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This paper describes a new concept to automatically characterize building types in urban
areas based on publicly available image databases, making parts of seismic risk
assessment more time and cost-effective, and improving the reliability of seismic risk
assessment, especially in regions where building stock information is currently not
documented. One of the main steps in evaluating potential human and economic
losses in a seismic risk assessment, is the development of inventory databases for
existing building stocks in terms of load-resisting structural systems and material
characteristics (building typologies classification). The common approach for building
stock model classification is to perform extensive fieldwork and walk-down surveys in
representative areas of a city, and in some cases using random sample surveys of
geounits. This procedure is time and cost consuming, and subject to personal
interpretation: to mitigate these costs, we have introduced a machine learning
methodology to automate this classification based on publicly available image
databases. We here use a Convolutional Neural Network (CNN) to automatically
identify the different building typologies in the city of Oslo, Norway, based on facade
images taken from in-situ fieldwork and from Google Street View. We use transfer learning
of state-of-the-art pretrained CNNs to predict the Model Building Typology. The present
article attempts to categorize Oslo’s building stock in five main building typologies: timber,
unreinforced masonry, reinforced concrete, composite (steel-reinforced concrete) and
steel. This method results in 89% accuracy score for timber buildings, though only 35%
success score for steel-reinforced concrete buildings. We here classify and define for the
first time a relevant set of five typologies for the Norwegian building typologies as observed
in Oslo and applicable at national level. In addition, this study shows that CNNs can
significantly contribute in terms of developing a cost-effective building stock model.

Keywords: building stock model, convolutional neural network, machine learning, seismic risk assessment, Oslo
(Norway)

1 INTRODUCTION

Within the last century, earthquakes, flooding and droughts have been the dominating phenomena
responsible for causing fatalities and economic losses worldwide (see Data Availability Statement
section). In the last few decades though, earthquakes are the dominating phenomena standing for
most fatalities (Wallemacq and House, 2018), providing the motivation and requirement for more
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detailed and effective seismic risk assessment studies. A seismic
risk assessment estimates the probability of losses if an
earthquake occurs, can assist through updated building
regulations and to initiate other mitigation actions to avoid
likelihood for casualties and economic losses. To do that,
information regarding seismic hazard, vulnerability and
exposure models of the area are needed (Silva et al., 2014). In
particular, the exposure model contains information about all the
buildings in a specific area, infrastructures, and population data.
A seismic risk assessment for a building stock in a city needs a
classification of the buildings in accordance with their structural
typologies, an important parameter to define the building
performance under seismic load.

The development of a building stock model is always
challenging and time consuming, especially when the area of
investigation is large. Until today it is a common practice to use
both Google Earth and in-situ surveys to get information on
building structural systems and material characteristics.
However, machine learning methods to analyze visual imagery
have recently been applied to classify building stocks, using online
available façade images, obtained through Google Street View
(GSV), as key information. To our knowledge, this automatic
image analysis using Convolutional Neural Network (CNN) was
previously only tested in two places to automatically detect
building materials and types of lateral-load resistance: Gonzalez
et al. (2020) for Medellin city, Colombia and Aravena Pelizari et al.
(2021) for Santiago de Chile. Those two examples are similar to our
study, in terms of applying CNNs to automatically detect and
identify the different building typologies for the two cities using
GSV images. In this study, however, we define for the first time a
Model Building Typology (MBT) for Oslo, and we conduct a
survey amongst experts within earthquake engineering. Based on
the survey’s results, the MBT identified in Oslo can further be
applied at the national scale (Norway). Another example by
GFDRR (2018) shows that using a combination of deep
learning and GSV together with drone images may lead to
remotely identify buildings that require further inspection and
possible retrofitting/strengthening for Guatemala city, Guatemala.

This paper presents the building stock model for Oslo, capital
of Norway. The general information of the buildings is obtained
from the public cadastre from www.kartverket.no. This
information contains the total number of buildings in Oslo
with the corresponding coordinates, number of stories,
number of housing units, usable area, and total area.

To perform seismic risk studies, the availability of detailed
building stock typologies is a necessity. This is usually a very time-
consuming process, and our innovative approach using transfer
learning and CNNs for the classification may provide this
required input in much shorter time and at lower cost. This
could be a solution for most of the urbanized regions in the world
to develop seismic risk assessments and incorporate earthquake
preparedness actions.

The paper is organized as follow: in Section 2 we describe the
methodology followed and the CNN approach; Section 3
describes the study area, the identified building typologies, and
the data used for this work; Section 4 introduces the results and
Section 5 presents the main conclusion.

2 METHODOLOGY

The methodology is based on the use of a CNN for automating
the typology classification step. While the classification itself
requires no manual involvement, the main workload goes into
compiling a labelled image dataset (discussed in Section 3) and
training the parameters of the CNN (described in this section).
Once a CNN structure is selected and the CNN is suitably trained,
classifying a set of unseen images is done quickly and at low
computational cost. A diagram depicting the workflow is shown
in Figure 1. First, a representative set of façade images must be
collected and labelled, which entails the manual part of the
process. Using these images to train a CNN, subsequent
images of unknown typologies can be downloaded online and
classified in bulk and used for seismic risk assessment. There are
two challenges when using CNNs for this task: the need for a large
set of labelled images, and the computational load of training
them. We mitigate both by the use of transfer learning, which will
be described in this section.

2.1 Image Recognition
Current state-of-the-art methods for recognizing objects in
images are based on variants of CNNs, which are artificial
neural networks that use sliding filters (or kernels) to process
their inputs (LeCun et al., 2015). Unlike traditional image
processing, these filters are learnt from examples during a
training phase, and they are typically stacked so that the
output from one convolutional layer is used as input to the
next one. A benefit of the convolutional filters is that they are
invariant under translations, meaning that the positioning of
objects in an image does not matter (Goodfellow et al., 2016).
Stacking convolutional layers allows for learning pattern
hierarchies, where the first layers recognize simple shapes such
as vertical or horizontal lines, while the last layers recognize
compositions of these patterns, for instance the shape of a
building. In most approaches, the convolutional layers are
interspersed with pooling layers, which reduce the dimensions
by downsampling. These reduce the required number of learnable
parameters, and at the same time introduce invariance to rotation
and scaling (Goodfellow et al., 2016). In addition, it is common to
add special layers and mechanisms that facilitate the learning
process, such as dropout (Srivastava et al., 2014) and residual
(skip) connections (He et al., 2016a). The composition of layers is
referred to as the architecture of the network, while we use model
to indicate a network with a particular set of optimized
parameters. For classification purposes, the output of the final
convolution layer is input to one or several fully connected layers,
which ultimately output a mutually exclusive prediction for
which class an input image belongs to. The learnable
parameters of a model include both the convolution filters and
the weights of the classification layer.

2.2 Transfer Learning and Network
Architectures
Modern CNNs typically have millions of free learnable
parameters and optimizing them requires large corpora of
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data. In image recognition, the standard dataset for training and
performance evaluation is the ImageNet (ILSVRC) database
(Russakovsky et al., 2015), which contains nearly 1.3 million
labelled images of various common objects. When training a
CNN on such a diverse dataset, the first layers will be sensitive to
simple shapes like straight or curved lines, while the middle layers
are sensitive to different compositions of these basic patterns.
Since only the last layers are highly specific to the particular
dataset the CNN is trained on, applications such as ours can
benefit from transfer learning, where one first trains the CNN on a
large, generic dataset such as ImageNet, and subsequently re-
trains (or fine-tunes) the last layers on the application-specific
data. This allows for re-using the knowledge contained in the first
and middle layers and is particularly useful in cases like ours
where the application-specific dataset is comparatively small.

To select the optimal CNN architecture for our case, we
compute four performance metrics (described in next
paragraph) for eleven candidates, all pre-trained on ImageNet
data. These are available in the Keras framework (Chollet, 2015).
For each candidate, we set all parameters to remain constant, but
replace the final classification layer by a new layer with six output
nodes, corresponding to the number of building typologies under
consideration. As a measure against overfitting, we apply dropout
(Srivastava et al., 2014) before the classification layer. This means
temporarily removing nodes from the network during training,
which improves robustness by reducing the nodes’ reliance on
each other. We randomly drop nodes at a 20% probability. We
then train on our data, updating only the parameters of the
classification layer. We perform 4-fold cross-validation, meaning
we divide the training data into four equally sized parts, and use
three parts for training and one for computing metrics. The parts
are then rotated so that all parts are used for computing metrics.
Since the weights of the final layer are randomly initialized for
each training round, potentially affecting the final performance,
we repeat the cross-validation process twice, and report the

average results for the in total eight trained models per
architecture. Training is done for up to 100 epochs, where an
epoch is a single pass over all the training data, followed by a
metric evaluation. If learning fails to improve over five
consecutive epochs, the learning rate is reduced by half,
thereby taking shorter steps toward the optimal solution. If
learning fails to improve over ten consecutive epochs, the
training is stopped.

The four computed metrics are: accuracy, precision, recall, and
area under the receiver operating characteristic curve. Accuracy is
defined as the fraction of samples where the predicted class exactly
matches the true class; in our case of 6 distinct classes, a random
classifier would have an accuracy of 1/6 = 0.17, assuming that the
number of samples of each class are the same. Precision is defined as
the number of true positives divided by the sum of true positives and
false positives, indicating the quality of the positive predictions. Recall,
on the other hand, is defined as the number of true positives divided
by the sum of true positives and false negatives, indicating the
completeness of the positive predictions. In addition, we compute
the area under the receiver operating curve (ROC), which is obtained
by plotting the true positive rate against the false positive rate. Since
true and false predictions relate to a binary classification problem, we
compute precision, recall and ROC individually for each class, in a
one-vs-all fashion, and then report the average across all classes. The
results are listed inTable 1. For allmetrics, the best possible result is 1,
while the worst possible result is 0.

2.3 Fine-Tuning
From Table 1 we observe that most CNN architectures yield
similar results, but the three members of the DenseNet (Huang
et al., 2017) family stand out as the highest performers across all
evaluation metrics. They are structurally similar but differ in the
number of convolution layers, which is given by the number at
the end of their names (121, 169 and 201, respectively). The
DenseNet201 architecture excels on all metrics and is therefore

FIGURE 1 | Workflow diagram. Using manually annotated façade images from fieldwork, from GSV, or a combination of the two, a CNN is trained to classify
building typologies. A large set of images is then downloaded from GSV, and automatically classified to obtain the building stock for the area of interest.
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selected for further optimization. While being largest in the
DenseNet family, we note that this family of architectures is
the smallest in terms of number of learnable parameters,
compared to the other ones tested. This indicates that raw
model size, as listed in the last column of Table 1, cannot be
directly considered as a proxy for performance, and comparisons
are required to find the best architecture for a given application.
We find, however, that there is an approximately linear
relationship between the model size and the training time.
Compared to DenseNet201, the smallest architecture
(DenseNet121) takes 12% shorter time to train a single epoch,
while the largest architecture (ResNet151V2) takes 31% longer,
when training on a Nvidia V100 (NVIDIA, 2020) graphics card.

Proceeding with the DenseNet201 architecture, we fine-tune it
to our data in a two-step procedure. Using the full training
dataset, apart from 20% of images that are set aside as
validation data to monitor the training progress, we first train
only the final classification layer of the model. Like before, we
halve the learning rate if training has stagnated for five epochs,
and end training if it has still not improved after ten epochs. In the
second step, we now additionally unfreeze the parameters of the
last 64 convolution layers. This allows for adapting a larger part of
the model specifically to our data, while still retaining the low-
level pattern recognition of the first convolution layers. The
DenseNet201 architecture is organized into five blocks of
multiple convolution layers, where each block has a
complicated internal structure, but has a single connection to
the next block. Therefore, we only consider it useful to free the
parameters of entire blocks at the time; freeing the last 64
convolution layers equals the entire last block. Doing so
means we now train 38% of all parameters in the model
(approximately 7 million out of 18 million). Experiments with
freeing a larger number of blocks resulted in overfitting, where the
accuracy on the validation data diverges greatly from that of the
training data. As for the first step, training is run until
improvement has failed to improve for ten epochs.

3 DATA

In order to conduct seismic risk assessment a building stock
model needs to be available, and the key input data to develop

such building stock models are the building typologies as
extracted in the relevant region. Building typologies are related
to the ability of a building to resist lateral loads that mainly affects
the structural system and depends on material and height. The
lateral load-resisting system and its material can be identified only
from the blueprints (two-dimensional set of technical/
engineering drawings that specify a building’s dimensions,
construction materials, and the exact placement of all its
components) or by direct expert observations. Unfortunately,
structural blueprints are not always available. Therefore, expert

TABLE 1 | Metrics for different CNN architectures. Highlighted in bold are the best observed values. The last column indicates the total number of parameters for each
architecture.

Architecture Accuracy Precision Recall ROC AUC Parameters

Xception Chollet. (2017) 0.759 0.762 0.759 0.920 20,873,774
VGG16 Simonyan and Zisserman. (2015) 0.740 0.739 0.740 0.906 14,717,766
VGG19 Simonyan and Zisserman. (2015) 0.732 0.733 0.732 0.904 20,027,462
ResNet50V2 He et al. (2016b) 0.759 0.757 0.759 0.917 23,577,094
ResNet101V2 He et al. (2016b) 0.762 0.760 0.762 0.917 42,638,854
ResNet152V2 He et al. (2016b) 0.757 0.757 0.757 0.912 58,343,942
InceptionV3 Szegedy et al. (2016) 0.762 0.762 0.762 0.922 21,815,078
InceptionResNetV2 Szegedy et al. (2017) 0.750 0.752 0.750 0.912 54,345,958
DenseNet121 Huang et al. (2017) 0.764 0.764 0.764 0.922 7,043,654
DenseNet169 Huang et al. (2017) 0.770 0.772 0.770 0.926 12,652,870
DenseNet201 Huang et al. (2017) 0.778 0.780 0.778 0.932 18,333,510

FIGURE 2 | Building distribution (shown with orange dots) in Oslo
municipality (study area).
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opinions seem to be the best option to assemble building
inventories and fundamental information. However, in most of
the cases, it is timewise and economically not possible to survey
each asset. For this reason, many assumptions need to be made to
establish a building stock model and interpolate data from
surveyed areas to not surveyed neighborhoods. Recently, using
GSV (Google Street View) and Google Earth has become an
alternative way to carry out fieldwork for visualizing façade and
material information remotely (GFDRR, 2018; Kang et al., 2018;
Gonzalez et al., 2020; Aravena Pelizari et al., 2021). However,
uncertainties are remaining in the building typology
classification. In this paper, we use the EMS-98 building
taxonomy (Grünthal, 1998) with some extension related to
specific typology that are not present in the original
classification [e.g. composite (steel-reinforced concrete)
typology].

3.1 Study Area
Our study area is the city of Oslo, the capital of Norway
(Figure 2). The oldest settlements in the area are from around
11000 BC, but Oslo was only founded in 1000 AC. The oldest part
of the city is the eastern part, called Bjørvika in Gamle Oslo (see
Figure 3). In 1624, a disastrous fire destroyed most of the city,
and built on the ashes, the new town was called Christiania. After
that devastating fire, a ban on wooden houses was introduced
allowing only solid brick, and half-timbered brick houses
(Eriksson et al., 2016). In 1769 Christiania had about 7500

inhabitants. During the 1600s the demand for wood rose, and
Christiania became an important harbour for trading wood.
Outside the city centre, many small wooden houses were built,
and some of those still exist today. During the industrial period of
the 1840s, many factories were built along the river Akerselva and
the population increased significantly to about 113.000
inhabitants. In the late 1880s, many multi-stories brick
tenements were constructed to fulfil the request for more
living space. In 1925 the city changed its name back to Oslo
and the Ring Road was introduced; in 1948 another important
step for the city was the development of the new subway system
(Eriksson et al., 2016). In 2020 Oslo had a population count of
697,549 and by 2040 the expected number is around 926,000
(Eriksson et al., 2016). This prediction has a direct consequence
for the city, i.e. it will need to accommodate the new residents
with new buildings. Oslo municipality covers an area of 480 km2

and it is subdivided in 17 boroughs or bydel in Norwegian.
One key element to consider during the planning of a city

expansion with respect to new infrastructures is an accurate
evaluation of the seismic risk, which is strongly depending on
the local seismic hazard conditions, in turn influenced by soil
amplification. Norway shows low to medium seismicity that leads
to a lower level of seismic hazard compared to other Southern
European countries (Danciu et al., 2021). Compared on a national
scale, the city of Oslo falls within a zone of intermediate seismic
hazard. Oslo was hit by a significant earthquake (5.4 Mw) on the
23rd of October 1904 (Bungum et al., 2009). Although the
epicenter was located 115 km south of Oslo, the event (known
as 1904 Oslofjord earthquake) generated ground motions that
propagated on both sides of the Oslo fjord from the south of
Fredrikstad/Tønsberg to the north of Oslo. The earthquake was
felt over an area of 800.000 km2 from Namsos in the north to
Poland, and across southern Norway to Helsinki in the east
(Bungum et al., 2009). The maximum intensity on the
Mercalli scale in Oslo was reported to VI and major damages
were reported, mainly for wooden and unreinforced masonry
buildings in the Oslo area. Although the severe damages to the
buildings, no relevant and significant mitigation measures were
put in place after this event. The first seismic standard introduced
in Norway was by the end of the 1980s, and it was mostly
destinated for seismic design of offshore structures. Within the
same period there was also another document destinated for
buildings, but it was introduced and used only as
recommendation. In 2004 a new standard on the design of
structures considering loads from seismic influence was
adopted (NS 3491-12). In 2008, Norway adopted the Eurocode
and since then it has been the only standard for seismic design for
all types of structures and infrastructures.

3.2 Model Building Typology
Building stocks usually vary from locality to locality and certainly
even more between different countries due to different
construction practices, material availability and construction
period.

The following steps are followed to recognize the different
building typologies for Oslo and to develop a Model Building
Typology (MBT):

FIGURE 3 | In the figure, the fieldwork area is represented with
dashed line.
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1) a first overview of the building typologies is obtained from
Google Earth for the different neighborhoods in the city. The
building stock is observed at different scales (from small to
large):
- the inbuilt 3D-building option allows us to identify the
lateral load bearing systems, predominant work material for
walls, façade decoration, flooring and roofing types and
number of stories.

- The Street View mode gives us a ground-level view of the
different buildings and it helps us to identify similarity and
heterogeneity in the same geounit.

2) - With the plan view, we understand the general distribution
of the building stock in the city looking from the top. It allows
us to identify different roof materials and characteristics that
can be potentially linked to different building typologies.
Through the first evaluation using Google Earth, some area
of the city center (Grünerløkka, Oslo central station, Bjørvika)
and Alna (see Figure 3) are chosen for detailed in-situ
fieldwork. Those areas contain a good representation of all
the typologies and are good candidates to test the machine
learning methodology to automatically identify different
building typologies.

3) During 5 days of fieldwork during the winter of 2021, about
350 pictures of the facade buildings are taken manually, and
information related to structural system and material related
data are collected (e.g. lateral loadbearing systems observed,
material type, flooring/roofing system, number of stories,
usage/type of activity). These form key information to
define a MBT.

4) After steps 1 and 2, we define an initial building typology
classification, and we divide the observations into five groups
with the corresponding typology.

5) To confirm and validate the initial evaluation of the
typologies, a survey questionnaire regarding seismic

vulnerability assessment of the existing building stock in
Oslo is sent out to experts (mainly engineers working in
Norway) in order to validate the building typologies that
they have been identified. The survey was divided into
eleven different sections, with questions related to the
structural system and material characteristics of the
building stock in Oslo, date of practice of a given typology
and general practices. The expert’s opinion confirmed the
initial evaluation and they agreed that the building typologies
recognized in Oslo are applicable at national scale. The
questionnaire shows results compatible to the preliminary
assessment.

6) Combining results from both fieldwork and survey
questionnaire, a final Model Building Typology (MBT) is
defined, and it represents the existing building typologies
in Oslo city and Norway.

7) Images from GSV are downloaded for all the districts of the
city. A total of 5074 pictures are manually labelled using the
MBT previously defined. The pictures are used to train the
Convolutional Neural Network (CNN). As Gonzalez et al.
(2020), Aravena Pelizari et al. (2021), also here the CNN
methodology is applied to automatically detect the different
building typologies in Oslo.

The results of the survey questionnaire combined with the
field survey have shown that the existing building stock in Oslo
can be divided into three main construction periods:

1) Buildings built before 1950, estimated to represent roughly
35% of the total existing building stock, and mostly made of
timber and unreinforced masonry.

2) Buildings built between 1950 and 1998, estimated to represent
25% of the total number of buildings, and they are mainly
made of reinforced concrete.

FIGURE 4 | Building typologies for the building stock in Oslo: timber (T), unreinforced masonry (MUR), reinforced concrete (CR), composite (SRC), steel (S)
and other.
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3) Buildings built between 1998 and up to today, estimated to
cover 40% and they are found as reinforced concrete,
composite (steel-reinforced concrete) and steel.

The following typologies are identified in Oslo and can be
applied at national scale (see Figure 4):

• Timber (T): the construction with timber has been in
practice for many years (before 1950), and the timber
buildings mostly are frame structures consisting of
wooden frames with solid or plate timber members.
This typology is mainly used for housing and
typically can be one to two stories, but there are also
some 3 to 4 story-high buildings that can also be found
as residential apartments and public buildings for
various activities, e.g., schools. The timber
construction is still in practice and starting from 2000
there have been new modern timber buildings that can
also be found as high-rise buildings with more than 8
stories. As per the situation today, timber buildings
represent around 20% of the existing building stock
in Oslo.

• Unreinforced masonry (MUR): unreinforced masonry
constructions are load-bearing wall system structures
made of material that vary depending on the
construction’s age, and which can be burnt clay bricks,
stone masonry blocks, concrete blocks or mixtures of other
materials. Most of the existing buildings of this type were
constructed before 1950. The majority can be found as low/
mid-rise structures with 2–5 stories, and very few with more
than 6 stories. They are used for residential, commercial and
other general activities. In terms of location, this type of
construction mostly can be found in the center of the city,
and as a rough estimate, they represent 30% of the current
building stock in Oslo.

• Reinforced concrete (RC): the construction of reinforced
concrete buildings has been in practice since 1950, and the
construction procedure of this typology consists of
reinforced concrete frames (columns and beams), cast-in-
place. But starting from 2000, the pre-cast practice has
become more frequent in the construction of this type of
structures. The existing RC buildings can cover different
ranges of height classes (low, mid and high-rise) and can be

found in most of the districts and zones of the city. It is
estimated that this type of buildings represents 35% of the
total existing buildings in the city.

• Composite (steel-reinforced concrete) (SRC): the composite
construction has been in practice since 2000s, and it is
estimated that it represents almost 10% of the total existing
building stock of Oslo. Typically, the number of stories for
this type of building can range between 2 to more than 15
stories for a few of the most recent buildings. The
construction procedure of this typology consists of steel
frames and cast-in-place concrete frames (columns and
beams) and/or concrete shear walls. Buildings of this
typology are mostly used as residential apartments,
offices, commercial activities, and they are found in most
of the districts and zones of the city.

• Steel (S): the existing steel structures are load-bearing steel
moment frame constructions, and mostly are found outside
the city center. This type of structures is, in general, used for
industrial activities, also as big grocery stores, supermarkets,
malls, parking lots, and hangars. Due to the nature of the
utilization, story heights can be up to 6 m, and the number
of stories can be up to 2 stories. The construction in steel has
recently increased with the urban development, and
currently it is estimated that this type of construction
covers about 5% of the existing buildings in the city of Oslo.

In addition to the above typologies, one extra category “other” is
added to account for the case that the algorithm could not recognize
the typology or that no building could be identified in the picture at all.

3.3 Image Dataset
The dataset of all buildings in Oslo is obtained from the public
cadastre (downloaded in December 2020) and it contains the
number and the coordinates of all free-standing buildings of more
than 50 m2. In addition to façade photographs collected
manually, images for each building position are downloaded
automatically using the Google Street View API (GSV). The
Street View service provides near-continuous street level
imagery of most of the world’s cities, and the service’s API
allows for direct download of images for a given set of
coordinates. In order to accept an image to be related to a
building, we set a threshold that the image needs to be taken
within 40 m from the requested building coordinate. For the

TABLE 2 | Confusion matrix computed on the test data set. Rows show the true class, and the columns the CNN-identified class. Correct predictions follow the diagonal,
highlighted in bold. As an example, 73% of CR buildings are correctly identified, but 3% are classified as MUR, 3% are classified as S, 2% SRC, 9% as T and 10% as
other. In parentheses are the actual number of images.

Predicted

CR MUR S SRC T Other

True CR 0.73 (86) 0.03 (4) 0.03 (3) 0.02 (2) 0.09 (11) 0.10 (12)
MUR 0.05 (5) 0.71 (76) 0.00 (0) 0.00 (0) 0.20 (21) 0.05 (5)
S 0.18 (5) 0.00 (0) 0.57 (16) 0.00 (0) 0.11 (3) 0.14 (4)
SRC 0.60 (12) 0.00 (0) 0.05 (1) 0.35 (7) 0.00 (0) 0.00 (0)
T 0.01 (3) 0.01 (6) 0.00 (0) 0.00 (0) 0.89 (424) 0.09 (42)
Other 0.02 (4) 0.00 (1) 0.01 (2) 0.00 (0) 0.12 (32) 0.87 (232)
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134,432 buildings in Oslo, 74% of them fulfil this requirement
and it has façade imagery available. Coverage is better in the city
center where images for 94% of the buildings are available but can
be as low as 50% in distant suburbs.

We do not manually check the image quality, such as how many
of the requested buildings are included in the image, or whether it is
occluded by trees, passing vehicles, scaffolding or similar. Such cases,
where the building typology cannot be identified from the image, are
labeled as “other”, and the occurrence in the fieldwork area is
approximately 27%. An example of this category is shown in
Figure 4. Labelling of these cases is often difficult and can be
subjective, and is expected to be a considerable source of
uncertainty for training the automatic labelling procedure.

A total of 5,074 images from fieldwork and from GSV are
manually labelled, and they constitute the dataset used for
training and validating the CNN model. We set aside 20%
(1,019 images) as a test dataset for the final performance
evaluation, leaving 4055 images to use for training. Of the
latter, we will also set aside a fraction of them for monitoring
the training progress that is described in Section 2.

For CNN training and prediction, all images are downsampled to
224 × 224 pixels, which is the input resolution of the CNN model.
Images from GSV are downloaded in a square format, while
rectangular images from fieldwork are center cropped before
downsampling. In order to artificially increase the size of the
training data, we augment the images by applying the following

transformations: randomly zooming in by up to 20%, randomly
rotating by up to 25°, and randomly mirroring along the vertical
axis. This is done only during training, and it is a standard procedure
to improve the model’s ability to generalize.

FIGURE 5 | Examples of correctly (A) and falsely (B) classified images.

TABLE 3 | Distribution in terms of numbers and percentages of the predicted
building typologies.

Typologies Number of buildings %

T 56,305 56.7
MUR 7,979 8.0
CR 7,536 7.6
SRC 399 0.4
S 515 0.5
other 26,605 26.8

FIGURE 6 | Distribution of the predicted building typologies in Oslo, also
including the categories “other” and “no images available”.
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4 RESULTS

Having completed the fine-tuning, we compute the final performance
metrics on the test dataset. Themodel achieves an accuracy of 0.825, a
precision of 0.825, and a recall of 0.825. Without fine-tuning, we
obtain an accuracy of 0.763, precision of 0.775 and recall of 0.769,
showing that fine-tuning is greatly beneficial to performance. To
investigate the classification performance per typology, we present a
confusion matrix in Table 2. For each true typology (given by the
rows), the confusion matrix shows the rate of test images that are
assigned to each predicted label (given by the columns). The best
performance is seen for timber (T), where 89% of images are classified
correctly. This is expected, because timber is the most common
typology in the training data, and therefore the category which the
CNN has seen the largest variation of. It is also desirable, since we
consider the training (and testing) data to be representative of the
entire study area, and a high accuracy for the most common category
will necessarily lead to a high overall accuracy.

The poorest performance is seen for steel-reinforced concrete
(SRC), where 35% of the images are classified correctly, while 60%
of them are classified as reinforced concrete (CR). These two
typologies can be difficult to distinguish even for experts, as the
façade characteristicsmay not unambiguously determine the typology.
The classification of the “other” groups is in general quite successful
with 87%. Within the 13% of misclassifications, almost all images in
the “other” category are identified as timber buildings, which can be
explained by the frequent presence of fences, rooftops and parked cars
in these images, which are typical elements in residential areas
common for timber buildings. Some examples of images and their
predicted labels are shown in Figure 5. In Figure 5we can observe an
example of a timber building correctly classified and a steel-reinforced
concrete building misclassified as reinforced concrete.

Concerning the confusion matrix, we note that we did not
apply class-specific weights to the images during training, i.e., all

images were given equal priority. It is an option, however, to
weight the images by the inverse of the class prevalence, so that
rare classes are given higher priority than common ones. This
would lead to a more equal classification accuracy across the
typologies, instead of having a very high accuracy for the most
prominent class (timber) and low accuracy for the least
prominent one (steel-reinforced concrete). At the same time, it
would also reduce the overall accuracy, and thereby the quality of
the final result, which is why we decided against it.

The predicted building typologies are shown inTable 3, in terms of
number of buildings and percentages, and in Figure 6 in terms of
spatial distribution. It is important tomention that the total number of
buildings of Oslo (134,432) also includes buildings where no GSV
images are available to perform the classification (“no images
available” category includes 35,093 buildings, shown in Figure 6).
This category is not shown in Table 3 because we want to present the
percentages of the classified buildings that used GSV images for the
classification using machine learning. The “no image available”
category represents 26.1% of the total number of buildings, and
together with the “other” typology, the two categories sum to
45.9% of the total number of buildings. This means that we were
able to automatically attribute a model building typology to 54.1% of
the buildings in Oslo.

The predominant typology identified in Oslo is timber, that
represents 56.7% of the classified buildings. In Figure 6 we can
observe the distribution of the predicted building typologies: most
of the classified buildings are localized in the city center and in the
urbanized area. GSV images are not available in remote areas (as
forest) in Nordmarka and Østmarka: based on our local
knowledge and through supervised learning in the area with
Google Earth, the main typology identified is timber, represented
by private cabins.

Figure 7 shows the predicted building typologies for an
example area in Oslo. This area is chosen because we have a

FIGURE 7 | (A): Google Earth 3D building’s view of the example area in Oslo; (B), the predicted MBT for the same example area. The observed and trueMBT for the
selected area coincides with the predicted one.
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good representation of different typologies in a small area. On the
left side of the figure, the Google Earth 3D building’s view is
allowing to identify the MBT of the buildings under investigation.
The right side of the figure shows the predicted MBT, that
coincide with the observed MBT.

5 DISCUSSION AND CONCLUSION

This work shows the potential for combining machine learning
and publicly available street-level imagery to automate the
process of classifying Model Building Typologies for large-
scale seismic risk assessment, using Oslo city (Norway) as a
case study. Using a state-of-the-art Convolutional Neural
Network (CNN) pre-trained on the ImageNet database, we
developed a model that classifies typology in unseen images
with 83% accuracy, using only data sources available online:
the public cadastre and Google Street View. Supplemental
high-quality images taken during field work were also used
but are not required. Our workflow shows how seismic risk
assessment can be highly automated and performed quickly
without or limiting time-consuming and costly on-site surveys.

We observe that the classification accuracy varies with
building typology: from 89% for timber and down to 35% for
steel-reinforced concrete. The reason for this is twofold:

1. first, the distribution of the building mass in Oslo is heavily
skewed towards timber buildings, with few steel or steel-
reinforced concrete (SRC) buildings to use in the CNN training.

2. Secondly, SRC buildings are typically misclassified as reinforced
concrete (CR), which is unfortunately also often the case inmanual
classification analysis. These misclassifications were verified by
breaking down the separate typology predictions for an unseen test
dataset by the true labels.

Misclassifications also occur between typologies that share the
surrounding environment; in particular, we observe timber
buildings surrounded by trees and fences being classified as
“other”, and vice versa. This indicates that the CNN to some
extent incorporates the environment into the prediction and does
not rely on the building properties alone. There exist several
techniques (Simonyan et al., 2013; Samek et al., 2017; Selvaraju
et al., 2017) to investigate this on a per-image basis, which should
be considered in future studies.

The performance of the classifier can be improved by adding
more labelled images, which is a matter of additional analyst time.
Still, using a pre-trained model reduces the need for training data
drastically (Yosinski et al., 2014), as well as lowering the
computational cost compared to training a model from
scratch. Our method is limited by the availability and good
quality of GSV images, which do not offer complete
geographical coverage and may be blocked by trees or vehicles.
Hence, supplemental field work may be necessary for certain
areas. Other online image providers can also complement GSV.

Given the success of this transfer learning approach, also
demonstrated by Gonzalez et al. (2020), future work should
investigate how well the CNN methodology generalizes and

can hence be applied to other Nordic cities, both with and
without additional re-training. We expect that this should be
possible at least within Norway, likely also further to Sweden and
Finland with generally similar building stocks.

Until recently, the identification of building typologies and the
development of a building stock model for seismic risk assessment
were limited regarding their spatial coverage as well as financial
resources and the lack of representative in-situ information.With the
data and methodology presented in this paper, these limitations can
now be overcome for many areas of the world.

Future work within this topic could include a semi-automatic
pre-classification of certain neighborhoods. For instance, we could
feed the CNN with pre-conditioning data about the type of the
current neighborhood, e.g. residential, commercial, industrial area,
which will likely increase the success rate. In addition, one could
think about merging information from google-maps roof aspect-
ratio with the façade information as done in our current work.
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