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Accurate identification of coal and gangue is very important for realizing efficient

separation of coal and gangue and clean utilization of coal. Therefore, amethod for

identifying coal and gangue by using multispectral spectral information and a

convolutional neural network (CNN) model is proposed. First, 200 pieces of coal

and 200 pieces of gangue in the Huainan mining area were collected as the

experimental materials. The multispectral information of coal and gangue was

collected, and the average value of each wavelength position was calculated to

obtain the spectral information of the whole band. Then, based on the one-

dimensional CNN (1D-CNN), namely, 1D-CNN-A and 1D-CNN-B, and with the

help of stochastic gradient descent (SGD), Adam, Adamax, and Nadam optimizers,

the rectified linear unit (ReLU) function and its improved function were used as the

activation function to compare the identification ability of the identificationmodels

with different network structures and parameters. The best 1D-CNN model for

identification of coal and gangue based on multispectral spectral information is

obtained as follows: a network model containing three one-dimensional

convolution units B, PReLU is used as the activation function, and Nadam is

used as an optimizer to achieve the best identification effect. At this time,

40 coal samples in the test set can be accurately identified, and only one

gangue sample in 40 gangue samples is wrongly predicted as coal. Finally,

compared with the traditional recognition strategy (different combinations of

principal component analysis and support vector machine), the excellent

performance of this method is further proven. The results show that the

combination of multispectral imaging and 1D-CNN can achieve accurate

identification of coal and gangue without considering how to select appropriate

preprocessing and feature extraction methods, which is of great significance in

promoting the development of separation technology for coal and gangue.
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1 Introduction

Coal is known as “the black gold.” Since the first industrial

revolution, coal has played an important role in energy, chemical,

and other fields (Dill, 2016), (Cai et al., 2018). It has been one of

the main energy sources used in the world since the 18th century

(Singh et al., 2015). According to the “BP World Energy

Statistical Yearbook” (BP, 2021), released by BP on July 8,

2021, the world’s energy production and consumption

patterns are undergoing profound changes. In 2020, coal

consumption was reduced by 6.2 EJ, a decline of 4.2%. Among

them, the United States (reducing 2.1 EJ) and India (reducing

1.1 EJ) had the largest decline, while China and Malaysia were

two obvious exceptions. The coal consumption of the two

countries increased by 0.5 EJ and 0.2 EJ, respectively.

Nevertheless, coal still accounts for 27.2% of global energy

consumption. This shows that coal still occupies a pivotal

position in the global energy consu mption structure (Zhou

et al., 2020).

Raw coal is the most original coal from underground mining.

It is necessary to separate the coal and gangue and eliminate the

gangue in the raw coal so as to realize clean and efficient

utilization of coal resources (Yuan et al., 2019), (Yuan, 2020).

The separation of coal and gangue can bemainly divided into two

categories: wet gangue separation and dry gangue separation.

Among them, the dry gangue separation represented by ray

separation [X-ray (Zhang et al., 2021) and dual-energy

gamma-ray (Yazdi and Esmaeilnia, 2003)], laser separation

(Wang and Zhang, 2017), vibration separation (Wan et al.,

2022), crushing separation (Yang et al., 2018), and visual

separation (Bai et al., 2021) do not consume water resources,

which is conducive to the environment. At present, it has become

the mainstream separation method. With continuous

development of image processing and artificial intelligence

(AI), the visual separation technology with image recognition

as the core is considered to be a potential separation method for

coal and gangue (Dou et al., 2019). However, there are certain

limitations in using traditional visual methods to separate coal

and gangue. In particular, the identification accuracy of coal and

gangue is affected by the imaging quality, while the traditional

visual methods are disturbed by external factors such as light

and dust.

Spectral imaging technology (Bioucas-Dias et al., 2013),

developed in the 1980s, involving optics, electronics,

information science, and many other disciplines, is a new

generation of optical nondestructive testing technology. As an

important branch of spectral imaging, multispectral imaging

(MSI) effectively avoids the problems of narrow band range

and is susceptible to interference in traditional RGB images by

collecting images in several different spectral regions. Therefore,

it is widely used in mineral engineering (Hu et al., 2022),

agriculture (AlSuwaidi et al., 2018), food industry (Qin et al.,

2013), biomedicine (Li et al., 2013), and other fields. In order to

improve the availability and performance of mineral spectral

data, Xie et al. (Xie et al., 2022) shared an integrated openmineral

spectral library (also known as Rock Spectral Library, RockSL)

and developed a so ftware system for the management, analysis,

and ap plication of mineral and rock spectral data. Li et al. (Li

et al., 2022) developed a set of coal gangue imaging systems based

on visible and near-infrared hyperspe ctral imaging technology

and used the feature selection m ethod to simplify the

classification model, providing a reference for construction of

coal and coal gangue mu ltispectral systems. Shao et al. (Shao

et al., 2020) designe d a 91-channel hyperspectral lidar with an

acousto-optic tunable filter (AOTF) as the spectral device. After

collecting the spectra of four coal/rock samples, they used naive

Bayesian (NB), logistic regression (LR), and support vector

machine (SVM) for classification and achieved excellent

classification accuracy. Aiming at how to realize real-time

monitoring of coal, He et al. (He et al., 2019) used

multispectral remote sensing to collect real-time coal image

data and realized high-precision classification with an extreme

learning machine. It can be seen that spectral imaging technology

has a wide range of successful applications in geology.

In recent years, the deep learning method represented by the

deep convolution neural network has developed rapidly. It has

many applications in face recognition (Voulodimos et al., 2018),

speech recognition (Peddinti et al., 2018), automatic driving (Xu

et al., 2021), geoscience (Hu et al., 2019), and industrial detection

(Munir et al., 2019), which makes the AI algorithm develop

unprecedentedly. It is necessary to emphasize that the deep

convolution neural network has also made considerable

progress in spectral analysis. To solve the problem that the

feature information extraction of hyperspectral by three-

dimensional CNN (3D-CNN) needs to rely on complex

models, Ghaderizadeh et al. (Ghaderizadeh et al., 2021)

proposed a 3D fast learning block (deep separable convolution

block and fast convolution block) and then introduced a two-

dimensional CNN (2D-CNN) to extract the spatial

characteristics of the spectrum tested it on the standard

datasets (Salinas, University Pavia and Indian Pines). In this

way, the complexity of the model was effectively reduced under

the premise of considering the accuracy of the model.

Considering the importance of automatic sorting of coal and

gangue, Chen et al. (Chen et al., 2022) proposed a new idea to

analyze the acoustic multi-channel auditory spectrum of

hydraulic support based on the convolution neural network.

The recognition rate of this method for coal and gangue can

reach 99.5%, and it has excellent anti-noise ability. On the basis of

obtaining light detection and ranging (LiDAR) data, Maxwell

et al. (Maxwell et al., 2020) used Mask R-CNN to extract valley

filling surfaces, and the accuracy, recall, and F1 score were all

higher than 0.85, which showed that the combination of Mask

R-CNN and LiDAR had great potential in geomorphologic

feature rendering. In order to solve the problem of difficult

monitoring of ground subsidence in mining areas, Wang et al.
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(Maxwell et al., 2020) constructed a new phase unwrapping

method based on the U-Net convolutional neural network,

which solved the problem that interference fringes were

interrupted or partially confused due to low coherence in coal

mining areas, and it was difficult to obtain the correct phase

unwrapping. Combining spectroscopy with a deep learning

algorithm, Xiao et al. (Xiao et al., 2022) proposed a method

for rapid identification of coal types in the field. The convolution

neural network was used to extract the two-dimensional spectral

characteristics of coal, and the extreme learning machine was

used as a classifier for feature recognition. Rapid and accurate

identification of coal and gangue was realized. It is not difficult to

find that convolutional neural network technology has a wide

range of successful applications in earth science.

Considering the wide application of multispectral technology

and the excellent performance of the CNN in spectral analysis, a

recognition method for coal and gangue based on multispectral

spectral information combined with 1D-CNN is proposed in this

study. The main research objectives of this study are as follows: 1)

to analyze the identification ability of multispectral spectral

analysis combined with 1D-CNN for coal and gangue; 2)

compare the recognition effect of 1D-CNN with different

structures to select the best structure; 3) reasonably set the

optimizer, activation function, and network depth to obtain

the best 1D-CNN identification model of coal and gangue;

and 4) by comparing with the traditional modeling methods,

the superiority of the 1D-CNN model is further verified.

2 Materials and methods

2.1 Materials and samples

As we all know, the Huainan–Huaibei coal mine is an

important coal production base in China, and the Huainan

coal mine is a typical representative of the Huainan–Huaibei

coal mine. Therefore, we took the coal and gangue samples from

the Huainan mining area as the research objects. For the purpose

of making the experimental results more reliable and effective

and avoiding the interference of sample size and shape on the

experimental results as much as possible, we select coal and

gangue with a particle size of about 50 mm and a similar shape as

experimental samples. OnMarch 16, 2019, 200 pieces of coal and

200 pieces of gangues of similar sizes were collected in the

Huainan mining area. A total of 400 experimental samples

were collected for subsequent multispectral data collection and

analysis. Some coal and gangue samples are shown in Figure 1.

2.2 Multispectral system

To realize the acquisition of multispectral information of coal

and gangue, it is necessary to build a multispectral acquisition

system. As shown in Figure 2, the core component is the

acquisition unit of multispectral data. In addition, the

conveyor belt for raw coal transmission and the host

computer for multispectral information acquisition are also

included. The acquisition unit of multispectral data is mainly

composed of a multispectral system and a light source.

Multispectral systems include filters, focusing lenses, and

spectral cameras. The filter device consists of a 675-nm

longpass filter (Edmund Optics, United States) and a 975-nm

shortpass filter (Edmund Optics, United States), which limits the

collected spectral range between 675 nm and 975 nm. The fixed

focal length lens adopts a VIS-NIR lens (Edmund Optics,

United States), and the adjustable range of its focal length is

1.4 mm–16 mm. The area array spectral camera is selected as the

spectral camera (MQ022HG-IM-SM5X5-NIR, XIMEA GmbH,

Germany), which is equipped with an advanced CMOS imager

(CMV2000, Interuniversity Microelectronics Centre, The

Kingdom of Belgium), which can realize spectral imaging of

25 bands at the same time. The auto scan light is a halogen light

source (LS-LHA, SUMITA, Japan), and the power is set to

150 W. When collecting the multispectral data of coal and

gangue, the acquisition distance between the lens and the

sample is about 32 cm, the focal length of the lens is set to

2.8 mm, and the acquisition angle is set to 90° (that is, the lens is

perpendicular to the sample acquisition plane). The exposure

time is set to 70.01 ms by the HSImager software installed on the

computer, and the experimental data are saved by the HSImager.

The spectral camera is equipped with a 5 × 5 array sensor,

and the multispectral acquisition system can collect the spectral

information of 25 bands of coal and gangue in the range of

675–975 nm. These 25 wavelength positions are 682 nm, 697 nm,

722 nm, 736 nm, 748 nm, 762 nm, 773 nm, 786 nm, 798 nm,

811 nm, 829 nm, 841 nm, 851 nm, 863 nm, 872 nm, 882 nm,

891 nm, 900 nm, 914 nm, 924 nm, 932 nm, 939 nm, 946 nm,

954 nm, and 959 nm.

2.3 Analysis method

For the purpose of constructing a suitable CNN identification

model using the multispectral spectral information of coal and

gangue, the multispectral CNN identification model of coal and

gangue is constructed by using the flow chart shown in Figure 3. In

particular, to adapt to the data format of the input multispectral

spectral information, a 1D-CNN identification model is constructed

for identification of coal and gangue. First, the multispectral spectral

information of coal and gangue is used as the input of the CNN to

construct the 1D-CNN identification model with the spectral

information of coal and gangue. Then, the model performance is

evaluated by the accuracy, loss, training time, and other indicators,

and the model structure and hyperparameters are continuously

optimized to construct an optimal 1D-CNN model for identifying

coal and gangue. In addition, for the purpose of proving the
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superiority of the proposed method, the traditional identification

method is used to construct the identification model as a

comparison to further verify the reliability and effectiveness of

this method. Specifically, different combinations of principal

component analysis (PCA) and SVM are used to achieve spectral

classification.

2.3.1 1D-CNN
Considering that the data collected by the multispectral

equipment selected in this study are simple, the extracted

spectral information contains the average spectral intensity of

25 wavelength positions, that is, the input dimension of the 1D-

CNN model for identifying coal and gangue constructed in this

FIGURE 1
Some samples of coal and gangue.

FIGURE 2
Schematic diagram of the multispectral acquisition system.
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study is 25. As an important branch of the CNN, 1D-CNN

usually has two common model structures to implement spectral

classification, as shown in Figure 4.

The basic composition of the two common 1D-CNN

structures shown in the abovementioned graph is similar,

which mainly includes a 1D convolutional layer, batch

normalization layer, activation layer, 1D pooling layer, fully

connected layer, and Softmax layer for classification. The

depth of the network can be deepened by increasing the

number of 1D convolution units (1D Conv Units) so as to

construct a deeper 1D-CNN network. The difference between

the abovementioned two structures is mainly reflected in the

different composition of the 1D Conv Unit. In the structure

shown in Figure 4A, the 1D Conv Unit A is mainly composed of a

1D convolutional layer, a batch normalization layer, an activation

layer, and a 1D pooling layer. In the structure shown in Figure 4B,

the 1D Conv Unit B is mainly composed of a 1D convolutional

layer, an activation layer, and a 1D pooling layer. The batch

normalization layer is placed before the 1D Conv Unit, and the

1D Conv Unit B does not contain the batch normalization layer,

that is, such a network only needs a batch normalization

operation.

2.3.2 Optimizer
A backpropagation algorithm is usually used in the CNN to

train the parameters in the network model, and the best CNN

model is selected by training and learning the sample data. In

order to quantitatively evaluate the prediction effect of a CNN

model, an objective function C is usually defined and used as a

quantitative display of model performance:

C � 1
2n

∑
x

����y(x) − αL(x)����2, (1)

where y(x) represents the sample label (category information)

and αL(x) represents the output value. Obviously, the smaller the

objective function, the better the training effect, that is, the better

the model performance. To minimize the objective function,

SGD, Adam, and some variants based on Adam (Adamax and

Nadam) are usually used.

SGD (Robbins and Monro, 1951), namely, stochastic

gradient descent was proposed by Robbins and Monro in

1951. It has a history of more than 70 years. For the update of

model parameters, SGD adopts the method of calculating the

gradient of a mini batch in each iteration and then updating the

model parameters, so it can effectively enhance the training

speed. SGD, as a common optimization strategy, updates

parameters according to Eqs. 2, 3:

gt � ∇θt−1f(θt−1), (2)
Δθt � −η1pgt, (3)

where gt represents the gradient and η1 represents the learning

rate of SGD.

The optimization idea of Adam (Kingma and Ba, 2014),

namely, Adaptive Moment Estimation is to dynamically adjust

the learning rate of each parameter by means of the first-order

moment estimation and second-order moment estimation of the

FIGURE 3
Flow chart of article analysis ideas.

Frontiers in Earth Science frontiersin.org05

Hu et al. 10.3389/feart.2022.893485

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.893485


gradient. The main advantage of Adam is that the learning rate of

each iteration after bias correction is within a certain interval, so

the whole parameter optimization process is relatively stable. The

Adam optimization strategy updates model parameters

according to the following formula:

mt � μpmt−1 + (1 − μ)pgt, (4)
nt � υpnt−1 + (1 − υ)pg2

t , (5)
m̂t � mt

1 − μt
, (6)

n̂t � nt
1 − υt

, (7)

Δθt � − m̂t��̂
nt

√ + ϵ
pη2. (8)

Heremt is the first moment estimation of the gradient, which can

be regarded as the estimation of expectation E|gt|; ntis the second
moment estimation of the gradient, which can be regarded as the

estimation of expectation E|g2
t |; m̂t is the correction of mt; n̂t is

the correction of nt; η2is the learning rate of Adam. According to

the abovementioned equation, it can be found that the whole

learning process is dynamically adjusted according to the

gradient, while − m̂t��̂
nt

√
+ϵ has a dynamic constraint on the

learning rate η2 and changes dynamically in a specific range.

Adamax, as a variant of Adam, changes Eqs. 9, 10 tomake the

upper limit of learning rate simpler. The specific formula is

nt � max(υpnt−1, ∣∣∣∣gt

∣∣∣∣), (9)

Δθt � − m̂t

n̂t + ϵpη3, (10)

where η3 is the learning rate of Adamax.

Nadam is also a variant of Adam, similar to an Adam

deformation form with Nesterov. The Nadam optimization

strategy updates the model parameters according to the

following formula:

ĝt �
gt

1 − Πt
i−1μi

, (11)

mt � μtpmt−1 + (1 − μ)pgt, (12)
m̂t � mt

1 − Πt+1
i�1μi

, (13)

nt � υpnt−1 + (1 − υ)pg2,
t , (14)

n̂t � nt
1 − υt

, (15)

FIGURE 4
Structure of the commonly used 1D-CNN. (A) 1D-CNN-A, and (B) 1D-CNN-B.
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�mt � (1 − μt)pĝt + μt+1pm̂t, (16)
Δθt � −η4p

�mt��̂
nt

√ + ϵ.
(17)

Here η4 is the learning rate of Nadam.

2.3.3 Activation function
The backpropagation algorithm is usually used in the CNN to

train the parameters in the network model, and the best CNN

model is selected by training and learning the sample data. In

order to quantitatively evaluate the prediction effect of a CNN

model, an objective function C is usually defined and used as a

quantitative display of model performance.

The activation function plays a very important role in the

learning and understanding of some complex and nonlinear

functions of the neural network model. In neurons, after a

weighted summation operation, the input data usually also act on

a function, namely, the activation function, which is introduced to

add nonlinear characteristics to the network model. If the activation

function is not used, the output of each layer is a linear mapping of

input. Therefore, no matter how to increase the depth of the

network, the output of the network is essentially a linear

combination of inputs. At this time, the network is also called a

perceptron. If the activation function is used, nonlinear factors can be

introduced. At this time, the neural network can approximate any

nonlinear function, that is, it can be applied to nonlinear models and

systems. That is to say, the activation function introduces nonlinear

factors into the neural network so that the neural networks can be

used to fit various curves. In the early stage, Sigmoid or tanh was

used as the activation function in the neural network model. In

recent years, with the deepening of the neural networkmodel and the

rapid development of the CNN, the ReLU function and its improved

functions (such as the LeakyReLU function, PReLU function, ELU

function, and ThresholdedReLU function) are widely used in the

deep neural network.

Nair and Hinton (Nair and Hinton, 2010) proposed the

rectified linear unit (ReLU) at the 27th International Conference

on Machine Learning (ICML 2010), also known as the modified

linear unit, which is used as the activation function of the CNN

model. Compared with the traditional Sigmoid and tanh, ReLU

has better and faster performance. The analytic expression of the

ReLU function can be expressed as

ReLU(x) � {x, x> 0
0, x≤ 0 (18)

.

In order to solve the problem that some neurons may die in

the ReLU function, a leakage value is introduced in the negative

half of the ReLU function, namely, the leakage linear rectification

function (LeakyReLU) (Zhang et al., 2017). The LeakyReLU

function can be expressed as

LeakyReLU(x) � { x, x≥ 0
αx, x< 0

(19)
.

Exponential linear unit (ELU) (Clevert et al., 2015) is an

improved function for the ReLU function, which attempts to

make the output mean of the activation function close to zero so

as to enhance the learning speed. At the same time, compared

with the ReLU function, the function has a certain output to the

negative input (i.e., x< 0), and the output of the negative interval

has a certain robustness to noise interference, which can

effectively eliminate the problem of some neurons ’ death.

The analytical expression of the ELU function can be

expressed as

ELU(x) � { x, x≥ 0
α(ex − 1), x< 0

(20)

At the 2015 IEEE International Conference on Computer Vision

(ICCV), He et al. (He et al., 2015) proposed an improvement in the

ReLU, the parametric rectified linear unit (PReLU), which can be

considered a deformation form of the Leaky ReLU. The analytical

expression of the PReLU function can be expressed as

PReLU(xi) � { xi xi > 0
aixi xi ≤ 0

. (21)

The threshold modified ReLU (ThresholdedReLU) (Konda

et al., 2014) can also be regarded as a deformation of ReLU. Its

main idea is to introduce an activation threshold, which makes

the activation function discontinuous. The analytical expression

of the ThresholdedReLU function can be expressed as

ThresholdedReLU(xi) � { xi xi > 0
aixi xi ≤ 0.

(22)

2.4 Software tools

Matlab R2020a was utilized to draw and construct the

identification model. Graphs in this study were constructed by

EDraw Max and Origin 2021. A desktop computer (64-bit

Win10 operating system) was used as a data processing

platform to complete the construction and analysis of the

recognition models. The device includes an i7–9700K CPU, an

NVIDIA RTX2070 GPU, and 16GB RAM, which can

excellently complete the model construction task of this

article.

3 Results and discussion

3.1 Multispectral information analysis of
coal and gangue

Multispectral spectral information is a combination of

multispectral data from all bands to calculate the average

value of each wavelength position to obtain spectral
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information covering the whole band. According to the imaging

information at 25 wavelengths in the range of 675–975 nm of

multispectral data, the multispectral spectral information of coal

and gangue was extracted. There were 200 samples of coal and

200 samples of gangue, and a total of 400 samples of multispectral

spectral data were obtained. The multispectral spectral

information data set of coal and gangue was constructed for

training the CNN recognition model. With 25 wavelength

positions as the horizontal axis and spectral intensity as the

vertical axis, the spectral information of coal and gangue was

displayed in the same coordinate system (the range of the

horizontal axis and the vertical axis is the same) in order to

display the spectral information of coal and gangue more clearly,

as shown in Figure 5. Figure 5A shows the multispectral spectral

information of all 200 coal samples, it can be seen that the

spectral intensity of coal is mainly concentrated in

35–50 arbitrary units (a.u.), and the maximum spectral

intensity is less than 60 a.u. Also, Figure 5B shows the

multispectral spectral information of all 200 gangue samples,

it can be seen that the spectral intensity of gangue is mainly

concentrated in 35–70 a.u., and the maximum spectral intensity

is less than 80 a.u. By comparison, we find that the spectral

intensity of gangue samples is higher than that of coal samples.

This is because the color of coal is usually black, and the color of

gangue is usually grayish brown. When the MSI system is used to

obtain its multispectral data, the coal sample will absorb more

energy, resulting in less reflected information. In terms of

spectral information, the overall spectral intensity is lower

than that of the gangue sample. At the same time, it can also

be found that the spectral intensity of coal and gangue also

overlaps in some samples, so it is necessary to use stoichiometric

tools or data processing methods to realize the accurate

identification of coal and gangue.

3.2 1D-CNN-A network identification
model

According to the model construction idea shown in

Figure 4A, a suitable 1D-CNN-A shallow network model for

the identification of coal and gangue is established by using only

one 1D Conv Unit A and the multispectral spectral information

of coal and gangue. The samples from the training set were used

to construct the model under the SGD, Adam, Adamax, and

Nadam optimizers, and the identification performance of the

model was verified by the test set. Three experiments were

repeated, and the accuracy, loss, and training time of the test

set in each experiment were recorded in Table 1.

The first step was to compare the accuracy of the four

optimizers. First, by observing the accuracy of three

experiments in the table, we found that the minimum

accuracy of the test sample is 91.25%, and the maximum

accuracy can reach 98.75%. Then, by comparing the average

recognition rate, when Adam and Adamax were used as the

optimizers, the average recognition rate of the test set in the three

experiments was the highest, which can reach 96.67%. At this

time, the standard deviation of the recognition rate of Adamax in

the three experiments is only 0.72%, which indicates that using

Adamax as the optimizer can make the 1D-CNN-A shallow

network obtain better stability than when using Adam as the

optimizer. When SGD was used as the optimizer, the average

recognition rate under three experiments was the lowest, which

was 94.17%. The second step was to compare the losses of the

four optimizers. Observing the loss value of the 1D-CNN-A

network under four optimizers, it was obvious that the loss value

of the 1D-CNN-A shallow network containing only one 1D Conv

Unit A is less than 0.34 for all experiments. When Adamax was

used as the optimizer, the average loss of the sample in the test set

FIGURE 5
Spectral curves of multispectral imaging for coal and gangue. (A) Coal and (B) gangue.
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under three experiments was the least, at only 0.1096. Also, when

Nadam was used as the optimizer, the average loss of the test set

in the three experiments was 0.2157. The third step was to

compare the training times in each epoch of the four

optimizers. It can be found that when using four optimizers

to optimize the 1D-CNN-A network, the training time per epoch

fluctuates between 12.00 and 16.500 ms/epoch, and when using

the SGD optimizer, the training time was the shortest (the

average time is only 13.0046 ms/epoch), and when using the

Nadam optimizer, the training time was the longest (the average

time is 15.2519 ms/epoch). In summary, when using the

multispectral spectral information of coal and gangue

combined with a 1D-CNN-A network to construct the

identification model, under the condition of only containing a

1D Conv Unit A, using Adamax as the optimizer of the network

can achieve the best identification effect, which can realize the

average recognition rate maximization and the average loss

minimization of the sample in the test set.

3.3 1D-CNN-B network identification
model

According to the model construction idea shown in

Figure 4B, a suitable 1D-CNN-B shallow network model for

the identification of coal and gangue is established by using only

one 1D Conv Unit B and the multispectral spectral information

of coal and gangue. The training set was used to construct the

model under the SGD, Adam, Adamax, and Nadam optimizers,

and the identification performance of the model was verified by

the test set. Repeating three experiments, we show the average

results in the form of a histogram and the standard deviation in

the form of a one-way error bar. The relevant results are shown in

Figure 6. Figure 6A shows the recognition rate of the test set of

four different optimizers under three independent tests. It can be

seen that the average recognition rate of the 1D-CNN-B shallow

network containing only one 1D Conv Unit B is higher than

96.00%. When Adamax and Nadam were used as the optimizers,

the average recognition rate of the test set under the three

experiments was the highest, reaching 97.50%. When SGD

was used as the optimizer, the average recognition rate of the

test set under three experiments was the lowest, which is 97.08%.

Figure 6B shows the loss of the test set of four different optimizers

under three independent tests. It can be seen that the loss under

all experiments of 1D-CNN-B shallow networks containing only

one 1D Conv Unit B is less than 0.22. When Nadam was used as

the optimizer, the average loss of the test set under three

experiments was the smallest, at only 0.0363. Also, when SGD

was used as the optimizer, the average loss of the sample in the

test set under three experiments was the largest, which was

0.0967. To sum up, when the multispectral information of

coal and gangue was combined with the 1D-CNN-B network

to construct the identification model of coal and gangue, under

the condition of only containing a 1D Conv Unit B, using Nadam

as the optimizer of the network can achieve the best identification

effect. At this time, the average recognition rate of the test set

sample was the largest and the average loss was the smallest.

3.4 Parameter selection of the 1D-CNN
identification model

Through the experimental results of Section 3.2 and Section

3.3, it can be seen that when using the 1D-CNN-A network to

build the shallow identification model of coal and gangue, using

Adamax as the optimizer can obtain better results, and when

using the 1D-CNN-B network, using Nadam as the optimizer can

obtain better results. The mean and variance of recognition rate,

loss, and training time of the two networks under three

independent experiments are recorded in Table 2. It can be

TABLE 1 Results of the 1D-CNN-A network under different optimizers.

Optimizer Test 1 Test 2 Test 3 Mean value Standard deviation

Accuracy (%) SGD 95.00 92.50 95.00 94.17 1.44

Adam 98.75 97.50 93.75 96.67 2.60

Adamax 96.25 97.50 96.25 96.67 0.72

Nadam 98.75 96.25 91.25 95.42 3.82

SGD 0.1175 0.3400 0.1645 0.2073 0.1173

Adam 0.1087 0.1212 0.1618 0.1306 0.0278

Loss Adamax 0.1059 0.0805 0.1425 0.1096 0.0312

Nadam 0.1296 0.1819 0.3355 0.2157 0.1070

SGD 14.5492 12.0209 12.4437 13.0046 1.3543

Training time (ms/epoch) Adam 15.2177 13.6406 14.1003 14.3195 0.8111

Adamax 15.0633 13.3842 13.4510 13.9662 0.9507

Nadam 16.4891 14.5331 14.7336 15.2519 1.0761
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seen that the two different network structures have high

recognition rates for coal and gangue, which are higher than

95.00%, indicating that the two network structures are feasible

and effective for identifying coal and gangue. More specifically,

the 1D-CNN network using B structure (i.e., 1D-CNN-B) has a

higher average recognition rate and lower average loss. In terms

of training time, the training time of the 1D-CNN with two

structures is similar, and the average training time of each epoch

of the 1D-CNN-B network is about 1 ms longer than that of 1D-

CNN-A. Considering that the 1D-CNN model constructed in

this study is mainly used for identification of coal and gangue, the

model structure with higher average recognition rate is preferred,

that is, Nadam optimization of the 1D-CNN-B shallow network

is more suitable.

Considering that the selection of different activation

functions determines that the network model has different

performances, it is also crucial to select the appropriate

activation function. In the optimization of the 1D-CNN-B

shallow network with Nadam, the ReLU function and its

improved functions (ELU function, LeakyReLU function,

PReLU function, and ThresholdedReLU function) were

selected as the activation functions. Three experiments were

randomly carried out to compare the accuracy and loss, and

the error band (using the standard deviation) graph is shown in

Figure 7.

Figure 7A shows the sample recognition rate of five

different activation functions in the test set under three

independent tests. It can be found that the average

recognition rate of the 1D-CNN-B shallow network is higher

than 93.00%. When LeakyReLU or PReLU was used as the

activation function, the average recognition rate of the test set

under three experiments was the highest, reaching 97.92%.

Also, when ThresholdedReLU was used as the activation

function, the average recognition rate in the three

experiments was the lowest (95.42%). Figure 7B shows the

loss of the test set samples of five different activation

functions under three independent experiments. It can be

seen that the loss of the 1D-CNN-B shallow network under

all experiments is less than 0.26. When PReLU was used as the

activation function, the average loss of the sample in the test set

under three experiments was the smallest (only 0.0559). Also,

when ThresholdedReLU was used as the activation function,

the average loss was the largest (0.1440). In summary, when the

identification model of coal and gangue is constructed by using

multispectral spectral information combined with a 1D-CNN-B

shallow network (only containing one 1D Conv Unit B), under

the condition of using Nadam as the optimizer, using PReLU as

the activation function can achieve the best identification effect.

At this time, the average recognition rate of the test set sample is

the largest and the average loss is the smallest.

FIGURE 6
Results of the 1D-CNN-B network under different optimizers. (A) Accuracy and (B) loss.

TABLE 2 Comparison of performance under the two types of shallow 1D-CNN optimal models.

Accuracy (%) Loss Training time (ms/epoch)

Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation

1D-CNN-A (Adamax) 96.67 0.72 0.1096 0.0312 13.9662 0.9507

1D-CNN-B (Nadam) 97.50 1.25 0.0622 0.0259 14.9384 0.2357
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After selecting PReLU as the activation function, the number of

1D Conv Unit B in Figure 4B is gradually increased on the basis of

the shallow 1D-CNN-Bnetwork to achieve the purpose of deepening

the network depth. The specific operationmethodwas as follows: the

number of convolutional kernels in the 1D convolutional layer inside

each 1D Conv Unit B remained the same, the size of the

convolutional kernel was set to 3, the step size was set to 2, and

the filling method was set to ‘same’ (that is, the convolution results at

the boundary were retained so that the output size was consistent

with the input size). The number of 1D Conv Unit B increased

according to 1–2–3–4, and the number of convolutional kernels

increased according to 16–32–64–128. In the process of training and

testing the 1 D-CNN-B network, Nadam was selected as the

optimizer. Three experiments were randomly carried out, and

relevant indicators were calculated and shown in Figure 8.

By observing the abovementioned graphs, it can be seen that

with the deepening of the network depth, the accuracy does not

show a trend of increasing but first increases and then decreases.

The reason may be when the number of network layers is small,

with the increase of the number of layers, more effective features

can be extracted, which is conducive to classifier identification

based on these features, so the recognition rate increases

gradually; and when the number of layers increases to a

certain extent, the network depth continues to increase, and

more features can be extracted, but it may contain some useless

features, which will cause some interference to the identification

of the classifier, so the recognition rate decreases to a certain

extent. In particular, when using three 1D Conv Unit B, the

average recognition rate can be maximized and the loss

minimized. At the same time, it can also be seen that when

the number of 1D Conv Units is increased, the training time and

the number of model parameters to be trained have increased to

varying degrees. It is obvious that with the deepening of the

network depth, it will inevitably lead to an increase in the number

of parameters that need to be trained, so the training time will

also increase. In summary, when the multispectral spectral

information of coal and gangue is combined with the 1D-

CNN-B network to construct the identification model, the

network model contains three 1D Conv Unit B, Nadam is

used as the optimizer, and PReLU is used as the activation

function, which can achieve the best identification effect. At

the same time, the network parameters of the model are shown in

Table 3.

The abovementioned table shows the core composition and

output size of the optimized 1D-CNN identification model of coal

and gangue. The input size of the network is consistent with the

dimension of the multispectral spectral information, which is 25 × 1

(i.e., the number of channels of the spectral data). After batch

normalization, the size does not change because the operation is

mainly to normalize the input data. Next, the batch normalized data

are connected to three consecutive 1D Conv Units B, the output size

of the first 1D Conv Unit B (containing 16 convolutional cores) is

12 × 16, the output size of the second 1D Conv Unit B (containing

32 convolutional cores) is 6 × 32, and the output size of the third 1D

Conv Unit B (containing 64 convolutional cores) is 3 × 64. Finally,

the output of the upper layer is ‘flattened’ by the Flatten layer as a 1D

vector and then connected to the fully connected layer (using PReLU

as the activation function and setting the output to 10) and then

connected the output of the first fully connected layer to the second

fully connected layer (using Softmax as the activation function and

keeping its output consistent with the category, that is, setting the

output to 2) for the output of the identification result of coal and

gangue.

3.5 Performance of the optimal 1D-CNN
recognition model of coal and gangue

The multispectral spectral information identification model

of coal and gangue is established according to the basic structure

FIGURE 7
Results of the 1D-CNN-B network under different activation functions. (A) Accuracy and (B) loss.
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of the 1D-CNN-B network selected in Section 3.4, and the

accuracy and loss of the training set and test set of the model

were recorded under 1,000 iterations, as shown in Figure 9.

Obviously, with the increasing number of iterations, the

recognition accuracy of the training set and test set showed an

upward trend and eventually stabilized (tended to 1), while their loss

showed a downward trend and finally stabilized (tended to 0).When

the 1D-CNN model is used for multispectral classification of coal

and gangue, the accuracy and loss reach a stable value after about

300 epochs. In other words, the proposed 1D-CNN model (in

particular, using the 1D-CNN-Bnetwork) is feasible and effective for

classifying the multispectral spectral information of coal and gangue

and realizing the identification of coal and gangue.

Figure 10 displays the identification effect of the trained 1D-

CNN identification model on the test set samples. It can be

clearly seen that only one of the 40 gangue samples was wrongly

predicted as coal, and 40 coal samples can be accurately

identified. That is to say, only one of the 80 test samples is

wrongly classified, indicating that the 1D-CNN model

constructed in this study can realize the accurate identification

of coal and gangue.

3.6 Comparison with traditional
recognition methods

For the analysis of spectral information, especially the

classification problem, the combination strategy of dimension

reduction and classifier is usually adopted. In this study, the

traditional spectral identification methods are used for

comparison. Specifically, different combinations of PCA and

SVM are used to achieve spectral classification. First, the

spectral data of coal and gangue are normalized, and the data

normalization interval was set to [0,1]. Then, the normalized data

were processed by PCA to achieve the extraction of principal

components, and the cumulative contribution rate was set to 95%

in the PCA. Finally, the abovementioned processed data were

FIGURE 8
Results under different numbers of one-dimensional convolution units. (A) Accuracy and loss. (B) Training time and number of trainable
parameters.

TABLE 3 Parameters details of the 1D-CNN network.

Component name Output size

Input layer 25 × 1

Batch normalization layer 25 × 1

1D Conv Unit B 1 12 × 16

1D Conv Unit B 2 6 × 32

1D Conv Unit B 3 3 × 64

Flatten 192

Fully connected layer 1 (PReLU) 10

Fully connected layer 2 (Softmax) 2

FIGURE 9
Accuracy and loss of the proposed 1D-CNN recognition
model.
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divided into the training set and test set according to the principle

of random division. The training set was fed into three different

SVM classifiers (radial basis function was selected as the kernel

function), namely, grid search SVM (GS-SVM), genetic

algorithm SVM (GA-SVM), and particle swarm optimization

SVM (PSO-SVM) to construct the identification model of coal

and gangue, and the identification performance was verified by

the samples of the test set. At the same time, for the purpose of

forming a more perfect comparison, the normalized data were

not processed by PCA as a control to compare the performance

of different identification models, and the identification results

under three different experiments are shown in Figure 11.

By observing Figure 11, it can be found that when the spectral

information of coal and gangue is fed directly into different SVM

identification models after normalization, the identification

accuracy can be stabilized at more than 95.00%, and when

GS-SVM is used as the classifier, the maximum average

recognition rate can be reached (97.50%). When the spectral

information of coal and gangue is normalized and processed by

PCA and then fed into different SVM identification models, the

recognition accuracy can be stabilized at more than 85.00%, and

when GA-SVM is used as the classifier, the maximum average

recognition rate is 92.50%. When the normalized spectral data

are processed by PCA, the average recognition rate is lower than

that of the spectral data without PCA, which shows that the

spectral information loses some effective information after

dimension reduction, which leads to a decrease in recognition

accuracy. However, no matter whether the spectral information

is processed by PCA or the spectral information is not processed

by PCA, the recognition accuracy of the SVM classifier is lower

than that of the 1D-CNNmodel proposed in this study. Although

some classification models can achieve high classification

accuracy, they are less stable than the CNN. On the other

hand, machine learning algorithms need complex data

processing steps, are more cumbersome, and need to pay

attention to feature extraction and classifier cooperation.

4 Conclusion

Aiming at the urgent need for accurate identification of coal and

gangue, a method of identifying coal and gangue usingmultispectral

spectral information combined with the CNN model is proposed.

More specifically, a 1D-CNN model for multispectral spectral

information identification of coal and gangue is constructed. The

model comprehensively utilizes spectral information in multiple

bands and uses 1D-CNN to automatically extract spectral features of

coal and gangue, which eliminates the complex preprocessing and

feature extraction steps of traditional spectral information

identification methods. A multispectral data acquisition system

was built to obtain the multispectral information of 200 pieces of

coal and 200 pieces of gangue in the Huainan mining area, and the

average value of each wavelength position was calculated to obtain

the spectral information of the whole band. Using the spectral

information at 25 wavelength positions, based on 1D-CNN-A

network and 1D-CNN-B network, and with the help of SGD,

Adam, Adamax and Nadam optimizers, the ReLU function and

its improved function were used as the activation function to

compare the identification ability of identification models for the

task of identifying coal and gangue with different network structures

and optimize the network depth and parameters. The study found

that compared with the 1D-CNN-A network, the 1D-CNN-B

network using Nadam as the optimizer for identification of coal

and gangue can achieve better results. In particular, the best 1D-

CNN recognition model contains three 1D Conv Units B and uses

PReLU as the activation function. At this time, the model can

FIGURE 10
Actual category and predicted category of the test set.

FIGURE 11
Comparison with the recognition methods based on
the SVM.
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maximize the average recognition rate (98.75%) and minimize the

average loss (0.0382). In addition, for the purpose of verifying the

reliability of the proposed recognition method for coal gangue, we

compared it with the traditional recognition strategies and found

that the 1D-CNN model had higher recognition accuracy than the

traditional method, without considering how to select the

appropriate preprocessing and feature extraction methods. The

research results show that the accurate identification of coal and

gangue can be realized by using the multispectral spectral

information of coal and gangue combined with 1D-CNN, which

has reference value for promoting the development of automatic

separation equipment for coal and gangue.

In future research studies, on the one hand, we can add more

samples of coal and gangue from different regions, such as the

Shaanxi mining area and Inner Mongolia mining area, to further

enrich the multispectral database of coal and gangue, and on the

other hand, considering that the structure and hyperparameter

design of the CNN model in this paper mainly rely on manual

screening, how to introduce an intelligent optimization

algorithm to automatically design the structure and

hyperparameters of the CNN model will be the key research

work to be carried out in the next stage.
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