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This work studies the application of deep learning methods in the spatiotemporal
downscaling of meteorological elements. Aiming at solving the problems of the single
network structure, single input data feature type, and single fusion mode in the existing
downscaling problem’s deep learning methods, a Feature Constrained Zooming Slow-Mo
network is proposed. In this method, a feature fuser based on the deformable convolution
is added to fully fuse dynamic and static data. Tested on the public rain radar dataset, we
found that the benchmark network without feature fusion is better than the mainstream
U-Net series networks and traditional interpolation methods in various performance
indexes. After fully integrating various data features, the performance can be further
improved.
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INTRODUCTION

Downscaling forecasting is an important means for refined forecasting of meteorological elements in
space or time dimensions. Commonly, the downscaling technology refers to the conversion which
turns meteorological low-resolution data (large-scaled numerical matrix) into high-resolution
information (small-scaled numerical matrix) under the same region. Downscaling can be
divided into two dimensions: space and time. Spatial downscaling is the most extensive behavior
of refined forecasting, while the method of temporal downscaling still needs to be studied (Maraun
et al., 2010; Lee and Jeong, 2014; Monjo, 2016; Sahour et al., 2020). Early spatial downscaling
techniques are implemented by using interpolation algorithms (Lanza et al., 2001) or statistical
models. Interpolation algorithms contain linear interpolation, bilinear interpolation, nearest
neighbor interpolation, and trilinear interpolation. The value of each pixel on the image is
calculated by building the distance relationship of several pixels around it. The statistical model
learns a corresponding function from data pairs which include low-resolution and high-resolution
precipitation to observe a particular distribution. However, meteorological observation data are a
kind of structural information (Berg et al., 2013; Yao et al., 2016). It means that meteorological data
are time-series data; the data from different regions have diverse latitude and longitude coordinates,
and these kinds of data can be influenced by associated meteorological element data. These factors
make downscaling behavior susceptible to the influence of meteorological observations in their
vicinity (Beck et al., 2019). Because of this, early interpolation methods do not make good use of this
information; statistical methods are limited by empirical knowledge of time stationarity assumptions,
control theory, and prediction theory.
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In recent years, deep learning has become increasingly popular
in climate science as the demand for high-resolution climate data
from emerging climate studies have increased (Prein et al., 2015).
Since the problem of downscaling meteorological data is similar
to the image super-resolution problem of computer vision, the
networks in the field of vision have been often seen as the main
architecture to deal with the downscaling problem. However, the
meteorological downscaling problem is different from the simple
image super-resolution problem. For example, as a kind of
structural information, the downscaling of meteorological data
will be constrained by the implicit rules of static data such as
terrain, vegetation, longitude, and latitude (Vandal et al., 2017;
Serifi et al., 2021). Dynamic data which include air pressure,
temperature, and humidity often have corrective effects on
downscaling results. The threshold range of meteorological
values is distinguished from the image’s pixel intensity
threshold range. Meteorological data are usually not integer
data. They have strong randomness which makes their upper
and lower thresholds difficult to determine. These problems are
obviously not needed to be considered in image problems, and it
makes the problem of meteorological downscaling seem more
complex.

In the field of image super-resolution, early networks are
dominated by lightweight convolutional neural networks such
as the super-resolution convolutional neural network (SRCNN)
(Ward et al., 2017), fast super-resolution convolutional neural
network (FSRCNN) (Zhang and Huang, 2019), and very deep
convolutional network for super-resolution (VDSR) (Lee et al.,
2019). The effect of these networks reconstructing the original
image is generally better than that of ordinary interpolation
methods. Although the lightweight models make the frame
rate of this type of network operation faster, they still limit the
reconstruction effect of the image. To solve this problem, the
U-shaped structural neural network (U-Net) is used, and a GAN
structure is then applied to the task. Structural variants that use
low-resolution images as inputs were proposed by Mao et al.
(2016) and Lu et al. (2021), and their network structures are built
on the classic network which is called the U-Net (Ronneberger
et al., 2015). Their data are reconstructed from different
resolutions by taking advantage of the multi-scale
characteristics of the network, and finally, their results are
great. In addition, since the use of generative adversarial
networks (GANs) proposed by Wang et al. (2018), a variant of
the GAN structure SSR-TVD (Han et al., 2020) has been
proposed to solve spatial super-resolution problems. The GAN
is a self-supervised learning method. It takes the form of
modeling data distribution to generate a possible
interpretation which uses a generative network for sampling
and then generates fuzzy compromises by discriminating
networks. This structure can produce some specious details
which can be seen truly as the ground truth. From the
indicator, the effect is wonderful, but whether there exists false
information is still worth discussing.

In the field of meteorological downscaling, the DeepSD
network (a generalized stacked SRCNN) was proposed by
Vandal et al. (2017). In this work, to take structural
information into consideration, they made additional variables

spliced with input features in a channel dimension before
convolution. Then, they used convolution to aggregate
structural relationships. The additional variables included
geopotential height and forecast surface roughness. Finally,
they achieved improvements in the task of downscaling.
Rodrigues et al. used a CNN (convolutional neural network)
to combine and downscale multiple ensemble runs spatially, and
their approach can make a standard CNN give blurry results
(Rodrigues et al., 2018). Pan used the convolution layer and full
connection layer to connect the input and output with a network
to predict the value of each grid point (Pan et al., 2019) without
considering regional issues. These lightweight neural network
methods verify that deep learning downscaling is feasible.
Compared with the traditional methods, the deep learning
method can get better results in a limited research area. In our
work, we do not adopt a lightweight network. Since a lightweight
network can get a great effect in spatial downscaling, it cannot
deal with temporal downscaling. A common reason for it being
unfit is that there does not exist a sequence processing module
which can deal with the interpolation of temporal information.
Methods like DeepSD, VDSR, and FSRCNN are designed for
dealing with single data super-resolution, and most of these
structures which are designed with a residual network cannot
be adapted to the temporal downscaling problem. Their
performances are correspondingly weak without the help of
timing information. But the idea of taking additional variables
into consideration is desirable, and we followed and further
improved this method.

Commonly, the update frame rate of meteorological data is
usually much lower than the video frame rate, and the
meteorological early warning has higher requirements for
numerical accuracy. Therefore, the index performance of the
network should be placed in the first place. Höhlein studied a
variety of structures for spatial downscaling of wind speed data,
including U-Net architecture and U-Net with a residual structure
which yielded better results (Höhlein et al., 2020). Adewoyin
proposed TRU-NET (a U-Net variant structure) to downscale
high-resolution images of precipitation spatially (Adewoyin et al.,
2021). Sha proposed the Nest-UNet structure to downscale the
daily precipitation image (Sha et al.,2020). The network is more
densely connected based on the U-Net structure and has achieved
good results. Serifi tested the low-frequency temperature data and
high-frequency precipitation data by using the U-Net
architecture based on the three-dimensional convolution. To
take structural information into consideration, Serifi put values
which include time, latitude and longitude coordinates, and
terrain data into a network from a different scale. The way of
fusion is the same as DeepSD. The results showed that an RPN (a
U-shaped structure with a residual structure) is more suitable for
the downscaling of low-frequency data, and a DCN (the network
without a residual structure) is more suitable for the downscaling
of high-frequency data. It can be seen that the mainstream
networks adopted to deal with downscaling problems in recent
years are almost using the U-Net as the basic architecture. Only a
small number of solutions are based on the GAN and long short-
term memory network (LSTM) structures (Tran Anh et al., 2019;
Stengel et al., 2020; Accarino et al., 2021). It means that the U-Net
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is the mainstream supervised learning method for deep learning
to solve the problem of meteorological downscaling. The U-Net
structure has the advantages of a symmetrical network structure,
moderate size, diverse improvement methods, and multi-scale
feature analysis characteristics. But there are still some problems
which are as follows:

1) The processing of time-series characteristics in the U-Net
network adopts the method of spatializing the time
dimension. This processing method conforms to the
principle of image optical flow, but the time-series
relationship in the real environment is different from the
spatial relationship, which is more similar to the iterative
relationship of a complex system.

2) The network input data feature types and the fusion methods
are single. There is no difference between fusion methods for
different types of data.

To address the aforementioned issues, in this study, we
proposed a Feature Constrained Zooming Slow-Mo network,
which has four modules: the feature extraction module, frame
feature time interpolation module, deformable ConvLSTM
module, and high-resolution frame reconstruction module.
Compared with the U-Net series network, our network can
extend channel dimensions. This feature makes it possible to
take dynamic parallel data into channel dimensions as a factor,
and the time information is delivered to the ConvLSTM.
Furthermore, we considered a new strategy to extract static
data features by deformable convolution. These strategies
make our networks perform more scientifically in a multi-
feature fusion.

The contributions of this study to the downscaling problem
are as follows:

1) A deep learning downscaling method based on the
convolutional LSTM (Xingjian et al., 2015) structure which
can simultaneously solve both temporal and spatial
downscaling problems is given.

2) Static data and dynamic data are introduced as influence
characteristics, and the types of feature fusions are enriched.

3) This study proposes a method for constructing a feature
blender using the deformable convolution, which enriches
the feature fusion method.

PRELIMINARIES

Formulation of the Downscaling Problem
The downscaling problem of meteorological elements is usually
divided into two parts: spatial downscaling and temporal
downscaling. Spatial downscaling problems can be regarded as
follows:

Given the three-dimensional grid data (t, m, n) and the
magnification factors kx and ky, using algorithms to fill the
grid data to (t, kx ·m, ky · n) by taking advantage of the
relevance of spatiotemporal data information.

The temporal downscaling problem is roughly similar to the
spatial downscaling problem. It needs to set a time scale
magnification factor kt to enlarge the raster data to
(kt · t, m, n). Different from the spatial downscaling problem,
when dealing with data like precipitation, high-frequency data
will be aggregated. As a result, in the process of downscaling,
there are problems such as data block’s position transformation
and numerical dynamic changes. Therefore, the optical flow
needs to be considered (Sun et al., 2021).

Commonly, the downscaling problem can be understood as
the inverse process of data coarsening, which is shown in Eq. 1,
whereX is low-resolution data, Y is high-resolution data, and f is
the data coarsening function. The data coarsening operation is
usually achieved by interpolation, pooling operation, or
acquisition from the real environment.

X � f(Y)︸����︷︷����︸
coarsening

, Y � f−1(X)︸�����︷︷�����︸
downscaling

, (1)

Zooming Slow-Mo Network
One-stage Zooming Slow-Mo (Xiang et al., 2020) is a network
combined with ConvLSTM and deformable convolution
networks (Dai et al., 2017), which is designed to generate
high-resolution slow-motion video sequences. The structure of
the network is shown in Figure 1. It consists of four parts: the
feature extraction module, frame feature time interpolation
module, deformable ConvLSTM module, and high-resolution
frame reconstruction module. First of all, a feature extractor
with one convolution layer and k1 residual blocks is used to
extract features. Then, the frame feature time interpolation
module with deformable convolution is used to synthesize the
low-resolution feature map of the intermediate frame by taking
the feature map as the input. Afterward, to make better use of the
time information, the deformable ConvLSTM module is used to
process the continuous feature map, and this operation makes the
feature images aligned and aggregated at the same time. Finally,
the high-resolution reconstruction module is used to reconstruct
the aggregated feature images.

Different from other networks only for spatial downscaling
and U-Net, the structure of our network constructs modules
separately for each super-resolution step. The most important
change is that our network has a frame feature time interpolation
module and deformable ConvLSTM module because it is
common to see similar structures like a feature extraction
module and high-resolution reconstruction module in most
networks for spatial downscaling. These two modules provide
a new view of generating a middle frame and applying
ConvLSTM, which is a popular scheme for deep learning
timing problems. The frame feature time interpolation module
changed the use of stacked convolutions singly to solve the frame
interpolation problem. With deformable convolution’s help, the
middle frame can be generated more precisely. The deformable
ConvLSTM module changed the use of stacked convolutions
singly to solve the timing problem; hence, every downscaling
array can completely fuse temporal sequence information by the
mechanism of long short-term memory.
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Frame Feature Time Interpolation Module
As shown in Figure 2, after feature extraction, the feature maps
FL
1 and FL

3 are obtained. The traditional method performs
interpolation on the time scale of pixel-level frames, but such
an operation will make the front and back network structures be
separated into two neural networks. Different from this method,
Zooming Slow-Mo is designed to train a time interpolation
function f(·) by using convolution to directly synthesize an
intermediate feature map FL

2 . The general expression of this
interpolation function is as follows:

FL
2 � f(FL

1 , F
L
3) � H(T1(FL

1 ,Φ1), T3(FL
3 ,Φ3)), (2)

Among them, T1(·) and T3(·) are two sampling functions. Φ1

and Φ3 are the corresponding sampling parameters. H(·) is a
hybrid function for aggregating the sampling features.

To precisely generate FL
2 , T1(·) needs to capture forward

motion information between FL
1 and FL

2 , and T3(·) needs to
capture the backward motion information between FL

2 and FL
3 .

Since FL
2 does not exist in the input data, the forward and

backward motion information cannot be obtained directly.

FIGURE 1 | One-stage Zooming Slow-Mo network.

FIGURE 2 | Frame feature time interpolation module.
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The motion information between FL
1 and FL

3 is used to
approximate the forward and backward motion information.
Furthermore, deformable convolution is used to capture the
motion information of the frame feature time interpolation
module from the position relationship and mapping
relationship. The sampling method based on deformable
convolution can explore more abundant local time content
and motion relationship.

T1(·) and T3(·) have the same network design structure, but
their network weights are different. Taking T1(·) as an example, it
maps the low-resolution frame features FL

1 and FL
3 as input to

predict the sampling offset of FL
1 :

Δp1 � g1([FL
1 , F

L
3]), (3)

In this formula, Δp1 is a learnable offset and also refers to the
sampling parameters Φ1. g1 represents a general function of
several convolution layers. [, ] represents the connected channels.
With a learnable offset, deformable convolution can be used:

T1(FL
1 ,Φ1) � DConv(FL

1 ,Δp1), (4)
Applying the same method, we can obtain Δp3 � g3([FL

3 , F
L
1])

and the sampled features T3(FL
3 ,Φ3) by deformable convolution.

To mix two sampling features, the network uses the simple
linear mixing function H(·):

FL
2 � αpT1(FL

1 ,Φ1) + βpT3(FL
3 ,Φ3), (5)

In this formula, α and β are two learnable 1 × 1 convolutional
kernels. p is a convolutional operator. Since the composite low-
resolution feature map FL

2 will be used to predict the intermediate
high-resolution frame IH2 , it will enforce the synthesized LR
feature map to be close to the real intermediate low-resolution
feature map. Therefore, the two offsets Δp1 and Δp3 will
implicitly learn to capture the forward and backward motion
information, respectively.

Deformable ConvLSTM
ConvLSTM is a two-dimensional sequence data modeling
method that is used here for aggregation on the temporal
dimension. At the time point t, ConvLSTM updates the
hidden layer ht and the cell layer ct, and the formula is as follows:

ht, ct � ConvLSTM(ht−1, ct−1, FL
t ), (6)

As is seen from the state update mechanism here, ConvLSTM
can only implicitly capture the state of motion between previous
states: ht−1, ct−1 and input feature maps with small convolutional
receptive fields. Therefore, if there is a large change between
consecutive frames, the previous state will not match the time
scale that FL

t produces seriously. Then, the mismatched noise
information that will be propagated by ht−1 and ct−1 is not the
global information on the useful time scale. As a result, the
reconstructed high-resolution image will produce artifacts with
probability.

To solve this problem and effectively obtain global time scale
information, the network adds a deformable convolution
operation to the state update process of ht and ct in

ConvLSTM. As shown in Figure 3, the update mechanism of
ConvLSTM becomes

Δph
t � gh([ht−1, FL

t ]),
Δpc

t � gc([ct−1, FL
t ]),

hat−1 � DConv(ht−1,Δph
t ),

cat−1 � DConv(ct−1,Δpc
t),

ht, ct � ConvLSTM(hat−1, c
a
t−1, F

L
t ),

(7)

Among them, gh and gc are the general functions with the
stacked convolutional layers, Δph

t and Δpc
t are the predicted

offsets, hat−1 and cat−1 are the aligned hidden and cell states,
respectively. Compared with the normal ConvLSTM, the
hidden layer hat−1 and the cell layer cat−1 are forced to align
with the input features FL

t in the deformable ConvLSTM,
which enables it to handle motion in the video. In addition,
the ConvLSTM here uses a bidirectional structure, which can
fully obtain the information transmitted forward and
backward. Finally, the hidden layer ht is used as the
output, and the frame reconstruction module is used as
the input.

Frame Reconstruction
To reconstruct high-resolution video frames, a synthetic network
shared on a time scale is used. It takes a single hidden state ht as
input and outputs the corresponding high-resolution frame. The
network first uses k2-stacked residual blocks to learn the depth
features and finally uses a sub-pixel upscaling module (Shi et al.,
2016), as shown in Figure 4 to reconstruct high-resolution
frames.

THE MODEL

The model presented in this article uses the Zooming Slow-Mo
network as the infrastructure. Although the network has
proven to be quite powerful in image super-resolution
missions, the data complexity of meteorological
downscaling missions and the multiple input data sources
make the original architecture unable to be directly adapted.
To address this issue, we classified the input data and
reconstructed the Feature Constrained Zooming Slow-Mo
network, which is shown in Figure 5, by using the
characteristics of deformable convolution.

Selection of Dynamic and Static Data
Different from video super-resolution or simple image super-
resolution, the problem of actual data association is usually
considered in the meteorological downscaling behavior. When
it comes to precipitation, it is natural to be associated with
factors of precipitation conditions. For example, the
probability of precipitation is a factor which can be taken
into consideration. To enrich the dynamic data, we also added
the element of reflectivity measurement height. In addition to
these dynamic data, static data are always considered as
influencing factors which include latitude and longitude
coordinates, terrain height, and vegetation information
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(Ceccherini et al., 2015). Since the adopted data set is obtained
in the northwest of France, there is a difference between sea
and land. We believe that geometrical height information and
sea-land mask are the main and easily available static influence
factors. Therefore, we selected the geometrical height and
land–sea mask as static influence factors.

Feature Blender
The fusion of data is a problem worth considering for Zooming
Slow-Mo. The reasons are as follows:

1) Jumping out of the U-Net framework and lacking the
support of symmetrical structure, it is no longer
applicable to integrate information into small-scale
features.

2) There are two types of data in the existing data: static data and
dynamic data. If the violent channel superposition method is
adopted, the effect of integration will naturally get a big
discount.

As we can see from the aforementioned reasons, the
application of a new network structure leads to the difficulty
of designing a feature blender. The most important factor is that

static data and dynamic data are two types of data. It means that it
is unreasonable to fuse two kinds of data in the same way.
Therefore, the question as to how to design the feature
blender remains unexplored.

In the network structure of Zooming Slow-Mo, there exists
an important component which is called deformable
convolution. Deformable convolution improves its
performance by resetting the position information
compared to common convolution. The process of resetting
position information can be seen as a shift of the convolutional
kernel scope. In fact, the behavior of the shift is before the
convolution mapping. Since this behavior does not belong to
the convolution process, we can interpret it as a process of
making a position rule. Different from dynamic data, static
data are fixed values. When it comes to dynamic data, we
expect these data can make effect on correcting the
downscaling value. Therefore, the question as to what kind
of information can be extracted from a fixed value is yet to be
explored. In our opinion, static data are the key to making the
position rule.

According to the idea that dynamic data help correct results
and static data help make position rules, we made some structural
changes to the network, which is shown in Figure 6. Since

FIGURE 3 | Deformable ConvLSTM.

FIGURE 4 | Sub-pixel upscaling module.
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reflectivity itself is dynamic data, we put three kinds of dynamic
data into the feature extractor in the form of channel stacking.
Then, we added a new static data feature extractor on the basis of
the original network, which forms a parallel relationship with the
dynamic data feature extractor. Considering that putting a full
static data feature map into the offset leads to the position rule
being fixed, we spliced equal amounts of the static feature map
and dynamic feature map together in a channel dimension.
Therefore, the acquisition method of offset Δp becomes (FS is
a feature map of static data)

Δp � g([FL
1 , F

L
3 , FS]), (8)

EXPERIMENTS

For the first time, we tested the model performance and data
fusion performance of an FC-FSM network and a U-Net series
network on the public precipitation reflectance dataset
provided by METEO FRANCE. The results of the
experiments conducted on these two networks lead to the
following findings:

1) A Zooming Slow-Mo basic network has better performance
than a UNet3D network in the processing of
downscaling data.

FIGURE 5 | Feature constrained Zooming Slow-Mo network. Dynamic data use the situation from southeast of France as an example just for showing three kinds of
dynamic data, and we used data from northwest of France in our experiment. Static data are the real data from northwest of France.

FIGURE 6 | Way of the feature blender.
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2) Using deformable convolution to scramble the feature
location information of static data is a feasible method to
improve the network performance.

3) The dynamic data used in this article have a positive gain on the
improvement of network performance, but the yield is low.

In the actual training, we set the parameters k1� 5 and k2 � 10,
applied the Adam optimizer (Kingma and Ba, 2014), set the
learning rate as fixed 1e − 5, and trained on a single NVIDIA
Tesla V100 device.

Data Sources
The new reflectivity product provided byMETEO FRANCE (Larvor
et al., 2020) contains precipitation reflectivity data, precipitation rate
data, and reflection measurement height data every 5 min from
February to December 2018. The reflectivity data’s unit is dBZ. The
precipitation rate’s unit is percent. The reflectivity measurement
height’s unit ism. The effective interval of reflectance data is [−9, 70].
The unit step of measurement is 0.5 dBZ. The valid interval of
precipitation rate data is [0, 100]. The valid interval for reflectance
measurement height data is [0, 20000] in m. The undetected data
value is−100, and themissing data value is−200. In addition, the raw
data also provide land-sea mask data and geometrical height data.

Dataset Preprocessing
The data provided by the product cannot be used directly for
three reasons:

1) There are missing and undetected values in the product, which
will affect the output of the training model if not excluded.

2) The numerical range provided by precipitation reflection data
is not all valid data, so it is necessary to filter out some weak
impact data by high-pass filtering.

3) For the downscaling problem, the data do not provide direct
input and target data, which need secondary processing.

For the aforementioned reasons, we removed the original data
and removed the missing values at the edge of the data. The data
below 0.5 mm/h described in this study (Xingjian et al., 2015)
indicate that there is no rain, and according to the
documentation provided by METEO FRANCE, the
Marshall–Palmer relationship is Z � 200 · R1.6. We put 0.5 mm/h
into R and used the relationship dBZ � 10 log10(Z) to get the
threshold value which refers to no rain. The value is about 18 dBZ.
To provide a judgment space for no rain and simplify data
processing, we filtered the data below 15 dBZ, so the
precipitation rate data interval can be standardized within [15, 70].

Furthermore, on the time scale, we did not perform additional
operations on the data. Instead, we used the data with an interval
of 10 min as the input and the data with an interval of 5 min as the
output. After the aforementioned preprocessing steps, the final
dataset input data size was 2, 200, 200, and the label data size was
3, 400, 400. It means that data are interpolated in the middle
frame. In addition, the low-resolution data are downscaled to
twice the scale of the original data.

As precipitation is not a daily phenomenon, to ensure the
quality of the training effect, we filtered out the data with an
effective reflectance area of less than 20%. Finally, we randomly
selected 7,000 sets of data, including 6,000 groups as the training
dataset and 1,000 groups as the test dataset.

Score
To quantify the effect of the networks, we calculated the mean
squared error (MSE) and structural similarity (SSIM). Let
i ∈ {1,/, n} be the index of n grid points of a space-time
patch, then the MSE is defined as follows:

MSE(Y, �Y) � 1
n
∑
n

i

∣∣∣∣Yi − �Yi

∣∣∣∣2, (9)

where Y is the downscaled result, and �Y is the observation. Before
calculating the SSIM, we should calculate luminance, contrast,
and structure:

l(Y, �Y) � 2μYμ �Y + c1
μ2Y + μ2�Y + c1

,

c(Y, �Y) � 2σYσ �Y + c2
σ2Y + σ2�Y + c2

s(Y, �Y) � σY �Y + c3
σYσ �Y + c3

,

(10)

where μY is the mean of Y, μ �Y is the mean of �Y, σ2Y is the variance
of Y, σ2�Y is the variance of �Y, and σY �Y is the covariance of Y and �Y.
c1 � (k1L)2, c2 � (k2L)2, and L is the interval range of value. It

FIGURE 7 | Loss function curve of three different deep learning
methods.

TABLE 1 | Test set evaluation indicator.

MSE (total) MSE (t2) MSE (t1+t3) SSIM

Trilinear 2.452 5.886 0.735 0.895
UNet 1.027 2.054 0.514 0.931
UNet3D 0.855 1.769 0.398 0.953
Zooming Slow-Mo 0.730 1.456 0.367 0.958
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was observed that k1 � 0.01, k2 � 0.03, and c3 � c2
2 . Then, SSIM is

defined as follows:
SSIM(Y, �Y) � l(Y, �Y) · c(Y, �Y) · s(Y, �Y), (11)

Along with the quantitative measures, we visualized the
downscaled fields to show the amount of detail that is
reconstructed visually.

FIGURE 8 | Precipitation reflectance image.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 8878429

Chen et al. Spatiotemporal Downscaling of Radar Data

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Model Performance Analysis
To test the performance of the Zooming Slow-Mo network in
downscaling problems, we prepared a trilinear interpolation,
UNet, UNet3D, and Zooming Slow-Mo networks without

considering the influencing factors of dynamic static data to
conduct comparative experiments. In the training process of
the deep learning method, we used the mean squared error
(MSE) between the output result and the target value as the

FIGURE 9 | Image of the difference between the prediction and the real situation.
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loss function. We traversed the data 40 times and then obtained
the following training curve. In the training environment, we
obtained the descent curve of the loss function, as shown in
Figure 7. It can be seen that the Zooming Slow-Mo network is
much better than UNet and UNet3D in convergence speed.
Zooming Slow-Mo is slightly better than UNet3D in the final
convergence value, while UNet3D is much better than U-Net.

Furthermore, the performance results shown in Table 1 are
obtained by testing on the test dataset. The MSE (total) refers to
the mean square error index of the whole output. MSE (t2) refers
to the mean square error index of the reflectivity data of the
intermediate time point (with spatiotemporal downscaling at the
same time). MSE (t1+t3) refers to the mean square error of
reflectivity data at both time points (spatial downscaling only).
From the indicator results, it can be seen that the deep learning
method has a significant performance improvement compared
with the traditional trilinear interpolation. In the deep learning
methods, the Zooming Slow-Mo network exceeds UNet and
UNet3D in various indicators, especially in the problem of
temporal downscaling.

To compare the actual downscaling effect, we plotted the
downscaling radar reflectance images (Figure 8) and the
difference between the reflectance images predicted by the
downscaling algorithm and the true high-resolution image
(Figure 9). First of all, according to the difference image
effects shown in Figure 8, it can be found that the
performance of the three deep learning downscaling
algorithms provided in this study is much better than the
traditional trilinear interpolation method. Furthermore, it can
be found that when t1 and t3 generate downscaling images, three
networks have obtained good results in the spatial downscaling
data reconstruction effect because of the provision of raw low-
resolution data. It can be found from Figure 9 that the colored
scatter points of the Zooming Slow-Mo network in the
interpolated image are sparse compared with Unet and

UNet3D. Therefore, in the spatial downscaling task, the results
obtained by Zooming Slow-Mo are closer to the real data effect.
The time downscaling of t2 does not provide the original low-
resolution data, so the prediction results obtained lack edge
details compared with t1 and t3. However, according to
Figure 8, it can be found that Zooming Slow-Mo is richer in
shape details on the edge of data color stratification than the
image drawn by UNet3D. It indicates that the generated data
results will be more likely to obtain the simulated image high-
resolution results for the complexity of the structure of the neural
network and the diversification of operation behavior. The
difference image of t2 data in Figure 9 indicates that the data
scatter obtained by the Zooming Slow-Mo network is sparser
than the first two networks. Therefore, the prediction results
obtained by Zooming Slow-Mo are better than those of UNet and
UNet3D in the spatiotemporal downscaling task. This situation
shows that convolution LSTM seems a better solution to deal with
temporal downscaling than convolution in the UNet series
network. The mechanism of LSTM for processing timing
information allows Zooming Slow-Mo extract information
better which makes a faster convergence for the model.

Data Fusion Performance Analysis
In this section, we tested a model separately with static data added
alone (Zooming Slow-Mo-S), a model with static–dynamic data
added alone (Zooming Slow-Mo-D), and the complete improved
structure (Zooming Slow-Mo-DS), respectively. Finally, we got
the loss function curve, as shown in Figure 10. As is seen from
this figure, Zooming Slow-Mo has a stable curve and got the
highest loss. Zooming Slow-Mo-D has a wave curve and the
second highest loss. Zooming Slow-Mo-S and Zooming Slow-
Mo-DS have a similar final loss which is the minimum value, but
the former seems to have a curve that goes down faster than the
latter. These phenomena indicate that Zooming Slow-Mo-S helps
loss fall more smoothly and Zooming Slow-Mo-D makes the loss
fall more unstably. In this experiment, the addition of static data
performs better than the addition of dynamic data. However,
there was no significant performance improvement in Zooming
Slow-Mo-DS in the training process. It means that there is still
room for improvement in the fusion of multiple types of data.

Further, the performance results shown in Table 2 are
obtained by testing on the test dataset. From the MSE (total)
indicator, Zooming Slow-Mo-DS got the best result, Zooming
Slow-Mo-S became the second, and Zooming Slow-Mo-D
became the third. It means that despite adding static data or
dynamic data, the indicators will be improved. The method of
using static data to affect the convolution position offset of the
feature map got a better performance improvement. But the

FIGURE 10 | Loss function curve.

TABLE 2 | Test set evaluation indicator.

MSE (total) MSE (t2) MSE (t1+t3) SSIM

Zooming Slow-Mo 0.730 1.456 0.367 0.958
Zooming Slow-Mo-D 0.696 1.359 0.365 0.960
Zooming Slow-Mo-S 0.676 1.333 0.347 0.960
Zooming Slow-Mo-DS 0.675 1.318 0.354 0.960
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performance gain was not noticeable when the two improvement
methods were combined. From the MSE (t2) indicator, Zooming
Slow-Mo-DS still got the best result, Zooming Slow-Mo-S became
the second, and Zooming Slow-Mo-D became the third. It

showed that adding dynamic data to Zooming Slow-Mo-S will
make the performance of the network better in temporal
downscaling problems. From the MSE (t1+t3) indicator, it
makes some difference; Zooming Slow-Mo-S got the best

FIGURE 11 | Precipitation reflectance image.
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result, Zooming Slow-Mo-DS became the second, and Zooming
Slow-Mo-D became the third. It indicates that adding
dynamic data to Zooming Slow-Mo-S will make the
performance of the network worse in spatial downscaling

problems. From the SSIM indicator, three kinds of
improvements got the same effect.

The images of reflectivity and difference plotted in Figures 11,
12 are then analyzed. In the spatial downscaling of t1 and t3, the

FIGURE 12 | Image of the difference between the prediction and the real situation.
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effect of the image is similar because the index improvement is
not very obvious. The temporal and spatial downscaling of t2 is
different. According to the generated reflectivity image, it can be
found that the addition of dynamic data will inhibit the filling of
high-frequency data. From the prediction results of t2, it can be
found that Zooming Slow-Mo-S can better recover the data
between the 45-dB and 50-dB range in the upper half of the
data. The data processing effect of Zooming Slow-Mo-DS in the
range of 30dB–40dB is weaker than Zooming Slow-Mo-S and
Zooming Slow-Mo-D. Furthermore, it can still be found from the
difference image that the amount of large difference data
generated by Zooming Slow-Mo-DS is relatively less. Overall,
the image effect obtained by Zooming Slow-Mo-S is more in line
with the real situation.

These results verify that the strategy of fusion works. With the
help of deformable convolution, static data can make a greater
position rule than the rule which is affected by dynamic data
alone. It means that static data are more fit for dealing with
affecting inherent rules. Dynamic data can also affect the model,
but the effect is extremely weak. It is obvious that the feature
fusion method based on splicing has little effect. The problem of
how to use dynamic data efficiently is still worth thinking.

CONCLUSION

In this work, we studied the applicability of deep learning in
spatial and temporal downscaling problems. Therefore, we
mainly focused on the radar precipitation reflectivity data. At
the same time, trilinear interpolation, UNet, UNet3D, and one-
stage Zooming Slow-Mo network structures are selected for data
testing. According to the data results, Zooming Slow-Mo can get
better results. Furthermore, we have made appropriate
improvements for Zooming Slow-Mo: one method is to use
static data to affect the position offset features of deformable
convolution, and the other way is to use dynamic data as input to
affect convolution mapping. These two methods improve the
training indicators, while the former is relatively better. In the
end, we combined the two improvements, although Zooming
Slow-Mo-DS has a slight improvement in the data on the
indicator relative to Zooming Slow-Mo-S, and the actual
output of the image effect is not as good as Zooming Slow-
Mo-S.

To verify these conclusions, we drew each network’s training
curve, as shown in Figures 7, 10. We provided the test indexes of
each network under the test set, as shown in Tables 1, 2.

Furthermore, we drew heat graphs and difference graphs of
actual precipitation reflectance; the heat graphs are shown in
Figures 8, 11 and the difference graphs are shown in Figures 9,
12. From the training curves, we found that the Zooming Slow-
Mo network exceeds UNet and UNet3D in various indicators,
especially in the problem of temporal downscaling. The addition
of static data performs better than the addition of dynamic data
on the convergence of the loss function. From the test indexes, we
can find that deep learning methods outperform trilinear
interpolation by a wide margin. In addition, Zooming Slow-
Mo gets the best performance because of deformable convolution
and LSTM. The addition of dynamic and static data enables the
network to obtain varying performance benefits. Finally, from the
heat graphs and difference graphs, we observed a real
downscaling image effect. Because of this, we get the view that
the problem of how to use dynamic data efficiently is still worth
thinking about.

To verify the authenticity of performance improvement, we
compared the results with the DCN network (Serifi et al.,
2021). The author of DCN also carried out downscaling in
rainfall, but the unit of the source data is g/m2. In our work, the
unit is based on the reflectivity which is called dBZ. These two
units are both common units, and they can be converted under
the condition that we know some local constants. Without
compromising the reliability of the values, we decided to
compare the reduction indicator. The author of DCN chose
trilinear interpolation as the baseline and calculated the
decrease rate of the MSE index. The decrease rate is the
reduction indicator. The indicator of DCN and other
networks in our experiment are shown in Table 3.

As we can see from Table 3, the DCN got a reduction of
−62.70%. We tested the same network in our dataset, and it got a
reduction of −65.13%. It means that the DCN really gets
improvements, and it can be applied to different datasets. But
Zooming Slow-Mo seems great, and it got a 5% performance
improvement. With the help of stable and dynamic data, it can
even get more performance improvement.

It is worth mentioning that Zooming Slow-Mo can also be
adapted to other meteorological elements. Elements like
snowfall and rainfall can be directly adapted because they
have a transformation of high-frequency information and fast
change rate. However, elements like air pressure and
temperature cannot be adapted. These elements have more
low-frequency information and a slower rate of change. In
some articles, authors prefer to use residual convolution to
handle elements like temperature and remove residual
convolution to handle elements like rainfall. These
strategies truly make sense. Therefore, before dealing with
elements like temperature, we still need to add more residual
convolution as a strategy. Furthermore, the dynamic data
which are used to affect the original data should also be
considered. These plans will be further tested and improved
in our subsequent experiments.

To solve the downscaling problem by deep learning, the work
we have carried out is only the basic part of the algorithm test.
There are still many problems that need to be studied on this
basis.

TABLE 3 | Performance comparison with DCN.

Methods Baseline MSE results Reduction (%)

DCN 1.740 0.649 −62.70%
UNet 2.452 1.027 −58.11%
DCN (UNet3D) (this study) 2.452 0.855 −65.13%
Zooming Slow-Mo 2.452 0.730 −70.22%
Zooming Slow-Mo-D 2.452 0.696 −71.62%
Zooming Slow-Mo-S 2.452 0.676 −72.43%
Zooming Slow-Mo-DS 2.452 0.675 −72.47%
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1) As an unexplainable model, deep learning makes the low-
resolution data reconstructed into high-resolution data in a
data-driven way, and this method lacks the constraints of
physical factors. Therefore, the appropriate use of dynamic
models (such as adding regularization factors to the loss
function and improving the weight update strategy) will be a
promising performance optimization scheme (Chen et al., 2020).

2) The study we have completed is only the basic algorithm function
of the downscaling of precipitation reflectance elements. In the
actual situation, the function needs to be applied to different tasks
or different areas, and it is known that meteorological
observations vary from year to year due to climate change. In
view of the way of using a single model to adapt to a variety of
situations cannot get good test results, we believed that each
meteorological element or each regional scope needs a separate
network or unique weight to test necessarily. Therefore, using a
deep learning network to solve the scaling problem needs to build
a complete network selection system. It is necessary for the system
to configure the latest data in real time to update themodel weight
and prepare a special model weight for a special environment.

3) The deep learning network in this study is only suitable for a
regular meteorological element grid. However, the

unstructured or irregular network topology is the more real
state of meteorological data (Kipf and Welling, 2016; Qi et al.,
2017). Therefore, the downscaling solution for any grid
topology is worth studying.
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