring series after the breakdown point
window was segmented with a shorter window width and
step length.

• Step 6: Steps two to five were repeated for adaptive
processing of the monitoring series and to extract reliable
deformation features.

3 SIMULATION EXPERIMENT

Window sample estimation analysis was performed in the
simulation by generating outliers and deformation signals. The
following situations were simulated:

Situation 1: A section of the actual GNSS monitoring dataset
that was collected for 24 h at 5 min intervals and had no outliers
was selected as the original signal. The window sample only
contained random noise; therefore, the true deformation was the
mean of the window samples (143.0 mm) (Figure 3A).

Situation 2: Based on the original signal, three outliers (200,
180, and 300) were added at times of 08:20:00, 14:50:00, and 20:
35:00. Because the outliers did not affect the true deformation of
the window, it remained unchanged at 143.0 mm (Figure 4A).

Situation 3: Simulated deformation was added to the original
signal. Referring to the existing landslide failure data, the initial
rate and acceleration of deformation were set at 2.4 mm/h and
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0.024 mm/h2. The true deformation at the center of the window
(12:00:00) was 193.0 mm (Figure 5A).

Situation 4: Based on the simulated deformation, the window
width was reduced to 4 h, and the true deformation at the center
of the window (12:00:00) was still 193.0 mm (Figure 6A).

The frequency distribution histogram of situation 1
(Figure 3B) showed a normal distribution. The outliers were
evenly distributed on both sides of the boxplot (Figure 3C),
indicating that both methods yield optimal estimation results. A
comparison with the conventional estimators and the NIQR
estimators showed that the NIQR estimation was similar to
that of conventional methods (Table 1).

When the outliers were added to the original signal (situation
2), the frequency distribution was asymmetrical, the peak was off-
center toward the left, and the tail stretched away from the peak
(Figure 4B). The boxplot successfully excluded these outliers
(Figure 4C). Because it is affected by outliers, the conventional
estimation method is quite different from that of situation 1, and
the NIQR estimators showed little change. Therefore, the NIQR
estimation method is robust.

When the simulated deformation was added to the original
signal (situation 3), the series showed a gradually increasing
trend, and the histogram shapes exhibited a right-skewed
distribution (Figure 5B). The upper half of the boxplot was

FIGURE 3 | Situation one simulation signal and estimation result. (A) Simulated deformation scatters plot and true value; (B) Frequency distribution histogram and
probability distribution curve; (C) Boxplot of window sample.

FIGURE 4 | Situation two simulation signal and estimation result. (A) Simulated deformation scatters plot and true value; (B) Frequency distribution histogram and
probability distribution curve; (C) Boxplot of window sample.
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higher than the lower half (Figure 5C), and both halves showed
large deviations that did not reflect the true deformation of the
window because of the existence of the breakdown point.

Situation 4 reduced the window width and weakened the
skewness of the frequency distribution histogram (Figure 6B)
and window sample boxplot (Figure 6C). The NIQR estimated

FIGURE 5 | Situation three simulation signal and estimation result. (A) Simulated deformation scatters plot and true value; (B) Frequency distribution histogram and
probability distribution curve; (C) Boxplot of window sample.

FIGURE 6 | Situation four simulation signal and estimation result. (A) Simulated deformation scatters plot and true value; (B) Frequency distribution histogram and
probability distribution curve; (C) Boxplot of window sample.

TABLE 1 | Estimated results of the four simulated deformations.

Situations Actual Value (mm) Conventional Estimators (mm) NIQR Estimators (mm)

Mean STD Median NIQR

Situation 1 143.0 143.0 4.6 143.2 4.4
Situation 2 143.0 144.1 12.2 143.4 4.5
Situation 3 193.0 198.8 41.7 189.2 53.3
Situation 4 193.0 191.3 6.8 190.3 5.8
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results were similar to the results obtained without simulated
deformation; therefore, deformation in the window can be
ignored.

4 RESULTS

4.1 Study Area
Heifangtai is a loess tableland located 60 km west of Lanzhou City
in Gansu province, China. As this terrace was converted to
agricultural land in 1968, excessive agricultural irrigation has
induced more than 200 loess landslides and caused almost 40
casualties (Bai et al., 2019; Kong et al., 2021). A loess landslide
(DC#5 landslide, 36°5′30.93″N, 103°18′43.6″E) occurred at 13:00
(UTC) on 27 January 2021, in the Heifangtai terrace (Figure 7A).
Fortunately, the “High Precision Beidou System for Landslide
Hazard Monitoring and Early Warning,” developed at Chang’an

University (China), successfully recorded the entire cumulative
displacement–time data in real-time (Figures 7B,C). The data
source for this article comes from this system. The GNSS
processing software is developed by Chang’a University. The
BDS/GPS relative positioning solution uses a partially ambiguity
fixing method based on the data collected by the GNSS monitor
station. The satellite cut-off height is 10°, and the ephemeris uses
the broadcast ephemeris (Huang et al., 2018; Bai et al., 2019).

The raw GNSS displacement time series of the HF09
monitoring station located at DC#5 is presented in Figure 8,
where R is the square root of displacements in the east (E), north
(N), and upward (U) directions. The GNSS displacement time
series is a typical three-stage creep curve but shows many outliers,
large random noise, and inconsistent data intervals, creating
difficulties in the calculation of the warning criteria. Further
preprocessing of the series is required to extract accurate
deformation

FIGURE 7 | (A) Layout of the global navigation satellite systemmonitoring systems at Heifangtai. And the location of DC#5 landslide occurred on 17 January 2021;
(B) Photo of the HF09 monitoring station located at DC#5 before the landslide event; (C) Photo of the HF09 monitoring station after the landslide event.

FIGURE 8 | RawGNSS displacement time series of the HF09 monitoring station of the GNSSmonitoring systems. They include east (E), north (N), upward (U), and
three-dimensional (R) directions.
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4.2 Fixed Width Sliding-Window Estimation
Results
A fixed window width of 24 h was used to segment the GNSS
displacement time series, and the window sample was estimated
by calculating the median and NIQR. Simultaneously, the
deformation rate between windows can be easily calculated, as
shown in Figure 9. The deformation rate is relatively small in
steady-state creep; thus, the GNSS positioning error is the main
component of the window error, preventing the NIQR statistics
from changing over time. The deformation rate tends to increase
after the accelerating creep stage is reached, resulting in a
gradually increasing proportion of outliers in the window. The
NIQR estimators also began to rise sharply until their proportion
reached a breakdown point, after which the median and NIQR
estimators no longer represent the true deformation feature of the
window.

4.3 Adaptive Sliding-Window Deformation
Feature Results
According to the processing flow described in Section 2.4,
the adaptive sliding window method was used to preprocess
the monitoring series in the accelerating creep stage (10
November 2020 to 27 January 2021). Windows with no
obvious outliers were selected from November 15, 2020 to
December 15, 2020, and a width adjustment strategy
was used to shorten the width by half each time until the

width was less than 1 h to use real-time results. The key
parameters in the adaptive sliding window method are listed
in Table 2 and are shown in Figure 10. The window coefficients
were adjusted five times, and each adjustment caused
the breakdown point to reach the same deformation rate
later. This result verifies that adjusting the window coefficients
can effectively reduce the number of outliers.

Figure 11 shows the deformation feature results obtained using
the adaptive sliding windowmethod after processing. Compared to
the raw GNSS displacement time series, the time series after feature
extraction more accurately described the creep curve during the
accelerated creep stage.

4.4 Application of DC#5 Loess Landslides
Early Warning
Based on the ability of the threshold definition method to suggest a
probable failure, the adaptive sliding window method successfully
assisted in the early warning of theDC#5 loess landslide. According
to the creep curve of the loess slopes and previous findings in the
Heifangtai area (Xu et al., 2020), a five-level alert criterion for the
deformation rate threshold can be defined, as shown in Table 3.
This alert was published by the local government. After receiving
the warning information, the involved departments immediately
launched an emergency response to evacuate people in the zone
affected by the landslide. Because of this early warning, no
casualties or property damage occurred.

FIGURE 9 | Fixed width sliding-window estimation results and deformation rate.

TABLE 2 | Key parameters in the process of the adaptive sliding-window method.

Window Width
(h)

T(X) (mm) h0 Breakdown Point Adjusted Window Rate (mm/d)

24 4.2 1.26 2021/01/18 12:00 2021/01/18 06:00 12.0
12 4.0 1.64 2021/01/24 18:00 2021/01/24 15:00 27.8
6 3.9 2.04 2021/01/26 15:00 2021/01/26 13:30 42.2
3 3.5 3.02 2021/01/27 10:30 2021/01/27 09:30 58.4
1 3.1 4.08 2021/01/27 12:30 2021/01/27 12:01 483.2
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5 DISCUSSION

To address the problem of the relationship between noise and
true deformation changes in different creep stages, we proposed
an adaptive sliding-window method for accurately extracting
deformation features. Simulation experiments were conducted

to evaluate the performance of the sliding window approach for
different outliers and deformation signals.

According to the simulation results in the four situations,
when the window sample contained only random noise,
the NIQR estimation was equivalent to that of conventional
methods. The NIQR estimation method is robust in the

FIGURE 10 | Estimated normalized interquartile ranges of the window sample used as T(X’) to calculate bias in the adaptive sliding-window method.

FIGURE 11 | Time series of the cumulative displacement estimation result and deformation rate of the adaptive sliding-window.

TABLE 3 | Key parameters in the process of the adaptive sliding-window method.

Threshold Level Rate Threshold (mm/d) Alert Time Cumulative Displacement (mm) Observation Rate (mm/d)

Attention 5 2020/12/22 12:00 629.4 5.8
Caution 10 2021/1/14 12:00 787.8 13.0
Vigilance 20 2021/1/22 18:00 902.8 23.7
Alarm 50 2021/1/26 16:30 1033.4 74.7
Emergency 100 2021/1/27 7:30 1079.6 112.6
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presence of outliers in the window sample. When window
deformation occurred, both estimation methods reached
their breakdown point, and the performance decreased.
Reducing the width of the window can overcome this
problem when the estimation method reaches the
breakdown point.

A series of experiments were performed in the Heifangtai
area to assess the practical application of the proposed
method. The results for the time series of the cumulative
displacement estimation of the adaptive sliding window
showed that this method effectively reduces random noise
and outliers and more accurately describes the creeping trend
of the landslide. The window was used to extract the creep
feature rather than a large number of unnecessary
observations, which is convenient for further data analysis.
Additionally, since the algorithm only works on the
estimation of a single window, data interruptions have less
impact on feature extraction.

Figure 12 shows a comparison of the fixed sliding window and
adaptive sliding window, where the different colored blocks
represent different windows and the color represents the
estimated value of cumulative displacement. The window
coefficient is adjusted by the black line in the figure.

In the first half of the color map, when the deformation rate
was small, the deformation feature extraction results with a
wider window were smoother and more reliable. Although the
window lag was larger, the estimated results were close to the
actual values within the window range because of the smaller
deformation rate; therefore, window lag can be ignored.
However, the deformation feature extraction results
obtained with a shorter window showed that cumulative
displacement decreased, which affected subsequent
deformation analysis.

As the deformation rate increases, the lag of the window must
be considered. Therefore, a shorter window width can represent a
more realistic deformation feature. Our adaptive sliding-window
method combines the characteristics of a wide window and a
short window in different creep stages, ensuring the reliability

and real-time performance of the deformation feature extraction
results.

In summary, the proposed algorithm showed high reliability
and practicality for obtaining creep curves and may provide
support for landslide early warning. The results of the adaptive
sliding-window method constantly change, which may limit the
early warning method. Further studies are necessary to consider
early warning methods that are more suitable for variable
interval data to achieve better performance.

6 CONCLUSION

Landslide monitoring and early warnings are important in the
study of landslide hazards. To obtain more accurate deformation
features, raw monitoring results must be preprocessed. However,
at different creep stages, the relationship between noise and
deformation changes, potentially resulting in constant changes
in the covariance of the dataset. This study presents an adaptive
sliding-window algorithm based on the concept of the sample
breakdown point.

The sliding window method is a simple and adaptable
preprocessing approach for landslide monitoring. This method
accurately extracts the deformation features of the window by
estimating the window sample, thereby effectively reducing the
influence of random noise and outliers on the results.

As the deformation rate increases, the window may reach a
breakdown point. To overcome this limitation, a method
based on the definition of the prior breakdown point is
proposed for determining the breakdown point. The
breakdown point can be postponed by adjusting the window
parameters.

The processing results of the real GNSS landslide monitoring
series showed that the proposed algorithm can provide reliable
deformation information for landslide warnings even if the
landslide is undergoing imminent failure. This algorithm could
be selected as a useful reference for preprocessing methods and
early warning for landslide monitoring series.

FIGURE 12 | Cumulative displacement colormap of partial adaptive sliding-window estimation results.
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