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As an artificial intelligence method, machine learning (ML) has been widely used in
prediction models of high-dimensional datasets. This study proposes an ML method,
the Gradient Boosted Regression Tree (GBRT), to predict the intensity changes of tropical
cyclones (TCs) in the Western North Pacific at 12-, 24-, 36-, 48-, 60-, and 72-h (hr)
forecasting lead time and the model is optimized by the Bayesian Optimization algorithm.
The model predictands are the TCs intensity changes at different forecasting lead times,
obtained from the best track data of the Shanghai Typhoon Institute (STI) and the Joint
Typhoon Warning Center (JTWC) from 2000 to 2019. The model predictors are the
synoptic variables, climatological and persistent variables derived from the reanalysis data
obtained from the National Centers for Environmental Prediction (NCEP), and the sea
surface temperature (SST) data obtained from the National Oceanic and Atmospheric
Administration (NOAA). The results show that the GBRT model can capture the TCs
intensity changes well for the succeeding 12-h, 24-h, 36-h, and 72-h. Compared with the
traditional multiple linear regression (MLR) model, the GBRTmodel has better performance
in predicting TCs intensity changes. Compared with the MLR model, R2 of the GBRT
model for TCs intensity forecast increases by an average of 8.47% and 4.45% for STI data
and JTWC data. MAE (RMSE) drops by 26.24% (25.14%) and 10.51% (4.68%) for the two
datasets, respectively. The potential future intensity change (POT), the intensity changes
during the previous 12 h (Dvmax), Initial storm maximum wind speed (Vmax), SST, and the
Sea-Land ratio are the most significant predictors for the GBRT model in predicting TCs
intensity change over the Western North Pacific.

Keywords: tropical cyclones, intensity change, prediction, Western North Pacific, gradient boosted regression tree,
Bayesian optimization

1 INTRODUCTION

Tropical cyclones (TCs) usually bring substantial economic losses and casualties through
strong winds, heavy rainfall, and storm surge during and after TCs landfall, especially in the
coastal area which is vulnerable to TCs (Zhang et al., 2009). Therefore, an accurate and timely
forecast of TCs track and intensity is crucial for local disaster mitigation. During the past
century, scientists and meteorological administrations tried to improve their ability in TCs
observation technology, forecasting techniques, and understanding TCs intensification
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mechanism (Emanuel, 2018). In the past 30 years, with the
application of meteorological satellites and the popularity of
ensemble forecasts for TCs track, the track prediction has
been greatly improved (Zhang and Krishnamurti, 1997;
Fraedrich et al., 2003; Langmack et al., 2012; Jun et al.,
2017). However, the intensity forecast is still poor
compared with the track forecast and is a huge challenge
around the world (DeMaria et al., 2014).

TCs intensity is influenced by two main physical processes
(Wang and Wu, 2004; Elsberry et al., 2013), which are synoptic
variables such as vertical wind shear, humidity, sea surface
temperature, water vapor, divergency (DeMaria, 1996; Ge
et al., 2013; Gao et al., 2016; Mercer and Grimes, 2017), and
climatological and persistent variables such as latitude, longitude,
Julian day, and sea-land ratio (SL ratio) (DeMaria and Kaplan,
1994a; Gao et al., 2016; Li et al., 2018). Statistical-dynamical
models were used to predict TCs intensity and rapid
intensification probability and outperformed the forecasts of
individual physics-based dynamical models (Knaff et al., 2005;
Kaplan et al., 2010; Gao and Chiu, 2012). For decades, scientists
have dedicated themselves to improving the skill of TCs intensity
forecast. Jarvinen and Neumann (1979) proposed a statistical
regression equation (Statistical Hurricane Intensity FORecast,
SHIFOR) using predictors derived from climatic and persistent
variables to predict TCs intensity changes over the North Atlantic
Basin for the future 72 h. DeMaria and Kaplan (1994a) proposed
a Statistical Hurricane Intensity Prediction Scheme (SHIPS),
which considered more synoptic predictors to predict the
changes in TCs intensity over the Atlantic Ocean Basin. The

FIGURE 1 | Tracks of the TCs in the Western North Pacific from 2000 to 2019 based on the best track data from STI at 6-h interval.

TABLE 1 | The 26 potential predictors available for the GBRT model.

Predictor Description

Lat Initial storm latitude
Lon Initial storm longitude
Vmax Initial storm maximum wind speed
Dvmax Intensity change during the previous 12 h
JDATE Absolute value of Julian day
SHRS Area-average (200–800 km) wind shear at 850–500 hpa
SHRD Area-average (200–800 km) wind shear at 850–200 hpa
LSHRS SHRS times the sine of the latitude
LSHRD SHRD times the sine of the latitude
USHRS Area-average (200–800 km) zonal wind shear at 850–500 hpa
USHRD Area-average (200–800 km) zonal wind shear at 850–200 hpa
MPI_Vmax MPIa times the initial intensity
POT Maximum possible intensity - initial intensity
RHHI Area-average (200–800 km) relative humidity at 500–300 hpa
RHLO Area-average (200–800 km) relative humidity at 850–700 hpa
SPD Storm translational speed
T200 Area-average (200–800 km) temperature at 200 hpa
D200 Area-average (200–800 km) divergence at 200 hpa
WVF500 Area-average (200–800 km) water vapor flux at 500 hpa
WVF850 Area-average (200–800 km) water vapor flux at 850 hpa
Z500 Area-average (200–800 km) vorticity at 500 hpa
Z850 Area-average (200–800 km) vorticity at 850 hpa
U200 Area-average (200–800 km) zonal wind at 200 hpa
V200 Area-average (200–800 km) meridional wind at 200 hpa
SST Area-average (0–800 km) sea surface temperature
SL ratio Ratio of sea area with a certain radius

aMPI, refers to the maximum potential intensity, following the methodology employed by
DeMaria and Kaplan (1994b) and Knaff et al. (2005).

TABLE 2 | Sample numbers for different TCs’ lead time prediction models.

Lead time Source Over land Near the
coast

Over open
ocean

All samples

12 STI 814 6782 6525 14121
JTWC 384 6388 6437 13209

24 STI 547 6272 6220 13003
JTWC 175 5746 6143 12064

36 STI — 5592 5931 11891
JTWC — 5016 5853 10946

48 STI — 4920 5639 10814
JTWC — 4273 5547 9860

60 STI — 4257 5340 9785
JTWC — 3557 5228 8809

72 STI — 3622 5041 8803
JTWC — 2925 4875 7819
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results showed that the average errors by SHIPS were 10%–15%
smaller than the errors by the SHIFOR model that used only
climatic and persistent variables. The storm decay over land was
further considered by SHIPS (DeMaria et al., 2005). Besides the
conventional synoptic and climatological variables, Li et al.
(2018) paid close attention to the land effect on TCs intensity
change by proposing a new factor involving the ratio of seawater
area to land area (SL ratio) in the statistical regression model. TCs
intensity changes over the entire TCs life span, including over the
ocean basin, near the coast, and after landfall, were considered in

the model (Li et al., 2018). Intensity forecasting accuracy for TCs
near the coast and over land was improved with the addition of
the SL ratio, compared with that of the models that did not
consider the index of SL ratio (Li et al., 2018).

Based on previous observations and studies, in most cases,
intensity changes are usually slow and steady over a certain
period. However, in some situations, the TCs intensity may
vary rapidly. Predicting these rapid intensifications is very
challenging (Emanuel and Zhang, 2016). Many factors, such as
the complex and chaotic energy exchange process between the sea

FIGURE 2 | Selection results of the significant variables for TCs intensity prediction models for the STI datasets by the GBRT method. The vertical axis represents
the percentage of the feature importance of the variable in the corresponding prediction model, and the horizontal axis refers to the predictor variable. Only the six most
important variables are displayed for each lead time forecasting model. (A) for TC samples over land; (B) for TC samples near the coast; (C) for TC samples over the open
ocean; (D) for all TC samples.
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and the atmosphere, and the imperfection of real-time data
collection, may influence the prediction of TCs intensity
change. These rapid intensification processes are challenging
to explain, and therefore, neither numerical nor statistical-
dynamic models can predict TCs intensity changes accurately
(Chen et al., 2020). A vital weakness for numerical methods is
insufficient representation of the complicated dynamical process;
however, increasing the number of variables or equations would
exponentially demand the computation (Gao et al., 2016). On the
other hand, statistical methods, usually based on regression and

lower computational costs, may not be effective in capturing
nonlinear relationships. Therefore, their forecast results need to
be further improved (Lin et al., 2009; Sandery et al., 2010).

To solve these problems, scientists began to use machine
learning (ML) to predict the TCs intensity in recent years
(Gao et al., 2016; Cloud et al., 2019; Chen et al., 2020; Xu
et al., 2021). Some ML algorithms, such as support vector
machine, artificial neural network, decision tree, and random
forest, have been gradually introduced into meteorology
(Breiman, 1996; Mas and Flores, 2008; Behrangi et al., 2009;

FIGURE3 | Selection results of the significant variables for TCs intensity predictionmodels for the JTWCdatasets by the GBRTmethod. The vertical axis represents
the percentage of the feature importance of the variable in the corresponding prediction model, and the horizontal axis refers to the predictor variable. Only the six most
important variables are displayed for each lead time forecasting model. (A) for TC samples over land; (B) for TC samples near the coast; (C) for TC samples over the open
ocean; (D) for all TC samples.
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Mountrakis et al., 2011; Pan et al., 2019). ML is applicable to high-
dimensional datasets and can deal with nonlinear relationships
between predictors and predictand. It is used to explore satellite,
radar, and in-situ data to improve the TCs intensity forecast skills
(Gao et al., 2016; Zhang et al., 2016; Griffin et al., 2017; Jin et al.,
2020). Generally, ML models combine historical storm
characteristics, physically motivated information, and storm-
specific features to make predictions (Xu et al., 2021).

The gradient boosted regression tree (GBRT) is an ensemble ML
algorithm consisting of multiple decision trees, which is robust in
model training (Zhang et al., 2020). First, the decision tree algorithm is
a classical ML method, and it can deal with inherent nonlinear
relationships in variables and missing values (Quinlan, 1987;
Fayyad and Stolorz, 1997). In addition, the algorithm can quantify
the relative importance of variables and establish decision rules for
prediction (Quinlan, 1987). It has been successfully applied in the
analyses of the re-curvature, landfall, and intensity change of TCs in
theWesternNorth PacificOcean (Zhang et al., 2013; Gao et al., 2016).
Second, like most ensemble methods, a combination of decision trees
can provide more robust and accurate regressions than a single one.
The greater-than and less-than structures of the treemodulemake the
GBRT less affected by outliers (Bishop andNasrabadi, 2006; Ma et al.,
2018). Furthermore, GBRT is able to capture the complicated and

nonlinear relationships between TCs intensity change and other
related features. Compared with a single decision tree, GBRT pays
more attention to the regression errors with less calculation time for
high-dimension data (Xie and Coggeshall, 2010; Ding et al., 2016;
Yang et al., 2016; Ma et al., 2017; Ma et al., 2018). Therefore, GBRT is
used in this study to predict the future change of TCs intensity in the
Western North Pacific Ocean.

Most of the studies mainly focused on TCs intensity change over
the open ocean. However, TCs that make landfall or approach the
coast usually cause most of the loss of life and damage. Forecasting
the intensity of TCs near the coast and over land should be,
therefore, more critical than forecasting TCs intensity over the
open ocean (Li et al., 2018). Li et al. (2018) explored the TCs
intensity change over the entire TCs life span by considering a new
factor, the “ratio of seawater area to the land area,” in the multiple
linear regression model (MLR). However, MLR usually performs
poorly in handling the nonlinear relationship between predictors
and predictand. In this study, the GBRT is proposed to forecast
future TCs intensity at 12-, 24-, 36-, 48-, 60-, and 72-h forecasting
lead time in the Western North Pacific region for different TCs life
spans. GBRT’s performance in predicting TCs intensity change over
the Western North Pacific is compared with the performance of the
MLRmodel used by Li et al. (2018). The remaining of the paper is as

FIGURE 4 | Evaluation of the performance of the GBRTmodel in predicting the TCs future 12-h, 24-h, 36-h, 48-h, 60-h, and 72-h intensity changes with four cross
validations in terms of R2 (the first column), MAE (the second column), and RMSE (the third column) based on the STI TCs best track data. (A–C) for TC samples over
land; (D–F) for TC samples near the coast; (G–I) for TC samples over the open ocean; (J–L) for all TC samples.
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follows. The data and methodology are described in Section 2.
Section 3 contains the results and discussion. In the final section,
summaries are presented.

2 DATA AND METHODS

2.1 Data
At present, there is no standardized TCs intensity estimation
method, and the most widely used methods are artificial
algorithms based on satellite cloud images; therefore, there
is uncertainty about TCs intensity values (Jiang et al., 2019; Lee
et al., 2019). To account for the uncertainty, this study used
two different TCs datasets: the best track data from the
Shanghai Typhoon Institute (STI, 2020) and the best track
data from the Joint Typhoon Warning Center (JTWC, 2020)
for the period of 2000–2019 in the Western North Pacific
region, covering the area with latitude north of 0°N and
longitude west of 180°. It is worth noting that for TCs that
affect China, STI data might have more advantages than
JTWC, as there are more direct observations for those TCs
in China (Ren et al., 2011).

The best track datasets include the TCs time (year, month, day,
hour), location (latitude and longitude of the TCs center), TCs
central pressure, and the maximum sustained wind speed near
the TCs center. Figure 1 shows the tracks of the TCs in the
Western North Pacific from 2000 to 2019 based on the data from
STI. In addition to the TCs data, synoptic variables, climatological
and persistent variables are derived from the reanalysis data
obtained from the National Centers for Environmental
Prediction (NCEP, 2020) at 6-h temporal and 1° × 1° spatial
resolution. The NCEP FNL (Final) Operational Global analysis
data has incorporated the most complete set of observational data
and is possibly the best choice for a long-term operational model
archive from NCEP (NCEP, 2020). The analyses are available at
the surface and 26 mandatory levels from 1,000 to 10 hpa.
Furthermore, this study applies global daily means of SST
provided by the National Oceanic and Atmospheric
Administration (NOAA, 2020), as warm seawater is the energy
source for TCs. The data from 2000 to 2019 are divided into four
groups according to five consecutive years (i.e., 2000–2004 is a
group; 2005–2009 is another group). We use one group as the test
set and the other three groups as the training set to build the
prediction model and perform cross-validation.

FIGURE 5 | Evaluation of the performance of the GBRTmodel in predicting the TCs future 12, 24, 36, 48, 60, and 72-h intensity changes with four cross validations
in terms of R2 (the first column), MAE (the second column), and RMSE (the third column) based on the JTWC TCs best track data. (A–C) for TC samples over land; (D–F)
for TC samples near the coast; (G–I) for TC samples over the open ocean; (J–L) for all TC samples.
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2.2 Method
2.2.1 Gradient Boosted Regression Tree Model
In this study, the Gradient Boosted Regression Tree (GBRT) model
is applied to predict the TCs intensity change over the entire TCs life
span. The GBRT model is popular for its ability to describe the
complicated relationships between input and output data and the
explanation of input features (Yang et al., 2020). It enhances the
traditional decision tree approach by boosting technology
(Friedman, 2001; Friedman, 2002). In boosting, base learners are
built sequentially, and each base learner tries to reduce the bias of the
previous combined learner (Yang et al., 2020). This approach can
combine multiple weak models to make the ensemble model more
powerful (Zhou et al., 2021). One of the core ideas of GBRT is to use
the value of the negative gradient of the loss function in the current
model as an approximation of the residual, which is essentially a
first-order Taylor expansion of the loss function to fit a regression
tree. Besides, the samples in the training set with the largest residuals
are weighted the most heavily in GBRT (Schapire, 2003),
encouraging the model to improve its worst predictions
(McGovern et al., 2019). In addition, the importance of each
input variable can be ranked in GBRT model.

The GBRT is additive models, which can be expressed as the
following form:

ŷi � FM(xi) � ∑
M

m�1
hm(xi). (1)

where the hm are estimators, which are called weak learners in
boosting. The GBRT uses fixed-size decision tree models as weak
learners. The constant M corresponds to the parameters of the
estimator.

Then the GBRT learners are updated continuously, similar to
other boosting algorithms.

Fm(x) � Fm−1(x) + hm(x), (2)
where the newly added tree hm is fitted to minimize the sum of
losses Lm, based on the previous ensemble Fm−1:

hm(x) � arg min
h

Lm � arg min
h

∑n

i�1l(yi, F(xi) + h(xi)). (3)

2.2.2 Bayesian Optimization Algorithm
Bayesian optimization is a very effective global optimization
algorithm whose goal is to find the global optimal solution,
which is a kind of black-box function without assuming any
function form (Brochu et al., 2010; Snoek et al., 2012). As ML

FIGURE 6 | Performance comparison between the GBRT model with the default hyperparameters and Bayesian optimized GBRT model in terms of (A) R2, (B)
MAE, and (C) RMSE for TCs intensity change prediction based on the STI data. The labels of Land, Coast, Ocean, and All in the figures refer to TC samples over land,
near the coast, over the open ocean, and all TC samples, respectively.
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models are widely used to process large amounts of data, the
space and process required for hyperparametric tuning become
more and more complex. Nowadays, people prefer Bayesian
optimization parameter tuning which has been shown to lead
to high model performance after the convenient and efficient
tuning (Swersky et al., 2013). The corresponding algorithm for
the Bayesian optimization is as follow:

Suppose we have a function f: Χ → R and we need to find the
maximum within x ∈ X:

xopt � arg max
x∈X

f (x), (4)

where X is a set of hyperparameters, and Χ ⊂ Rd. The
computational cost of evaluating model changes is high with a
usually small d, and hyperparametric gradients are often not
available; therefore, hyperparametric optimization of ML models
is important (SIGOPT, 2020). It is worth mentioning that the
Bayesian optimization algorithm remains robust for random,
non-convex, and even discontinuous fundamental functions f.
In this study, we use the Bayesian optimization algorithm to
iteratively tune the hyperparameters of the GBRT model, and
apply the optimal hyperparameter combination to the prediction
model, thereby improving the accuracy of the model.

2.2.3 Potential Predictors
The 26 potential predictors used in the MLR model by Li et al.
(2018) are also applied for the GBRT model in this study,
which are listed in Table 1. All synoptic variables are generally
averaged from the corresponding data within a specific radius
of the TCs center, usually within a ring with an outer diameter
of 800 km and an inner diameter of 200 km. Note that SST is
calculated as the average value of the data with a radius of
800 km. The maximum potential intensity (MPI) and TCs
potential future intensity change (POT) are calculated by SST.
Following Li et al. (2018), the life spans of TCs are divided into
the samples over the open ocean, near the coast, and over land
according to the values of SL ratio with the range of SL ratio >
0.99, 0.5 < SL ratio < 0.99, SL ratio < 0.5, respectively, which
are computed within the radius of 500 km around the TCs
center. The numbers of TC samples over the open ocean, near
the coast, and over land, as well as the total TC samples (all TC
samples without categorization), for the TCs intensity change
prediction models with 12-, 24-, 36-, 48-, 60-, and 72-h
forecasting lead time are shown in Table 2.

The performance of the forecasting models for the testing
periods are evaluated in terms of the statistical properties of

FIGURE 7 | Performance comparison between the GBRT model with the default hyperparameters and Bayesian optimized GBRT model in terms of (A) R2, (B)
MAE, and (C) RMSE for TCs intensity change prediction based on the JTWC data. The labels of Land, Coast, Ocean, and All in the figures refer to TC samples over land,
near the coast, over the open ocean, and all TC samples, respectively.
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coefficient of determination (commonly known as R2), mean
absolute error (MAE) and root mean square error (RMSE).

3 RESULTS AND DISCUSSION

3.1 Computation and Selection of the Model
Predictors
For the TCs intensity prediction models, the dependent variables
are the TCs intensity changes for the future 12-h, 24-h, to 60-h,
and 72-h, and the potential predictors are listed in Table 1.
Because TCs usually decay quickly after their landfall, this study
only considers TCs intensity changes within 24 h (including 12-h
and 24-h) after landfall. Figures 2, 3 show the importance of the
variables in the prediction models with different lead times over
the open ocean, near the coast, over land, as well as the all TC
samples, based on the STI and the JTWC datasets, respectively. As
can be seen from Figures 2, 3, the feature importance of variables
varies for the STI and JTWC datasets with different prediction
periods, and the six most important variables for each prediction
period have accounted for more than 80% of the total feature
importance for the prediction models.

Figures 2, 3 show that POT plays the most crucial role in
TCs intensity change for TCs over the open ocean (Figures 2C,
3C) and near the coast (Figures 2B, 3B), as well as all TC
samples (Figures 2D, 3D). The importance of POT is generally
increasing with the forecasting lead time. Besides POT, SST is
also essential for TCs intensity change for TCs over the open
ocean and near the coast, especially based on the JTWC
datasets. Dvmax is an important factor affecting TCs
intensity change for TCs over the open ocean and near the
coast, as well as all TC samples, for short forecasting lead time,
i.e., 12 h and 24 h. Dvmax is no longer an important factor for
TCs intensity changes when the forecasting lead time is longer
than 24 h for TCs near the coast and the forecasting lead time is
longer than 48 h for TCs over the ocean. It is reported that
vertical wind shear is one of the most critical dynamic
parameters influencing TCs intensity change (DeMaria and
Kaplan, 1999; DeMaria et al., 2005; Zeng et al., 2010; Wang
et al., 2015). In the GBRT model, vertical wind shear variables
of LSHRS and LSHRD play important roles in affecting the
TCs intensity when TCs are over the open ocean; however,
vertical wind shear is not important for TCs intensity change
when TCs are near the coast.

FIGURE 8 | Performance comparisons between the MLR model and GBRT model in terms of (A) R2, (B) MAE, and (C) RMSE for the TCs intensity change
prediction based on the STI data from 2000 to 2015. The Land, Coast, Ocean, and All from the x-axis labels refer to TCs over land, near the coast, over the open ocean,
and all TC samples, respectively.
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It can be seen from Figures 2B, 3B, SL ratio is a crucial variable
affecting TCs intensity change when TCs are near the coast.
Different from the MLR model used by Li et al. (2018), SL ratio is
not an important predictor for the future 12-h TCs’ intensity
change after TCs landfall. For TCs after landfall, the significant
predictors are Vmax and Dvmax, and the importance of Vmax
reaches 0.65–0.85 (Figures 2A, 3A).

3.2 Evaluation of the Prediction Model for
TCs Intensity Change
As described in Section 2, we divide the 2000–2019 data into four
groups, i.e., 2000–2004, 2005–2009, 2010–2014, 2015–2019. We
use any three groups as the training datasets, and the remaining
one as the test datasets to build the prediction model and perform
cross validation. We evaluate the GBRT model’s performance in
predicting the TCs future intensity changes for TCs over land,
near the coast, and over the open ocean, as well as all TC samples
in terms of R2, MAE, and RMSE. Figures 4, 5 show the evaluation
results of the prediction models’ performance with the four cross
validations by boxplots based on STI data and JTWC data,
respectively.

It can be seen from Figures 4, 5 that the R2 value will
generally increase with the forecasting lead time. For the GBRT
model based on all TC samples, the median and mean of R2

values are 0.58 (0.56) and 0.57 (0.56) by the 12-h lead time
forecast and are 0.68 (0.65) and 0.67 (0.64) by the 72-h lead
time forecast based on STI (JTWC) datasets. MAE and RMSE
also increase with the forecasting lead time. For all sample
models of STI (JTWC) data, the MAE median and mean values
are approximately 2.39 (3.08) and 2.40 (3.06) ms−1 by the 12-h
lead time forecast and are 7.79 (10.35) and 7.93 (10.29) ms−1 by
the 72-h lead time forecast. The RMSE median and mean
values are 3.23 (4.19) and 3.24 (4.20) ms−1 by the 12-h lead
time forecast and are approximately 9.75 (12.99) and 9.98
(12.94) ms−1 by the 72-h lead time forecast. From the
comparison of the statistical properties, the quality of the
best track data from STI might be slightly better than the
one from JTWC.

Specifically, for the GBRT model for TCs over land, the
median and mean of R2 are 0.65 (0.61) and 0.64 (0.62) by the
12-h lead time forecast, and are 0.75 (0.74) and 0.76 (0.76) by
the 24-h lead time forecast based on STI (JTWC) datasets. The
median and mean of MAE are 1.98 (2.81) and 1.96 (2.88) ms−1

FIGURE 9 | Performance comparisons between the MLR model and GBRT model in terms of (A) R2, (B) MAE, and (C) RMSE for the TCs intensity change
prediction based on the JTWC data from 2000 to 2015. The Land, Coast, Ocean, and All from the x-axis labels refer to TCs over land, near the coast, over the open
ocean, and all TC samples, respectively.
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by the 12-h lead time forecast, and are 2.4 (3.82) and 2.26
(3.84) ms−1 by the 24-h lead time forecast based on STI
(JTWC) datasets. The median and mean of RMSE are 2.93
(3.83) and 2.77 (3.89) ms−1 by the 12-h lead time forecast, and
are 3.42 (4.74) and 3.08 (4.76) ms−1 by the 24-h lead time
forecast based on STI (JTWC) datasets. Again, from the
comparison of the statistical properties, the quality of the
STI best track data is slightly better than the JTWC best track
data. The MAE and RMSE for TC samples over land are less
than those values for TCs near the coast and TCs over the
open ocean. The reason may be that TCs intensity will usually
decay quickly after landfall, and the number of essential
variables that affect the TCs intensity change after landfall
is less than the number of essential variables when TCs are
near the coast and over the open ocean. Therefore, the TCs
intensity changing process after landfall is not as complicated
as the processes for TCs near the coast and over the open
ocean. And consequently, the performance of TCs intensity
forecast after landfall is generally better.

3.3 Performance Comparison Between the
GBRTModel With Default Hyperparameters
and Bayesian Optimized GBRT Model
As described in Section 2, We use the Bayesian optimization
algorithm to tune the hyperparameters of the GBRT model to
improve the accuracy of the prediction model. The prediction
results of the GBRT model with default hyperparameters are
compared with the performance of the GBRT model with
Bayesian optimization. The historical data from 2000 to 2014
are used for model training, and the data from 2015 to 2019 are
used for model testing. The performance of the two prediction
models is evaluated by the statistical properties of R2, MAE, and
RMSE. Figures 6, 7 show the performance comparison based on
STI and JTWC datase-ts, respectively.

In the figures, it can be seen that the performance of the
Bayesian optimized GBRT model for the TCs over land, near
the coast, over the open ocean, and for all TC samples is
generally better than the performance of the model with

FIGURE 10 | (A) The tracks of Soudelor (201513) and Mangkhut (201822) based on the STI best track data; the comparison of the time series of Soudelor’s
intensity values from the STI and JTWC best track data and the intensity prediction by the GBRT model by (B) 12-h and (C) 24-h lead time forecasts, respectively; the
comparison of the time series of Mangkhut’s intensity values from the STI and JTWC best track data and the intensity prediction by the GBRTmodel by (D) 12-h and (E)
24-h lead time forecasts, respectively.
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default hyperparameters. For STI data and JTWC data, after
Bayesian optimization for the prediction model, R2 will
increase by an average of 3.37% and 3.26%. MAE (RMSE)
will decrease by an average of 3.22% (2.62%) and
3.82% (3.71%).

3.4 Performance Comparison Between the
GBRT Model and MLR Model
The performance of the GBRT model is compared with that of
the MLR model (Li et al., 2018) during the testing period to
forecast TCs intensity over the entire TCs life span in the
Western North Pacific. Li et al. (2018) used historical data
from 2000 to 2011 for model calibration and data from 2012 to
2015 for model validation. To ensure a fair comparison, the
same training datasets and testing datasets are selected in the
GBRT model. Similarly, the performance of the different
prediction models is evaluated in terms of R2, MAE,
and RMSE.

Figures 8, 9 show the performance comparison results based
on STI and JTWC datasets, respectively. It can be seen from the
two figures that the GBRT model outperforms the MLR model in
TCs intensity forecast for both datasets. Compared with the
performance of the MLR model, R2 of the GBRT model
increases by an average of 8.47% and 4.45% for STI data and
JTWC data, respectively. MAE (RMSE) drops by an average of
26.24% (25.14%) and 10.51% (4.68%) for the two datasets,
respectively.

3.5 Performance of the GBRT Model for
Intensity Prediction of Real TCs Cases
In order to further evaluate the performance of the GBRT prediction
model, we apply the model to predict the intensity variation for two
TC cases in the Western North Pacific, Soudelor (201513) and
Mangkhut (201822), which have long life spans and have impacted
China significantly.We use historical data from 2000 to 2014 to train
the GBRT model. The trained GBRT model is then used to predict
the intensity changes for Soudelor and Mangkhut, respectively. The
TCs intensity prediction results are compared with the
corresponding values from the best track data. The time series of
the TCs intensity of Soudelor and Mangkhut from the two best tack
data and the GBRT prediction by the 12-h and 24-h lead time
forecast are compared in Figure 10. Figure 10A shows the tracks of
these two TCs, which have experienced all three processes: over the
open ocean, near the coast, and over land. The different colors in
Figure 10A represent the different TCs intensity levels.

Figures 10B,C show the comparison between the time series
of Soudelor’s intensity prediction by the GBRT model with 12-h
and 24-h forecasting lead time, and the corresponding TCs
intensity values from the STI and JTWC best track data. The
solid lines refer to the TCs intensity values from the best track
data, and the dashed lines refer to the intensity forecast by the
GBRT model. The red color indicates the comparison based on
the STI data, and the black color indicates the comparison based
on the JTWC data. Figures 10D,E show similar comparisons as
Figures 10B,C, but for TCs Mangkhut. From the figures, it can be

seen that the prediction model can generally capture the TCs
intensity variation by 12-h and 24-h lead time forecast. However,
when the TCs experience rapid intensification, the models’
performance is not satisfactory.

4 CONCLUSION

Based on the TCs best track datasets from STI and JTWC from 2000
to 2019, this study proposes TCs intensity prediction models by the
GBRT method. Using the index of SL ratio, TCs data are grouped
into four parts: TC samples over the open ocean, near the coast, over
land, and all TC samples. The future TCs intensity changes of 12 h,
24 h, 36 h, 48 h, 60 h, and 72 h are the model predictands, which are
obtained from the best track datasets. Synoptic variables,
climatological and persistent variables, which are derived from
the NCEP reanalysis data and the SST data from NOAA, are
used for the model predictors. Unlike the MLR model, the GBRT
model can describe well the nonlinear relationship between
predictors and predictands. Compared with the MLR model, R2

of theGBRTmodel for TCs intensity forecast increases by an average
of 8.47% and 4.45% for STI data and JTWC data, respectively. MAE
(RMSE) drops by an average of 26.24% (25.14%) and 10.51%
(4.68%) for the two datasets. By comparing the statistical
properties for the prediction models based on different datasets,
the quality of the TCs best track data over theWestern North Pacific
from STI might be slightly better than that from JTWC.

According to the feature importance of the GBRTmodel, for TCs
after landfall, the significant predictors are Vmax and Dvmax.
Dvmax plays the most crucial role in TCs intensity change for
TCs over the open ocean and near the coast, as well as for all TC
samples when the forecasting lead time is 12 h. And POT is essential
for TCs intensity change when the forecasting lead time is more than
24 h. Besides, SL ratio is an important variable affecting TCs intensity
change when TCs are near the coast and for all TC samples when the
forecasting lead time is 24–36 h.

In addition, we use the Bayesian optimization algorithm to
tune the hyperparameters of the GBRT model to improve the
accuracy of the prediction model. For the prediction performance
based on the STI data and JTWC data, the R2 value increases by
approximately 3.37% and 3.26% on average. The MAE (RMSE)
decreases by an average of 3.22% (2.62%) and 3.82% (3.71%).

Overall, the GBRT model can describe well the complex
nonlinear relationship between predictors and TCs intensity
change and improves the performance of the intensity
prediction of the TCs throughout their life span, compared
with the MLR model. Therefore, the GBRT prediction model
is practically valuable, and can be referred to for operational TCs
intensity forecast.
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