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Auckland, a city of 1.6 million people, is situated atop the active monogenetic Auckland
Volcanic Field (AVF). Thus, short-term eruption forecasting is critical to support crisis
management in a future event, especially to inform decisions such as calling evacuations.
Here we present an updated BET_EF for the AVF incorporating new data and the results of
an expert-opinion workshop, and test the performance of the resulting BETEF_AVF on
eight hypothetical eruption scenarios with pre-eruptive sequences. We carry out a
sensitivity analysis into the selection of prior distributions for key model parameters to
explore the utility of using BET_EF outputs as a potential input for evacuation decision
making in areas of distributed volcanism such as the AVF. BETEF_AVF performed well
based on the synthetic unrest dataset for assessing the probability of eruption, with the
vent outbreaks eventuating within the zone of high spatial likelihood. Our analysis found
that the selection of different spatial prior model inputs affects the estimated vent location
due to the weighting between prior models and monitoring inputs within the BET_EF,
which as unrest escalates may not be appropriate for distributed volcanic fields. This issue
is compounded when the outputs are combined with cost-benefit analysis to inform
evacuation decisions, leading to areas well beyond those with observed precursory activity
being included in evacuation zones. We find that several default settings used in past work
for the application of BET_EF and CBA to inform evacuation decision-support are not
suitable for distributed volcanism; in particular, the default 50-50 weighting between priors
and monitoring inputs for assessing spatial vent location does not produce useful results.
We conclude by suggesting future cost-benefit analysis applications in volcanic fields
appropriately consider the spatial and temporal variability and uncertainty characteristic of
such systems.
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1 INTRODUCTION

Eruption forecasting is one of the key goals for volcanology (Sparks, 2003). Eruption forecasting aims
to support decision-makers faced with challenges ranging in timescale from evacuation calls in the
short-term to land-use planning in the long-term (Sparks, 2003; Marzocchi and Bebbington, 2012).
During periods of volcanic unrest, there is a high degree of uncertainty due to the complexity of
volcanic systems and the variability in eruption characteristics, such as eruption vent location and
eruptive style and size (Marzocchi et al., 2012). Volcanoes can exhibit a range of geophysical,
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geochemical and geodetic changes during unrest periods, which
can be captured using a range of monitoring techniques as
magma ascends towards the surface (Marzocchi et al., 2008;
Newhall et al., 2017; Gottsmann et al., 2019). However, the
interpretation of these changes can place significant pressure
on monitoring volcanologists, especially when critical emergency
management decisions depend on them (Marzocchi and Woo,
2007; Marzocchi et al., 2012; Papale, 2017). The high stakes have
encouraged the development of quantitative models to support
increasingly complex eruption forecasting (Connor et al., 2003;
Lindsay et al., 2010; Sandri et al., 2012; Selva et al., 2012; Aspinall
and Woo, 2014; Sobradelo et al., 2014; Newhall and Pallister,
2015; Cassisi et al., 2016; Sheldrake et al., 2017). Recent reviews
can be found in Poland and Anderson (2020) andWhitehead and
Bebbington (2021).

One approach gaining prominence for conducting short-term
quantitative eruption forecasting assessments is the use of event
trees, first proposed by Newhall and Hoblitt (2002). Event trees
provide a graphical representation of a volcanic event with
branches connecting nodes representing mutually exclusive
and exhaustive behaviours with conditional probabilities based
on the previously observed behaviour (Marzocchi et al., 2004,
Marzocchi et al., 2008). The idea of an event tree is to provide a
generic framework that can be applied to any volcano, where the
required input data can be derived from any or all of: knowledge
of past eruptions, insights from expert opinions, data from
analogous volcanoes, and monitoring data. Event trees can
consider the aleatoric and epistemic uncertainty for the
volcanic behaviour by applying Bayesian inference (Marzocchi
et al., 2004, Marzocchi et al., 2008; Neri et al., 2008; Marzocchi
and Bebbington, 2012; Sobradelo et al., 2014; Bartolini et al.,
2016). There are two prominent short-term event tree
frameworks that incorporate Bayesian inference, Bayesian
Event Tree for Eruption Forecasting (BET_EF; Marzocchi
et al., 2008) and ST_HASSET (Bartolini et al., 2016). These
tools are designed to be developed during quiescence, and thus
contrast with other event tree structures for assessing short-term
volcanic eruption likelihood, such as the USGS Volcano Disaster
Assistance Program (VDAP) event tree approach (Newhall and
Pallister, 2015), which is designed to document the
volcanologist’s understanding of what is occurring in the
midst of a crisis.

The output of an eruption forecasting assessment can inform
an evacuation call when combined with cost-benefit analysis
(CBA; Marzocchi and Woo, 2007; Woo, 2008; Marzocchi and
Woo, 2009; Bebbington and Zitikis, 2016). CBA has been applied
in conjunction with BET outputs to support evacuation decision-
making based on risk-to-life in the AVF from base-surge
phenomena (Sandri et al., 2012) and for other volcanoes
(Marzocchi and Woo, 2009; Wild et al., 2019). CBA defines a
threshold for an action by weighing the cost of action (C) versus
the loss from no action (L) and compares this to the probability of
impact (p). When the probability of impact reaches or exceeds the
CBA threshold, i.e., p => C/L, the action, e.g., evacuation, is cost-
beneficial.

This paper explores the challenges of integrating short-term
eruption forecasting with cost-benefit analysis for crisis decision

making in areas of distributed volcanism by developing and
testing a BET_EF for the AVF. First, we present the model
set-up, including the parameter selection methodology.
Following this, we conduct a sensitivity analysis of key model
parameters. In the absence of observed activity in the AVF, the
performance of the developed BET_EF is examined using a
published synthetic unrest dataset from multiple eruptive
scenarios. Finally, we review the integration of BET_EF with
CBA to assess its utility for short-term eruption forecasting and
evacuation decision-support for distributed volcanic fields such
as the AVF.

2 THE AUCKLAND VOLCANIC FIELD

Auckland, located in New Zealand’s North Island (Figure 1), is
the country’s largest city (population ~1.6 million; Statistics
New Zealand 2018) and produces 37.9% (NZ$2018 107.8
billion; Statistics New Zealand 2019) of the nation’s GDP.
Auckland is also situated upon the basaltic monogenetic
Auckland Volcanic Field (AVF). The monogenetic nature of
the AVF poses a significant challenge to forecasting the next
eruption location (Allen and Smith, 1994; Lindsay et al., 2010).
The AVF has an estimated 53 eruptive centres formed in the last
193 kyr, with the last eruption occurring 550–600 years ago
(Allen and Smith, 1994; Lindsay et al., 2011; Leonard et al.,
2017; Hopkins et al., 2020). Most AVF eruptions have been
<0.1 km2 in volume; however, the most recent two eruptions,
namely Mt Wellington and Rangitoto, have been significantly
larger than average (Kereszturi et al., 2013). The magma source

FIGURE 1 | Auckland Volcanic Field vent locations with “tight” and 5 km
buffer boundaries from Runge et al. (2015) to illustrate the current
understanding of the AVF extent. The 5 km buffer is a conservative estimate of
the spatial extent of the AVF.
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supplying the AVF is thought to originate from 70 to 90 km depth
based on seismic tomography revealing a zone of anomalously
low P-wave velocities (Horspool et al., 2006) as well as
geochemical evidence (McGee et al., 2013). The mantle-crust
boundary is thought to be at 25–30 km depth (Horspool et al.,
2006). This is an important parameter in the context of eruption
forecasting, as it is considered that seismicity might not be
observed until the magma ascends into the crust (Sherburn
et al., 2007).

Given the monogenetic nature of the AVF, there are
significant uncertainties around the spatial location of the next
eruption and its likely volcanic hazards (Magill et al., 2005;
Sherburn et al., 2007; Lindsay et al., 2010; Ashenden et al.,
2011; Bebbington and Cronin, 2011; Bebbington, 2013,
Bebbington, 2015; Kereszturi et al., 2017). Therefore, a critical
issue with evaluating the hazard during the next AVF eruption is
identifying the vent location. The AVF is thought to be bounded
N-S by the mantle source geometry at depth, and E-W by faults
associated with the Dun Mountain Ophiolite Belt (Spörli and
Eastwood, 1997; Le Corvec et al., 2013). Runge et al. (2015)
defined the spatial extent of the AVF using an ellipsoid around
past vents (Figure 1), and recommend that a buffer is applied to
this boundary given the most recent eruption was anomalous
both in terms of polygenetic behaviour and comparatively large
erupted volume. Previous studies have looked at the spatial
distribution of the next vent location in the AVF using
probabilistic approaches for long-term assessments (Magill
et al., 2005; Bebbington and Cronin, 2011; Bebbington, 2013,
Bebbington, 2015).

The geologic record indicates two primary eruptive styles in the
AVF: magmatic and phreatomagmatic (Allen and Smith, 1994;
Lindsay et al., 2010; Kereszturi et al., 2014). Approximately 83%
of past eruptions have initiated with an explosive phreatomagmatic
phase due to magma interacting with groundwater and/or surface
water (Morrissey et al., 2000; Kereszturi et al., 2014; Ang et al., 2020);
this eruptive style forms maar craters and tuff rings and produces
base-surges (which can extend up to 6 km from the vent in a large
eruption; Brand et al., 2014), ballistics and tephra fall. Past AVF
magmatic eruptions were primarily Hawaiian or Strombolian in
style, forming scoria cones, ballistics and lava flows. At least 60% of
past AVF eruptions have transitioned from a phreatomagmatic
phase into a magmatic phase. The likelihood of future transitions
varies spatially across the field, depending on near surface geology
and hydrology (Kereszturi et al., 2014, 2017). Due to the eruption
hazards, primarily base-surge phenomena, the Auckland Volcano
Field Contingency Plan (Auckland Council, 2015) outlines two
evacuation zones: the primary evacuation zone, which extends
radially from the vent uncertainty zone; and the secondary
evacuation zone, which extends 2 km from the primary.
Although the two-zones allow for prioritization, in a future crisis
both zones are required to evacuate (Auckland Council, 2015).

The likely expected magma ascent time is poorly constrained
in the AVF. Blake et al. (2006) estimate magma ascent rates of
0.03–6 ms−1 for the AVF, based on modeling dyke propagation,
xenolith settling speeds and xenocryst host reaction speeds from
analogous volcanoes. In the AVF, seismicity associated with
magma ascent is unlikely to be detected until it reaches the

crust-mantle boundary (Sherburn et al., 2007). If detection
occurs at this boundary, i.e., 25–30 km depth, these ascent
rates would yield ascent times from this depth of <2 h to
12 days. Brenna et al. (2018) evaluated diffusion gradients in
AVF xenocrysts and derived magma ascent rates of
0.01–0.03 ms−1, producing ascent times of 9–35 days. Based on
the current understanding of the AVF, in which there is no
evidence of magma storage in the crust, magma ascent rates are
thought to be too quick to support stalling for significant periods
(Lindsay et al., 2010; Mazot et al., 2013; Hopkins et al., 2016,
Hopkins et al., 2020). Brenna et al. (2018) also suggested that once
magma had reached 1–2 km depth, an eruption is likely in less
than 12 h. Estimating ascent times is complex, as a single magma
batch may ascend at variable rates (Hopkins et al., 2020).

GNS Science conducts volcanic monitoring in New Zealand as
part of the GeoNet monitoring program. Auckland’s current
seismic monitoring network consists of 10 short-period
seismographs, seven of which are buried to reduce
anthropogenic noise, and one broadband station (van Wijk
et al., 2021). In 2007 it was thought that recorded seismicity
might have to be as shallow as 5 km before being useful to
estimate potential vent location (Sherburn et al., 2007). There
is no permanent geochemistry or geodesy monitoring equipment
within the AVF. At the time of writing, there had been no
observed volcanic unrest episodes in the AVF.

A previous BET_EF for the AVFwas developed by Lindsay et al.
(2010) and run as part of the 2008 Exercise Rūaumoko, a national
Civil Defence exercise conducted in Auckland, in which the lead-
up phase to an AVF eruption was simulated (Auckland Region
CDEM Group, 2008; Horrocks, 2008; Brunsdon and Park, 2009).
While the Lindsay et al. (2010) BET_EF performed well as part of
the exercise, there have been significant subsequent improvements
in the scientific understanding of the AVF, which include new
constraints on its geographic extent (Runge et al., 2015), spatial
vent likelihood (Bebbington and Cronin, 2011; Bebbington, 2013,
Bebbington, 2015), eruptive style and the age of past eruptions
(Kereszturi et al., 2013, Kereszturi et al., 2014; Leonard et al., 2017;
Ang et al., 2020). These improvements have supported the
development of seven additional AVF scenarios (Hayes et al.,
2018, Hayes et al., 2019). In addition, the Lindsay et al. (2010)
consultation with monitoring scientists to inform parameter
selection was minimal and informal. In contrast, this study has
taken a more formal approach to elicit expert opinion.

Sandri et al. (2012) applied CBA in conjunction with BET
outputs in the AVF to support evacuation decision-making based
on risk-to-life safety from base-surge phenomena. That study
applied the evacuation-specific CBA approach by Woo (2008),
which defines the cost of evacuation as the average socio-
economic loss per-capita for the evacuation duration, and the
loss from no action as the product of the statistical value of life
and the proportion of the population that evacuates that owes its
life to the decision. Sandri et al. (2012) produced three thresholds
based on the evacuation lasting 2 weeks, 2 months and 6 months,
and used a proportion of evacuees that owe their life to the
evacuation call of 0.5. This made use of the spatial vent likelihood
outputs from Lindsay et al. (2010) to produce evacuation zones
for the Exercise Rūaumoko sequence.
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3 BAYESIAN EVENT TREE FOR ERUPTION
FORECASTING

Bayesian Event Tree for Eruption Forecasting (BET_EF),
originally developed by Marzocchi et al. (2008), is an event
tree structure developed to assess short-term probabilities of
eruption, thereby allowing it to support crisis management
(Figure 2). BET_EF was selected as the most appropriate tool
for estimating short-term volcanic hazard for crisis decision-
support in the AVF context after evaluating a range of available
approaches (Wild et al., 2020).

The BET_EF defined structure comprises five nodes
(Figure 2):

Node 1: there is either unrest or no unrest, in the time interval
(t0, t0 + τ), where t0 is the present time, and τ is the time
window considered;
Node 2: the unrest is due to magma, conditional on unrest
being detected;
Node 3: the magma will (or will not) erupt) in the time interval
(t0, t0 + τ), conditional on the unrest detected is magmatic in
origin;
Node 4: the eruption will occur in a specific location,
conditional of an eruption; and
Node 5: the eruption will be of a certain size/style (e.g., VEI),
conditional of an eruption in a certain location.

At each node, there are three types of inputs:

• Priori beliefs
• Past data
• Monitoring components

Priori beliefs are derived from theoretical models or
expert judgment, such as the recurrence rate of unrest or
eruption at the volcano. At each node, the priori mean belief
input is accompanied by an “equivalent number of data”
parameter to reflect the weighting, where a value of 1 indicates
low confidence and results in a wider distribution to represent the
uncertainty. Past data relates to previous observations of activity
at the volcano, for example, the number of observed unrest
periods.

Each branch is assigned a probability employing a Bayesian
approach, represented by a probability density function, formed
by the priori information and weighting values, and past data to

produce a distribution representing the uncertainty (both
aleatoric and epistemic). The more available data, the more
uncertainty is reduced, and subsequently, the variability in
each node’s calculated output can potentially be reduced. The
output from an event tree is an estimated probability for each
outcome node.

Key inputs into a BET_EF for short-term eruption
forecasting are monitoring data parameters and threshold
values for Nodes 1, 2, and 3 (Marzocchi et al., 2008). In
previous implementations of the BET_EF, parameters and
thresholds have been determined through expert judgement
by evaluating available and theoretical streams of monitoring
data (e.g., seismic tremor, gas concentrations) and
considering what behavior would be considered anomalous
at each node. When setting up a BET_EF, the user can either
provide one or two thresholds. A single threshold is reached
when the parameter is observed, regardless of the magnitude,
e.g., “detection of SO2.” For some parameters, two thresholds
are established: one for “background behavior” and
another for “anomalous behaviour.” In this case, when
observed input data is between the two thresholds, the
gradual transition between the two states is modeled using
a fuzzy procedure. An example could be “number of long-
period earthquakes,” where the lower bound of 3 would
indicate potentially anomalous activity for unrest, whereas
the upper bound of 8 would be a strong indicator of unrest.
Two thresholds can be beneficial as it can be challenging to
determine whether the recorded behaviour indicates
anomalous diversion from background levels (Gottsmann
et al., 2019).

At Node 1, observing a single anomalous parameter sets the
probability to 1. Monitoring parameters at Nodes 2 and 3 include
a weight. A parameter with an associated weight of 2 means that it
is considered to have the same weight as two parameters with a
weight value of 1. For Nodes 2 and 3, (Eq. 1) is used to calculate
the total degree of anomaly (Z) at a node:

Z � ∑ zi · wi (1)
where z is the anomaly and w is the weight for parameter i.

The degree of anomaly is used to calculate the conditional
probability distribution for a node. The mean, P, of a Beta
distribution is estimated using

P � 1 − a.e−bZ (2)

FIGURE 2 | Schematic diagram of BET_EF framework. The probability of the selected path is the product of conditional probability θi at all selected branches: [θ]path
= [θ1] • [θ2] • [θ3] • [θ4] • [θ5]. Any branch that terminates with “clone” is identical to that of the top branch for that node.
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where a and b represent the minimum bound (1−a) and the
sensitivity to monitoring (b) used to form the Beta distribution.
Prior distributions are input for these two parameters, which are
updated within the BET_EF framework using data from available
observed unrest periods at the volcano in question to form
posterior distributions.

BET_EF has been retrospectively applied to the volcanic activity
between 2001–2005 at Mt. Etna (Brancato et al., 2011), and between
1981–2009 at Campi Flegrei, Italy (Selva et al., 2012) and to the 1,631
eruption of Mt. Vesuvius (Sandri et al., 2009). The framework has
also been used in the emergency management exercise MESIMEX
for Mt. Vesuvius, Italy (Marzocchi et al., 2008), Exercise Rūaumoko
for the Auckland Volcanic Field (AVF), New Zealand (Lindsay et al.,
2010) and the simulation of Cotopaxi, Ecuador (Constantinescu et
al., 2015). In all these exercises, estimated probabilities from the
BET_EF were consistent with the observed (or simulated) timing
and location of eruption and aligned with monitoring scientists’
judgement during the exercise, demonstrating the merits of the
framework. An application of BET during the VUELCO Simulation
Exercise in Dominica, Lesser Antilles (Constantinescu et al., 2016)
demonstrated the importance of users of BET outputs being familiar
with probabilistic frameworks in advance of any operational use to
ensure the outputs are trusted and applied appropriately.

The BET_EF framework is executed within the PyBETUnrest
application (Tonini et al., 2016). This implements both the
BET_EF and the BET_UNREST framework (Rouwet et al.,
2014; Tonini et al., 2016), the latter of which also considers
non-magmatic eruptive phenomena, e.g., hydrothermal
eruptions (refer to Tonini et al., 2016 for more detail).
PyBETUnrest is an update to the old application form of the
BET_EF framework. PyBETUnrest is implemented using the
Python programming language, allowing code to be easily
modified. Previous testing of the PyBETUnrest application
found some discrepancies in how the BET_EF framework is
applied between PyBETUnrest and the original application
(Wild et al., 2020). In particular, Eq. 2 was not calculated using
probability distributions (prior or posterior) but instead used single
values of a and b, meaning the procedure is no longer Bayesian, as
in the original BET_EF application. In addition, the same values of
a and b were used for all three nodes. In the original BET_EF
application, prior distributions for a and b are U (0.5, 1) and U (0,
2). For this study, the PyBETUnrest code was modified to reflect
the original Bayesian functionality and thus allow uncertainty to be
assigned and estimated in the sensitivity analyses. The inputs and
outputs from Lindsay et al. (2010) were used to validate the
modified PyBETUnrest against the original BET_EF.

4 DEVELOPMENT OF THE BET_EF MODEL
FOR THE AUCKLAND VOLCANIC FIELD

To set up the BET_EF for the AVF (hereinafter, BETEF_AVF),
both monitoring and non-monitoring components need to be
considered for parameter selection. The non-monitoring
components were informed by previously published studies for
the AVF, following Lindsay et al. (2010).

To inform the monitoring parameters, a scientific consensus
approach was applied; this is an approach that has been used to
define inputs in past studies for developing volcanic event trees
(e.g., Lindsay et al., 2010; Selva et al., 2012; Constantinescu et al.,
2016; Tierz et al., 2020) and applied operationally by the USGS’s
VDAP team to inform volcanic event-trees in past crises (Newhall
and Pallister, 2015). There are alternate methods for collecting
expert opinion data, such as Cooke’s classical model (Cooke,
1991), that have been applied in volcanology (e.g., Aspinall, 2006;
Neri et al., 2008; Hincks et al., 2014; Bebbington et al., 2018).
However, in our case, given the limited number of participants
with expertise in each given topic area (e.g., seismic unrest in the
AVF), a quantitative elicitation method may have led to very
distributed and non-useable data. Furthermore, volcanologists in
New Zealand and internationally have operational experience
with reaching a consensus for estimating volcanic activity (Potter
et al., 2014; Fearnley and Beaven, 2018), while the closely
connected nature of the volcanological community suggested a
significant risk of a narrow perspective or cognitive bias if a
formal elicitation was conducted (Morgan, 2014). As such, the
consensus approach within subject matter areas, combined with
open discussion, moderated through facilitation, was deemed
appropriate for our study.

An expert opinion workshop was thus conducted to define
monitoring parameters for the BETEF_AVF. The workshop
aimed to establish monitoring parameters and thresholds for
the BETEF_AVF for Nodes 1 to 3. The workshop, including
preparation, was conducted in four steps:

1. Identify workshop participants
2. Ensure participants have a shared conceptual model of

volcanism in the AVF, as well as an understanding of
BET_EF and how the workshop output feeds into
BETEF_AVF

3. Establish the monitoring parameters and thresholds
4. Run the model using the Exercise Rūaumoko unrest sequence

and review outputs with participants

Participants were identified following engagement with the
Determining Volcanic Risk in Auckland (DEVORA) research
programme management group (Step 1). Specific areas of
expertise were targeted amongst the monitoring team from
GeoNet and volcanologists from New Zealand universities to
ensure representation of participants with expertise in both the
AVF and volcanic monitoring. A total of 28 individuals accepted
the invitation to participate. Before the workshop, participants
attended a virtual presentation on the current understanding of
the conceptual model of volcanism in the AVF, what a BET_EF is,
and how the data collected from the workshop would be
incorporated in BETEF_AVF (Step 2).

At the workshop itself, participants were divided into three
groups: seismology, geochemistry and geodesy, based on their
respective expertise. Each group was provided with the Lindsay
et al. (2010) monitoring parameters and thresholds and asked to
record any updates or additional parameters, thresholds or
weights for each of Nodes 1–3. Following this, an all-
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workshop discussion was held to allow all participants to discuss
and provide any feedback (Step 3).

A virtual follow-up discussion was conducted to present the
results, illustrated through the Exercise Rūaumoko scenario and
against the Lindsay et al. (2010) parameters, thresholds and
weights (Step 4). This was an opportunity for participants to
provide any further feedback. The output of this process was
subsequently used to inform the monitoring parameter inputs for
the BETEF_AVF. These are collated in Table 1.

4.1 BETEF_AVF Model Parameters
4.1.1 General Model Constraints
Nodes 1–4 are considered in BETEF_AVF (Figure 2). Node
5—eruption style is not considered in this particular

application. This is because although forecasting the style of an
eruption is extremely important in decision making, the Auckland
Volcanic Contingency Plan recommends an evacuation of
everyone within 5 km of the inferred eruption centre/area
(Auckland Council, 2015), irrespective of eruption style.

BETEF_AVF requires some general parameters to be input for
the volcano. The field extent is defined as the bounding box
around the AVF boundary +5 km buffer (Runge et al., 2015), and
the field is divided into 500 × 500 m cells forming a 53 × 79 grid.
Participants at the expert opinion workshop decided that the
forecasting “look forward” time window (τ) for BETEF_AVF
should be reduced from 1 month (Lindsay et al., 2010) to 14 days,
to reflect the requirements for a shorter forecast window for crisis
decision-support.

TABLE 1 | The volcanological and monitoring BETEF_AVF input data for each node. Refer to text for an explanation of parameters, thresholds and weights.

Parameter Thresholds Weight

Node 1
Non-monitoring component
Prior distribution 5.281 × 10−5 1
Past data 1,586 months; 0 past unrest episodes
Monitoring component
1. Number of long-period (LP) or very long-period (VLP) earthquakes 1
2. Number of Volcano-Tectonic (VT) earthquakes greater than ML 2, within the AVF ellipse +5km >1–3
3. Number of unlocatable VT or VT less than ML 2 >3–10
4. Tremor in the last 3 months 1
5. Any mantle EQ shallower than 150 km 1
6. Above background SO2 and/or H2S gas 1
7. Above background CO2 gas 1
8. Above background 3He/4He ratio 1
9. Coherent ground deformation 1

Node 2
Non-monitoring component
Prior distribution Uniform dist 1
Past data No data
Monitoring component
1. Number of LP or VLP earthquakes 1 1
2. Tremor in the last 3 months 1 1
3. Number of VT earthquakes greater than ML 2, within the AVF ellipse +5 km >3–10 0.5
4. Number of unlocatable VT earthquakes or VT less than ML 2 >20–100 0.5
5. Dispersion in the depth of hypocentres (km), within 10 km horizontally >5–10 0.5
6. Change of seismicity rate (VT, LP, VLP) 1 1
7. Increase above background in SO2/H2S gas 1 2
8. Presence of Volcanic CO2 gas (C12/C13 isotope derived) and/or above background 3He/4He ratio and/or proxy

environmental cues
1 2

9. Evidence of volumetric component 1 2

Node 3
Non-monitoring component
Prior distribution BETA dist. 0.5 5
Past data No data
Monitoring component
1. Tremor in the last 3 months or LP/VLP detected shallower than 3 km from the surface 1 2
2. #VT greater than ML 2 that are not part of a mainshock/aftershock sequence >10–100 0.5
3. #Unlocatable VT, or VT less than ML 2 >100–1000 0.5
4. Depth of earthquakes if dispersion is > 5 km (km) <15–1 2
5. Change of seismicity rate (VT, LP, VLP) 1 2
6. Increase (daily/weekly) in emission rate of CO2, SO2, H2S and/or in 3He/4He ratio 1 1
7. Detection of HCl and/or HF 1 2
8. Rapid decrease in C/S 1 1
9. Visible ground cracking, deformation (including environmental proxies) 1 2
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The critical parameters a and b (Eq. 2) were reviewed as part of
the set-up for BETEF_AVF. In the initial BET_EF (Marzocchi
et al., 2008), these were set as prior uniform distributions a = U
(0.5, 1) and b = U (0, 2). However, in the case of well-monitored
volcanoes (and the AVF can be considered as such), a could be
increased to reflect the decrease in likelihood of either Node 2 or
Node 3 occurring without observing any anomalous behaviour
(W. Marzocchi, personal communication, 31 August 2020). An
increase in b would reflect greater monitoring sensitivity. To test
the sensitivity of outputs to variations in a and b, four uniform
distribution pairs with different lower and upper bounds were
considered:

• a = U (0.5, 1) and b = U (0, 2)—Default settings from
BET_EF 2.0 (Marzocchi et al., 2008)

• a = U (0.75, 1) and b = U (0, 2)—Increase a and keep b as
default

• a = U (0.75, 1) and b = U (0.5, 2)—Increase a and b
• a = U (0.75, 1) and b = U (1, 2)—Increase a and b

4.1.2 Parameters and Thresholds
The model was run for each combination of a and b priors to
provide the input parameters for each node within BETEF_AVF;
these are presented Table 1, with further detail provided for each
node in the subsections below. Unless stated, the time window for
collecting data is 1 month.

4.1.2.1 Node 1: Unrest/No Unrest
4.1.2.1.1 Non-Monitoring. We define a prior a Beta distribution
with mean = B/A, where B is the eruption frequency per 2 weeks
(τ), and A is the expected ratio of eruption to unrest. This is the
same approach applied in Lindsay et al. (2010); however, the
values are updated based on recent research identifying 53
volcanic centres having erupted over the past 193 ka (Leonard
et al., 2017). Hence, B = 53/(193,000*26), and A remains 0.2, i.e., 1
in 5 periods of unrest result in an eruption in monogenetic
volcanic fields (Lindsay et al., 2010). The number of
equivalent data (Λ) for this distribution remains 1, to reflect it
is a rough estimate with high uncertainty.

For the past data, there has been no observed seismic unrest
since seismic monitoring began in Auckland in 1960 (Sherburn
et al., 2007), therefore n = 61*26, with 0 eruptions.

4.1.2.1.2 Monitoring. Seismic parameters: Given the low level of
seismicity in the AVF, it is considered that one or more long-
period or very-long-period (VLP) event would be indicative of
unrest in the AVF. This is the same as in Lindsay et al. (2010), but
with the addition of the VLPs.

Observing >1 volcano-tectonic (VT) earthquake is considered
anomalous in the AVF. As in Lindsay et al. (2010), the threshold
transitions from 1 (normal) to 3 (anomalous). However, in our
application, we define these as ML >2 and within the AVF
GeoNet monitoring extent. A new parameter is added to
capture the number of VT events that are either unlocatable,
or of ML < 2, with that threshold transitioning from 10 to 20.

It is considered that the observation of seismic tremor within
the past 3 months would be indicative of unrest. Additionally, any

seismicity observed in the mantle <100 km, considered the
maximum depth of the magma source in the AVF (Horspool
et al., 2006), would indicate unrest. These are both new
parameters compared to Lindsay et al. (2010).

Geochemistry parameters: There are three parameters in that
capture anomalous geochemical behaviour that indicates unrest.
These are above-background levels of SO2/H2S, CO2 and

3He/4He
ratio. Lindsay et al. (2010) had parameters for the first two; the
consideration of 3He/4He ratio is new.

Geodetic parameter: The observation of coherent ground
deformation is considered to indicate unrest within the AVF.
This represents a slight wording change from Lindsay et al. (2010)
“observation of significant ground deformation.”

The Lindsay et al. (2010) parameter related to change in
groundwater reservoirs is removed from the revised
BETEF_AVF. This is considered no longer required as any
change would likely be represented within the other
geochemical and geodetic parameters.

4.1.2.2 Node 2: Magma/No Magma
4.1.2.2.1 Non-Monitoring. As there have been no observed
magmatic unrest episodes within the AVF, the prior is
considered uniform (mean 0.5) to represent maximum
ignorance, with a Λ = 1, with no past data. This is consistent
with the input for this component at Node 2 in Lindsay et al.
(2010).

4.1.2.2.2 Monitoring. Seismic parameters: The observation of a
single LP and/or VLP earthquake is thought to be indicative of
magmatic unrest (weight of 1). VLP is here added to the original
LP of Lindsay et al. (2010) for this parameter.

VT events of ML >2 within the AVF GeoNet monitoring
extent threshold transition from 3 (normal) to 10 (anomalous).
VT events that are either unlocatable or ML <2 have a threshold
transitioning from 20 to 100. Both parameters are assigned a
weight of 0.5 each, as it is considered these will likely be observed
in tandem. This diverges from the associated parameter Lindsay
et al. (2010), whereby it was the maximum magnitude of the
observed VT that was considered indicative [transitioning from
ML 3.5 (normal) to 4.5 (anomalous), with a weight of 1].

The observation of seismic tremor within the past 3 months is
considered indicative of magmatic unrest (weight 1). As with
Node 1, this is a new parameter not captured in Lindsay et al.
(2010).

A dispersion in the depths of seismic hypocentres is
considered an indicator of magma causing the unrest. The
threshold transitions from 5 km (normal) to 10 km
(anomalous). While the thresholds are the same as in Lindsay
et al. (2010), the parameter is modified to constrain the dispersion
area to within 10 km horizontally, and the weight is reduced
to 0.5.

A change in the rate of seismicity (VLP, LP and/or VT) can be
indicative of magma ascent (Kilburn, 2003). This is reflected in
the change of seismicity rate parameter which has been given a
weight of 1. This is a modification in wording to the Lindsay et al.
(2010) parameter which assessed “acceleration of seismicity” of
LP or VT events.
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Geochemistry parameters: Above background levels of SO2

and/or H2S is considered to reflect magma and thus a strong
indicator of magmatic unrest. This is reflected in the parameter
with a weight of 2 carried over from Lindsay et al. (2010).

Three indicative monitoring measurements are combined
using “and/or” statements in a second geochemistry parameter
covering CO2,

3He/4He ratio, and other proxy environmental
cues. As magma ascends, it may release CO2. However, CO2 is
also common in non-magmatic unrest. It is considered that the
presence of above-background volcanic CO2, derived using 12C/
13C isotope analysis, is anomalous. Above background levels of
3He/4He ratios are also considered indicative of magmatic unrest.
Environmental cues such as residents reporting gaseous smells
(Marzocchi et al., 2012), contaminated water (Gottsmann et al.,
2019) and the death of vegetation and animals (Edmonds et al.,
2018) could be crucial, especially in the absence of monitoring
equipment. This parameter has a weight of 2. While the
observation of CO2 was considered at Node 2 by Lindsay et al.
(2010), the further classification of it being volcanic in origin is
new, along with consideration of 3He/4He ratios and
environmental cues at this Node.

Geodetic parameter: Evidence of a volumetric component of
ground deformation is considered a strong indication of
magmatic intrusion. As such, this parameter has a weight of 2.
This diverges from the associated parameter in Lindsay et al.
(2010), which stated observation of significant ground
deformation.

4.1.2.3 Node 3: Eruption/No Eruption
4.1.2.3.1 Non-Monitoring. The prior was set as a Beta distribution
with an average of 0.5 as in Lindsay et al. (2010), which is based on
basaltic field observations (Newhall and Hoblitt, 2002), with Λ =
5. No past data is used as there remain no observed historical
eruptions within the AVF.

4.1.2.3.2 Monitoring. Seismic parameters: Seismic tremor within
the last 3 months could indicate that the magmatic unrest might
lead to an eruption. Additionally, the presence of any LP/VLP at
shallow depths (<3 km) could indicate magma interaction with
groundwater reservoirs. The observation of either of these, once
magmatic unrest is confirmed, is considered strongly indicative of
an eruption (weight 2). This differs from the associated parameter
in Lindsay et al. (2010), which only considered a look-back time
for seismic tremor of 1 month, and did not consider the
shallowing of LP/VLP.

An increase in the number of VT events from Node 2 is
considered an indicator of eruption. Two parameters are used to
reflect this. The first is VT events with ML >2 not attributed to a
mainshock/aftershock sequence within the AVF GeoNet
monitoring extent, with a threshold transitioning from 10
(normal) to 100 (anomalous). The second is VT events that
are either unlocatable or ML <2, with a threshold transitioning
from 100 to 1,000. Both of these parameters have a weight of 0.5.
These are new parameters as Lindsay et al. (2010) did not include
a VT parameter at Node 3.

The shallowing of seismicity with a dispersion of hypocentres
where the dispersion is >5 km is considered a strong indicator of

magma ascending to the surface. The depth threshold for this
parameter transitions from 15 km (normal) to 1 km (anomalous).
Given the significance, a weight of 2 is used. This parameter
differs slightly from Lindsay et al. (2010), where the upper
threshold was set at 5 km depth.

The parameter for attributing any observed change, either
increase or decrease, in the rate of seismicity is carried over from
Lindsay et al. (2010). However, the weight is increased from
1 to 2.

Geochemistry parameters: An increase in gas emission rates of
any monitored gases (CO2, SO2, and H2S) or in

3He/4He ratios is
considered indicative that magmatic unrest might lead to an
eruption (weight 1). This is more detailed than the parameter
presented in Lindsay et al. (2010), as it specifies the
monitored gas.

Given that it is not uncommon to observe a decrease in gas
emissions in the lead-up to an eruption, the parameter “rapid
decrease in C/S” (assessed qualitatively) has been included, with a
weight of 1. This is a modification to the parameter Lindsay et al.
(2010), which did not specify gases.

Detection of HCl and/or HF in fumaroles can be indicative of
an eruption; this is captured in a new parameter with a
weight of 2.

Geodetic parameter: Observed visible ground cracking from
deformation is a strong indicator of a magmatic eruption as
magma nears the surface (weight 2). However, this should not be
confused with tectonically triggered ground cracking, which is why
this parameter is not included at Node 2. This replaces the
“acceleration of deformation” parameter from Lindsay et al. (2010).

4.1.2.4 Node 4: Vent Location
4.1.2.4.1 Non-Monitoring. Lindsay et al. (2010) applied a uniform
distribution for the prior model input to represent maximum
ignorance at node 4. At that time, there was a limited suite of
reliable ages with which to generate a reliable spatial-temporal
model to inform the prior distribution. However, since that study,
a suite of spatial vent likelihood models have been published (e.g.,
Bebbington and Cronin 2011; Bebbington 2013, Bebbington
2015). Here we assess the sensitivity of BETEF_AVF to two
priors: uniform distribution and the Bebbington (2013)
Gaussian anisotropic kernel least-squares cross-validation
(LSCV) model, the latter selected as it uses past vent location
to inform the spatial likelihood, and differs the most from the
uniform distribution. The uniform distribution is applied to 3,312
cells within the AVF boundary +5 km buffer (Runge et al., 2015).
For each prior Λ remains 10, as in Lindsay et al. (2010), to reflect
the understanding of the extent and monogenetic nature of AVF.

4.1.2.4.2 Monitoring. Localization of seismicity can indicate the
area of the next vent (Marzocchi et al., 2008). The approach
applied for calculating vent location likelihood in BETEF_AVF is
based on that outlined in Lindsay et al. (2010). Each seismic event
is assigned a weight inversely proportional to its depth, as
shallower earthquakes are assumed to be more indicative of
vent location than deeper ones. The seismic events’ weights
are aggregated back up to the grid before applying a Gaussian
filter using 2.5 km of (1σ) standard deviation, to account for
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earthquake location error. At Node 4, the spatial vent likelihood is
evaluated based on 50% monitoring data and 50% the prior
(Marzocchi et al., 2008).

4.2 BETEF_AVF Testing
The seven “DEVORA” scenarios (Hayes et al., 2018, 2019) and
the original Exercise Rūaumoko scenario (Lindsay et al., 2010) are
examined to assess the performance of the BETEF_AVF
(Figure 3 and Table 2). Six of the eight scenarios (Rūaumoko,
Birkenhead, Waitematā, Ōtāhuhu, Auckland Airport, and
Rangitoto Channel) have a pre-eruptive sequence of fewer
than 15 days. The Mt Eden scenario has an unrest duration of
45 days prior to eruption onset. The Rangitoto Island scenario has
a protracted unrest period over 2 years, with two failed eruptions
each followed by a year’s quiescence before finally erupting after
31 days of seismic activity. Refer to Hayes et al. (2018) for more
information on the scenarios’ pre-eruptive sequences.

The pre-eruptive sequences for the seven DEVORA scenarios are
limited to seismic activity and ground cracking (the latter on the day
of the eruption). While this is an apparent limitation of the unrest
sequence dataset, seismic monitoring is in fact the only monitoring
technique with a permanently installed network in the AVF.
Additional monitoring equipment will likely take time to positionFIGURE 3 | Location of scenario volcanic centres.

TABLE 2 | Overview of the eight AVF scenarios’ pre-eruptive sequences. Refer to Hayes et al. (2018) for more information.

Scenario Detectable unrest (days) Seismic Monitoring Geochemical Monitoring Geodetic Monitoring

Auckland Airport 8 Number of events: 271 N/A N/A
Detected from: 29 km
Max ML: 3.4 (1 day from eruption)

Birkenhead 15 Number of events: 901 N/A N/A
Detected from: 29 km
Max ML: 4.2 (8 days from eruption)

Mount Eden 45 Number of events: 1,383 N/A N/A
Detected from: 29 km
Max ML: 4.5 (24 days from eruption)

Ōtāhuhu 13 Number of events: 901 N/A N/A
Detected from: 29 km
Max ML: 5.5 (6 days from eruption)

Rangitoto Channel 8 Number of events: 669 N/A N/A
Detected from: 32 km
Max ML: 4.1 (3 days from eruption)

Rangitoto Island 660 (Total) Number of events: 271 N/A N/A
1st phase 660 to 654 Detected from: 38 km
2nd phase 350 to 346 Max ML: 5.4 (350 days from eruption)

3rd phase: 31 to eruption

Rūaumoko 14 Number of events: 271 Increased CO2 (2 days from eruption) Uplift (2 days from eruption)
Detected from: 51 km
Max ML: 3.4 (13 days from eruption)

Waitematā 3 Number of events: 556 N/A N/A
Detected from: 29 km
Max ML: 4.3 (3 days from eruption)
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appropriately within the field (e.g., for geochemical or ground-based
GPS measurements), or be limited by the 6-day InSAR satellite
repeat pass time for Auckland (Hayes et al., 2018). Geochemical and
geodetic monitoring are likely to be initiated only later in a sequence
following increased episodes of seismicity, particularly when an area
of interest has been identified to support more spatially constrained
real-time monitoring (Sherburn et al., 2007; Lindsay et al., 2010;
Ashenden et al., 2011; Hayes et al., 2018). This could result in a delay
to receive information. As such, the DEVORA scenarios, which are
limited to only seismic unrest inputs, are considered appropriate to
test the BETEF_AVF. For the Rūaumoko scenario, the spatial
earthquake dataset of earthquake epicentres and depths could not
be obtained, therefore limiting the BETEF_AVF analysis for that
scenario to Nodes 1–3.

Here we have adapted the CBA approach to define an evacuation
zone presented for volcanic fields by Marzocchi and Woo (2009),
which considers the need to evacuate any given cell (X) within a
region. First, we extend out the 500m × 500m spaced grid used

within BETEF_AVF by an additional 5 km to accommodate for a
potential eruption on the edge of the AVF. This is to align with the
AVF Contingency Plan (Auckland Council, 2015), whereby an
evacuation zone is defined as 5 km radius from a vent.
The probability that an evacuation of a given cell X is required
(P(X)

Evac), is calculated based on the output of BETEF_AVF:

P(X)
Evac � p1p2p3 ∑

k

p(k)
4 (3)

Where k is all possible vents within 5 km of X and p1to4 are
outputs from BETEF_AVF at nodes 1 to 4 respectively.

The 6-months evacuation duration CBA threshold from
Sandri et al. (2012) is used to demonstrate the establishment
of a pre-eruption AVF evacuation zone. Sandri et al. (2012)
applied the evacuation-specific CBA approach of Woo (2008),
which defines the cost of evacuation (C) as the average socio-
economic loss per-capita for the evacuation duration (R), and the

FIGURE 4 | Time evolution of BETEF_AVF output probabilities for magmatic unrest and eruption forecasting for the Rūaumoko scenario for a range of a and b
parameter combinations. N.B the probability is a distribution at each time step, but because multiple nodes are presented, we only present the average and median.
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loss from no action (L) as the product of the value of statistical life
(V) and the proportion of the population that evacuates that owes
its life to the decision (E). This results in C/L = R/(E.V). Sandri
et al. (2012) set R as $21,500 given the average contribution per
capita was $43,000 per annum, V to $3million and E was
considered to be 0.5. This application indicated that when
P(X)
Evac exceeds 0.0143, X is shown as cost-beneficial to evacuate.

5 RESULTS

5.1 BETEF_AVF Nodes 1–3: Eruption
Probabilities
5.1.1 Final Selection of BETEF_AVF Model Parameters
The Rūaumoko and Birkenhead scenarios were selected to assess
the sensitivity in BETEF_AVF output probabilities to the four sets
of a and b priors. Figure 4 presents the changes in output
probabilities for Nodes 2 and 3 of the Rūaumoko scenario,

illustrating the effect on the shape of the curve for assessing
eruption probability as a function of the degree of anomalous
behavior (Z) (Eq. 2). An increase in a decreases the output
probability at Nodes 2 and 3 when there are no observed
monitoring anomalies, for example, at Node 3 between 15 and
7 days before the eruption. An increase in b increases the
calculated probabilities (Eq. 2).

A similar exercise was conducted for the Birkenhead scenario
to evaluate the influence of the a and b priors on an unrest
scenario dataset limited to seismicity. The probabilities calculated
by BETEF_AVF for the Birkenhead scenario are not as high as
those calculated for the Rūaumoko scenario (Figure 5); this is due
to the limited observed unrest phenomena, thereby restricting the
Z value. The reduction of a is shown to reduce the output
probabilities when observing no monitoring observations.
With the increase in b, with more observed monitoring
parameters, there is a noticeable increase in the output
probabilities, notably the median and average probabilities get

FIGURE 5 | Time evolution of BETEF_AVF output probabilities for magmatic unrest and eruption forecasting for the Birkenhead scenario for a range of a and b
parameter combinations.
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FIGURE 6 | Time evolution of BETEF_AVF output probabilities for magmatic unrest and eruption forecasting for each of the eight AVF eruption scenarios. This
application uses the distributions a = U (0.75, 1) and b = U (0, 2).
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to 1 in the Rūaumoko sequence. Given that the seismic network is
continuously detecting seismic activity in the AVF, the likelihood
of volcanic activity occurring without detecting any anomalous
behaviour is considered low. For this reason, an argument can be
made for increasing a from the original BET_EF distribution of U
(0.5, 1). We have therefore chosen to use a = U (0.75, 1) in the
modelling presented in the rest of the paper. We retain the
original U (0, 2) distribution of b in the absence of any clear
justification for change.

5.1.2 BETEF_AVF Applied to the DEVORA Scenarios
BETEF_AVF was executed for the unrest sequences of all seven
DEVORA scenarios to calculate probabilities at Nodes 2 and 3
(Figure 6). In all scenarios, from the onset of anomalous activity,
the probability of unrest (Node 1) is 1, i.e., unrest is observed, as at
least one of the thresholds is exceeded. As anomalous activity
escalates during the lead-up to the eruption, the probabilities at
Nodes 2 and 3 increase in all scenarios.

For each scenario, the mean probability of magmatic unrest
(Pm) is limited to ≤0.8. This is because the pre-eruptive datasets
only consist of LP earthquakes andML >2 VT earthquakes, which
results in a maximum Z-value of 2, based on three monitoring
parameters at Node 2. This Z-value, combined with the a and b
priors applied here, results in a maximum Pm of ~0.8. In each of
the seven DEVORA scenarios, the observation of LP earthquakes
and more than 10 VT earthquakes with an ML >2 with a
dispersion in depth of >10 km typically occurs in the first few
days of the unrest sequence, thereby reaching the model
maximum Pm (Node 2) early in the unrest sequence. This is
true for all scenarios, except for the Rangitoto Island sequence, as
there are no LP earthquakes during the second and third periods
of activity, so the Z-value for Node 2 is limited to 1, and thus the
maximum Pm is ~0.6.

For each of the seven DEVORA scenarios, Node 3, like Node 2,
is affected by the limited number of observations in non-seismic
phenomena. The maximum Z-value is not observed until 24 h

FIGURE 7 | Spatial distribution of absolute eruption probabilities for the Birkenhead scenario from BETEF_AVF with a uniform prior vent model for selected days
leading up to the eruption. The green contour encompasses the evacuation zone extent based on cost-benefit analysis.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 89388213

Wild et al. Eruption Forecasting for Decision-Support in the AVF

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


from the eruption when surface ground cracking is observed,
increasing the Z-value by 2. The reduced maximum Pm
subsequently limits the mean absolute probability of eruption
(Pe), given that it is conditional on Pm.

In contrast, the Rūaumoko unrest sequence includes more
monitoring parameter types, resulting in a higher Z-value at both
Nodes 2 and 3. This results in Pm and Pe reaching ~0.9 and ~0.85
in the days leading up to the eruption.

5.2 BETEF_AVF Node 4: Spatial Vent
Likelihood
Using the earthquake hypocentres, weights for each earthquake
event are attributed based on the inverse of the hypocentral depth,
and used to estimate the spatial probability of vent location across
the AVF grid cells. To demonstrate the outputs from
BETEF_AVF Node 4, we present the absolute average
probability of spatial eruption probabilities for the Birkenhead

(Figures 7, 8) and Waitematā (Figures 9, 10) scenarios, for both
prior spatial models. Outputs are at a 0.25 km2 resolution. In the
case of the Birkenhead scenario, the vent eventuated in the centre
of the identified likely vent hotspot (warm-coloured cells), while
the Waitematā eventual vent location was adjacent to the
identified zone of high eruption probability values.

5.3 BETEF_AVF: Evacuation Thresholds
Based on the BETEF_AVF outputs, the CBA threshold presented
by Sandri et al. (2012) (p = 0.0143) is exceeded for one or more grid
cells following the first day of activity for each of the scenarios,
except for the final phase of the Rangitoto Island scenario, where an
evacuation would be called after 4 days of unrest.

Figures 7–10 show the evacuation areas (green line) for the
Birkenhead and Waitematā scenarios for both considered prior
models at different stages of the unrest sequence. Notably, the
evacuation area increases in size over the unrest period, due to the
increasing probability of eruption (refer to Eq. 3).

FIGURE 8 | Spatial distribution of absolute eruption probabilities for the Birkenhead scenario fromBETEF_AVF with the Bebbington 2013 LSCV prior vent model for
selected days leading up to the eruption. The green contour encompasses the evacuation zone extent based on cost-benefit analysis.
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6 DISCUSSION

6.1 Performance of BETEF_AVF
In the absence of observed activity in the AVF, Exercise
Rūaumoko and the seven DEVORA scenarios provide a
synthetic unrest dataset to validate the performance of the
BETEF_AVF. While we cannot definitively state BETEF_AVF
would detect an eruption, if a future event manifested with
similar precursory activity signals as those from the synthetic
dataset, the code as set up would identify anomalous
behaviour. Our application to these scenarios results in
output probabilities of BETEF_AVF for both Pm and Pe that
trend upwards as the unrest escalates in the lead up to an
eruption.

In the case of the Rūaumoko scenario, the Z-value increases
for Nodes 2 and 3 throughout, resulting in a Pe of ~0.9 the day
before the eruption. The output eruption probabilities started to
increase 5 days out as the number of VT earthquakes increased
and seismicity began shallowing. In contrast, in the DEVORA
scenarios, the Node 2 Z-value was limited to 2, which resulted in a

maximum Pm of ~0.8. This subsequently restricted the upper
limit for Pe, leading to a Pe of ~0.72 the day before the eruption.
These low Z-values are attributed to the scenarios only containing
seismic phenomena (LP and VT events). The final phase of the
Rangitoto Island scenario yielded even lower Pe values, due to the
low Z-value of 1 at Node 2, given the absence of LP earthquakes
following the first phase of activity. Hence, if LP earthquakes are
not going to be characteristic of future AVF eruptions or
monitoring capability does not detect them, the BETEF_AVF
will depend on VT events and the data from any campaign gas
and or geodesy monitoring. Whilst this leads to lower
probabilities than seen in the Rūaumoko scenario, an initial
sequence consisting only of seismic phenomena is highly likely
in a future unrest episode in the AVF, thus this application can be
considered to reflect what might be derived if BETEF_AVF were
applied in a real event.

The number of unlocatable VT events with ML <2 is not
provided in the scenario seismicity datasets. Inputs for this
parameter (weight of 0.5) would likely be observed in an
actual event, with (small) consequent increases in Z-value.

FIGURE 9 | Spatial distribution of absolute eruption probabilities for the Waitematā scenario from BETEF_AVF with a uniform prior vent model for selected days
leading up to the eruption. The green contour encompasses the evacuation zone extent based on cost-benefit analysis.
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The BETEF_AVF output eruption location probabilities are
shown to be sensitive to the input prior model. This is as BET_EF
applies a 50% weighting to each of the monitoring and prior
model components at Node 4. In both the Birkenhead (Figure 8)
and Waitematā (Figure 10) scenarios, the output spatial vent
eruption probabilities contain linear N-S features from the
Bebbington (2013) LSCV model of higher probability than the
uniform distribution counterpart in areas where there is no
observed seismicity (Figures 7, 9), demonstrating the influence
of the prior input. A notable feature is that the prior distribution
remains 50% of the mix regardless of how many (or how few)
earthquakes are observed. Hence an obvious avenue is to base the
contribution on the level of observed monitored parameters, e.g.,
the number of earthquakes. A clear avenue for future work would
thus be a re-evaluation of the sensitivity of BET model outputs to
the weighting of monitoring and prior components at Node 4 in
the case of distributed volcanism.

Additional investigations could include changing the inverse
(by depth) weighting of earthquakes, using an exponential
smoother to weight the elapsed time since the earthquake to
capture the lateral migration of earthquakes, or expanding the

approach to include additional monitoring parameters such as
deformation. While we have presented one approach for
informing the Node 4 monitoring component input, other
approaches using additional or alternate monitoring
techniques can be used. One such input that could be
considered is using areas of deformation as an indication of
potential vent location (e.g., Rosi et al., 2022). Alternate
approaches for informing the Node 4 monitoring components
have been presented in other BET implementations. For example,
Constantinescu et al. (2016) attempt to localise all observed
anomalies in Node 1-3 seismic, geochemical and geodetic
parameters across their area of interest to inform the vent
likelihood. In contrast, in an application at the stratovolcano
Kawah Ijen, Korea, the number of VT events in each of the five
considered vent locations were used to weight the likely vent
location of a magmatic eruption, as depth of earthquakes is not
routinely estimated at that volcano (Tonini et al., 2016). This
demonstrates the potential for further work to be undertaken to
inform how the various available monitoring techniques and
observations can be used to inform the vent likelihood in the AVF
and beyond.

FIGURE 10 | Spatial distribution of absolute eruption probabilities for the Waitematā scenario from BETEF_AVF with the Bebbington 2013 LSCV prior vent model
for selected days leading up to the eruption. The green contour encompasses the evacuation zone extent based on cost-benefit analysis.
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A fundamental model component is the prior distributions
defining the a and b parameters used to calculate the node’s
monitoring-informed probability (Eq. 2). We examined how
varying these priors alters the output probabilities,
demonstrating the importance of selecting appropriate priors
(Figures 4, 5). We found that reducing a and increasing b
significantly increases output probability when Z is small.
After a certain Z-value, the function becomes saturated, and
minimal differences are observed between the different a and b
parameter combinations.

While exploration of the scenario suite shows that
BETEF_AVF appropriately assesses the eruption likelihood for
the AVF, there are known limitations with the BET_EF
framework. BET_EF outputs probabilities of a volcanic state
for a prescribed look ahead window τ. In contrast, other
models such as the failure forecast model (Voight and
Cornelius, 1991; Cornelius and Voight, 1994) produce
estimates of eruption onset time, which could be viewed as a
more desirable outcome for crisis decision-support (Wild et al.,
2020;Whitehead and Bebbington, 2021), although the probability
of eruption is less concrete, and it does not lend itself to CBA
approaches. Additionally, to inform the development of a
BET_EF for a volcano, there needs to be a good conceptual
model of volcanism, and appropriate experts with a good
understanding of the volcano included in monitoring
parameter and threshold selection (Whitehead and
Bebbington, 2021). While it is considered that there was
adequate understanding of the AVF and representation of
expertise involved in the development of the BETEF_AVF, the
monitoring parameters and thresholds were established based on
limited empirical knowledge of how pre-eruptive unrest might
progress in the AVF. Furthermore, BETEF_AVF was tested on
simulated unrest sequences that may or may not represent what
might precede a future eruption. Despite these limitations, it is
considered BETEF_AVF performed well, with Pm and Pe
increasing appropriately with elevated levels of activity.

Comparison between the original AVF BET_EF from Lindsay
et al. (2010) and BETEF_AVF using the Exercise Rūaumoko
injects demonstrates that they perform very similarly, even with
the modification of the parameters, thresholds and weights
(Figure 11). While both models yield similar outputs and
follow the same trend for Pm and Pe, the notable differences
are due to the weight of a seismic parameter at Node 2 and a
change in thresholds for a seismic parameter at Node 3.

6.2 AVF BET_EF as a Crisis
Decision-Support Tool
Tools such as BET_EF have the potential to support crisis
decision making, for example, to inform evacuation decisions
(Marzocchi et al., 2008; Lindsay et al., 2010; Selva et al., 2012) and
zones (Sandri et al., 2012) by means of CBA. However, our
analysis yielded a surprising result, namely that the “evacuation
area” increased in size as the sequence developed, even extending
to include areas far from any observed seismicity (Figures 7–10).
This seems to be illogical, i.e., one would think that as seismicity
shallows and the spatial vent likelihood increases and converges,
the required evacuation zone should decrease. We found two
contributing causes to the increasing size of the “evacuation
area,”, namely the fixed 50:50 Node 4 weighting between prior
and monitoring components, and the CBA approach (and
evacuation threshold) applied.

At present, the Node 4 50:50 weighting for monitoring inputs:
prior model results in areas that are not affected by seismicity
being identified as cost-beneficial to evacuate at increasing levels
of unrest. When Pe ≥ ~0.31, with a CBA ratio of p = 0.0143, it
becomes cost-beneficial to evacuate a location in which all
potential vents within a 5 km radius are only informed by a
uniform prior model (i.e., no monitoring activity). Similar
behavior is observed when using the Bebbington (2013) LSCV
as the prior location input. This contradicts the expected behavior
which might suggest that, as confidence in the vent location

FIGURE 11 | Time evolution of BETEF_AVF for magmatic unrest and eruption forecasting compared to the Lindsay et al. (2010) output for the Exercise Rūaumoko
sequence. N.B for this comparison, BETEF_AVF uses the distributions a = U (0.5, 1) and b = U (0, 2) to align with the Lindsay et al. (2010) output probabilities.
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increases, the evacuation zone should decrease. As discussed
above, increasing the weight of the monitoring component as
unrest escalates should progressively lower the spatial vent
probabilities of cells beyond the unrest area, thereby reducing
the extent of the derived evacuation area.

Our application has highlighted some limitations in the CBA
approach applied by Sandri et al. (2012) and in this study. The
CBA approach used a fixed value for the proportion of evacuees
that owe their life to the evacuation call (E), based on the
estimated proportion that would self-evacuate. At present, this
value is fixed, irrespective of how the event unfolds. However,
actions such as self-evacuation would in fact change the E
parameter. Wild et al. (2021) examined population exposure
and estimated clearance times within evacuation zones across
Auckland, considering increasing vent uncertainty size. Such
information could be used to modify E across an event, and
can support the decision to call an evacuation as the spatial
variability changes with increased monitoring information. This
could be a focus for future work.

The 5 km distance around the vent uncertainty area applied by
the AVF contingency plan (Auckland Council, 2015) is informed
by a maximum considered base-surge run out. However, this
assumes an equal risk to life safety within that zone, i.e., the same
risk for someone at the vent and someone at 5 km distance, which
does not reflect reality with respect to spatial extent and run out
distance of a base surge (Sandri et al., 2012) and likelihood of
casualty with distance (Baxter et al., 2005). In addition, the
eruptive style varies across the AVF (Ang et al., 2020), which
in turn effects the phenomena produced and thus the extent of
impact (Sandri et al., 2012; Hayes et al., 2018). These factors will
confound with the evacuation zone in a complex manner, and
need to be assessed.

7 SUMMARY AND CONCLUSION

This paper presents the set-up and application of a revised
BET_EF for the AVF to assess the short-term eruption
probability and spatial vent likelihood when applied to eight
hypothetical unrest scenarios. While not designed to supplant
monitoring and advisory groups, output from such models as
BETEF_AVF can provide an initial starting point for discussions
between volcanic science advisory group members regarding the
current unrest and state of the volcano, and can be prepared in
advance of a future crisis (Lindsay et al., 2010; Papale, 2017).
Additionally, expert elicitation workshops during the
development of a BET_EF are opportunities to bring together
monitoring and research volcanologists to discuss and share
insights to develop a common conceptual understanding of a
volcano, and to highlight areas for future research and
monitoring enhancements. For example, many of the
parameters captured and subsequently applied in BETEF_AVF
are not routinely monitored for in the AVF, given it is a
distributed volcanic field with no target for geochemical and
geodetic monitoring. However, expert opinion revealed that these
parameters could be important indicators of unrest, magmatic
unrest and eruption, at nodes 1–3, respectively. These insights are

valuable in that they can inform the direction of future upgrades
of the monitoring network.

Based on our development and application of the
BETEF_AVF we offer the following key general conclusions
regarding BET_EF as a tool for volcanic eruption forecasting:

• There is value in reviewing previous BET_EF and similar
frameworks as the understanding of a volcano or
monitoring capability is improved. This can include
evaluation and updating the prior datasets, as well as
the input monitoring parameters and thresholds. In our
case, we conducted our evaluation and update of the latter
via an expert opinion workshop using a consensus
approach.

• The BET_EF outputs are sensitive to prior distributions
for a and b, and as such volcano specific consideration is
required when selecting these priors. For the
BETEF_AVF implementation, we have selected a = U
(0.75, 1) to reflect the low likelihood of a volcano being
in a given state (e.g., magmatic unrest) without any
monitoring observations, given the fact that the AVF
is continually monitored through the seismic network.
The outputs of BET_EF can be explained based on the
model inputs and transparent methodology using a
consensus model in advance without the pressure of
ongoing unrest. This can be advantageous in litigious
environments.

• The tool can be executed in near real-time, meaning it can
readily provide outputs to support decision-making. In
particular, the outputs for both eruption probability and
vent likelihood can be combined with CBA to support crisis
decision-making, such as when and where to evacuate (e.g.,
Sandri et al., 2012; Wild et al., 2019).

Furthermore, our application of BETEF_AVF and comparison
with past work in the AVF by Lindsay et al. (2010) and Sandri
et al. (2012) also yielded some interesting insights into potential
challenges when applying the tool in areas of distributed
volcanism:

• The fixed BET_EF Node 4 50:50 weighting of monitoring:
prior inputs (Marzocchi et al., 2008; Sandri et al., 2012) may
not be suitable for distributed volcanic fields. The spatial
vent location probabilities were higher near the eruption
outbreak location. However, when aggregating the spatial
eruption probability at each vent across the grid to inform
the probability of impact, the evacuation CBA threshold was
unrealistically exceeded far from monitoring observations

• Without addressing this issue, the CBA approach applied in
this study and previous studies does not appear to be
suitable for distributed volcanic fields due to the spatial
uncertainty regarding the eruption location.

In summary, this study highlighted several key challenges
when applying BET_EF for crisis decision-support to
distributed volcanic fields, especially where there have been
no past monitored eruptions. We demonstrated that
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BETEF_AVF performed well based on the synthetic unrest
dataset from scenario unrest sequences, yielding increasing
probabilities of magmatic unrest and eruption as the unrest
sequence progressed, and generating spatial probability maps
that highlighted higher probability in the areas of eventual vent
formation. Although these were synthetic eruption sequences
and thus not real, we believe the results still provide important
insights. In particular, we highlight the value of the process of
continuous refinement of parameters and thresholds by
monitoring and research scientists, and how this contributes
to a shared understanding of the conceptual model for a
particular volcano.
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