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Mass spectrometry imaging (MSI) in sedimentary archives can produce records of

molecular proxies atμm-scale resolution. For example, in annually varved sediments

of the Santa Barbara Basin, such a fine resolution allows deciphering sub-annual

distributionsof archaeal tetraether lipids, haptophyte-derived alkenones, and sterols.

Herein, we reported the establishment of an untargeted data processing workflow

aimed at dissecting the MSI datasets and extracting information beyond that

obtained by targeted analysis of known molecular proxies. The combination of

MSI and the untargeted workflow not only increases the spatial resolution for

molecular stratigraphy but also dramatically broadens the number and diversity of

molecular signals evaluated, enabling us to discover unique molecular signatures

imprintedby various biogeochemical processes.Weapplied theproposedworkflow

to twoMSIdatasets thatwerebothmeasuredon theuppermost ~10 cmof theSanta

Barbara Basin sediments while covering different mass ranges. Two matrices of

18625 × 293 and 18963 × 323 (number of spectra × number of peaks) were,

respectively, extracted after peak alignment using bin-wise kernel density

estimation and subsequent peak picking by peak prominence filtering combined

with geochemical context-based filtering. Feature extraction by non-negative

matrix factorization revealed in total 15 stable molecular clusters with distinct

spatial distributions in the sediments. Each cluster typically comprised several to

dozens of compounds, with the majority of compounds in each cluster likely

belonging to similar chemical taxonomies. Some of these clusters can be linked

to specific biogeochemical processes. For example, chlorin-like compounds are

possibly related to diatom production, alkenones are related to coccolithophorid

production, and steranes and long-chain fatty acids likely represent terrigenous

input. Supervised learning from these data mining results further extracted

molecular signatures with proxy potential that appear to be linked to specific

environmental conditions inferred from historical oceanographic data. However,

generalizability to other sedimentary settings will require further investigation.
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1 Introduction

Biomarkers in geological samples encode information about

past environments and ecosystems (Hayes et al., 1990; Peters

et al., 2005). Biomarker-based molecular proxies have been

widely applied in reconstructing paleoecological and

paleoclimatic history (Damsté et al., 1990; Hinrichs et al.,

1999; Huang et al., 1999; Summons et al., 2022). The initial

proposal of molecular stratigraphy occurred more than

three decades ago (Brassell et al., 1986), when the degree of

unsaturation of long-chain methyl and ethyl ketones

(i.e., alkenones) produced by ubiquitous coccolithophores was

suggested to indicate variations in sea surface temperatures

(SST). Another example of a biomarker-based proxy is the

stanol/stenol ratio, which is sensitive to redox conditions in

depositional settings (Nishimura and Koyama, 1977;

Wakeham, 1989) as Δ5-sterols are microbiologically reduced

to 5α (H)-stanols under anoxic conditions (Rosenfeld and

Hellman, 1971; Eyssen et al., 1973). Conventional biomarker

analysis includes the solvent extraction of geological samples, the

subsequent separation of the extract into varying fractions, and

the instrumental analysis of the crude extract or selected

fractions. Due to the requirement of at least gram-sized (cm-

scale) sample amounts in such analytical protocols, the resulting

biomarker records usually indicate the average state of past

environments and ecosystems over decades to millennia and

are not fine enough for identifying abrupt environmental changes

and high-frequency climate oscillations.

Recently, we have increased the resolution of biomarker

records in sediments to μm-scale by an extraction-free, mass

spectrometry imaging (MSI)-based approach via matrix-assisted

laser desorption/ionization coupled to Fourier transformation-

ion cyclotron resonance-mass spectrometry (MALDI-FT-ICR-

MS;Wörmer et al., 2014,Wörmer et al., 2019; Alfken et al., 2019).

In the annually varved sediment of the Santa Barbara Basin

(SBB), such a fine resolution allows deciphering sub-annual

distributions of archaeal tetraether lipids, haptophyte-derived

alkenones, and sterols, which are sensitive to changes in

upwelling intensity, sea surface temperature, and water

column redox conditions (Alfken et al., 2020, 2021). The MSI-

based protocol has also successfully revealed astonishingly

diverse spatial signatures of lipid biomarkers along a ~1 cm

thick microbial mat (Wörmer et al., 2020), demonstrating its

capability in resolving fine spatial distributions of biomarker

records beyond rather coarse concentration profiles.

Nevertheless, our MSI-based studies of sedimentary archives

so far have only focused on certain groups of biomarkers,

such as alkenones and sterols. Thousands of ions are

generated in a single spectrum of each μm-sized laser spot in

addition to these targeted biomarkers, resulting in massive

amounts of spectrometry data that are not readily mineable

but could contain novel, biogeochemically relevant

biomarkers. An untargeted data processing protocol is thus in

need for the comprehensive understanding of sedimentary MSI

datasets.

Over the last decade, advances in bioinformatics have shed

light on hidden molecular clues in MSI datasets obtained from

biological tissues, providing automated tools/protocols for data

cleaning, as well as unsupervised and supervised data mining

(reviews in Alexandrov, 2012; Trede et al., 2012; Thiele et al.,

2014; Verbeeck et al., 2020). For example, Eriksson et al. (2019)

proposed a sensitive peak detectionmethod based on cluster-wise

kernel density estimation (KDE), an algorithm for estimating the

probability density function of random variables (Botev et al.,

2010), allowing the discovery of both faint and localized peaks in

MSI datasets. Gray level co-occurrence matrices (GLCM; Hall-

Beyer, 2017) that compute the distribution of co-occurring pixel

values at specified offsets in an image were utilized in Wijetunge

et al. (2015) for unsupervised peak picking, which enables

identifying molecules with structured spatial distributions.

Various matrix factorization techniques, such as principal

component analysis (PCA; Jolliffe, 2002), independent

component analysis (ICA; Jutten and Herault, 1991; Comon,

1994), and non-negative matrix factorization (NMF; Brunet

et al., 2004; Kim and Park, 2007) have been successfully

applied to MSI datasets for dimensionality reduction and

feature extraction. Among these, NMF is specifically useful in

extracting easy-to-interpret biologically relevant information

(e.g., Siy et al., 2008; Gut et al., 2015; Nijs et al., 2021). In

addition to these unsupervised approaches, supervised machine

learning has also been reported for identifying tumor tissues and

discovering tumor-related biomarkers (e.g., Quanico et al., 2017;

Ovchinnikova et al., 2020; Mittal et al., 2021).

Data mining approaches designed for biological MSI datasets

often take advantage of the spatial resolution of MSI and search

for biomarkers that co-localize with specific biological structures,

e.g., tumors. Although geological samples are generally not as

clearly structured as biological tissues, the laminated samples

from the Santa Barbara Basin should be imprinted with distinct

spatial molecular signatures caused by seasonally recurring

biogeochemical processes. For instance, sediments in the

center of SBB are deposited in oxygen-depleted settings, and

they are characterized by annual varve couplets of terrigenous

mineral-rich laminae deposited during the rainy fall–winter

season alternating with biogenic-rich laminae deposited

during the highly productive spring–summer season

(Hülsemann and Emery, 1961; Reimers et al., 1990; Thunell

et al., 1995; Schimmelmann and Lange, 1996). Such distinct

sources should be reflected in biomarker signatures that are, to

some extent, correlated with environmental conditions, such as

salinity and nutrient concentrations.

In this study, we reported an untargeted data processing

workflow for dissecting sedimentary MSI datasets and extracting

information beyond conventional molecular proxies, enabling us

to discover unique molecular signatures imprinted by varying

biogeochemical processes in sediments. The proposed workflow
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is validated by re-analyzing the MSI datasets obtained from the

SBB sediments measured by Alfken et al. (2020, 2021).

Untargeted peak detection, selection of informative peaks

whose distributions mirror the lamination of the sediment,

pattern recognition for molecular signature discovery, and

relating molecular signatures to environmental variables are

all part of the re-analysis. In addition, conventional molecular

proxies are often established in a bottom-up manner, starting at

characterizing specific biomarkers in geological samples, then

identifying their roles in biogeochemical processes, and, in the

end, building geochemically meaningful proxies that stand the

test of “time” and “space”. In this study, based on the proposed

data processing workflow, we tried to demonstrate the potential

of supervised learning for discovering novel, biogeochemically

relevant molecular proxies in a top-down manner, i.e., building

indicative proxies without prior knowledge of their

biogeochemical implications.

2 Samples and methods

2.1 Mass spectrometry imaging
experiments and datasets

Four MSI datasets (Table 1) acquired from the uppermost

~10 cm of box core SPR0901-05BC collected from the center of

SBB were employed to evaluate the data processing workflow

proposed in this study. The sediment samples and MALDI-FT-

ICR-MS analysis protocol have been described in detail in

Alfken et al. (2020, 2021). Datasets A1 and A2 were

measured in Alfken et al. (2020) with a mass window of

520–580 Da for mapping the UK′
37 index, and datasets B1 and

B2 were measured in Alfken et al. (2021) with a wider mass

window of 375–525 Da for mapping the stanol/stenol ratios.

A1 and B1 were obtained from the uppermost ~5 cm of the

sediment, and A2 and B2 were obtained from 5–10 cm intervals

on the sediment. For the sake of brevity, A1 and A2, and B1 and

B2 were merged, respectively, in this study, and the resulting

new datasets were coded as datasets A and B. In addition,

although datasets resulting from analysis of the m/z range

1280–1360 are available from Alfken et al. (2021), they were

deemed not to be practical for evaluating the untargeted

workflow due to the low abundance of known biomarkers in

this mass range.

2.2 Data processing workflow

The MSI datasets were first exported to plain text files

(*.txt) from Data Analysis version 4.4 software (Bruker

Daltonics). These plain text files were taken as inputs by

the proposed workflow (Figure 1) in this study, which is

implemented in an in-house developed python package that

is publicly available (https://github.com/weimin-liu/msi_

feature_extraction). In brief, the workflow includes a data

cleaning module for mass calibration, peak normalization,

peak alignment, and peak picking, and a data mining module

for molecular signature extraction and clustering of

molecules. In addition, ElasticNet was employed to train

multivariate linear regression models for indicating

environmental conditions using the data mining results, in

order to demonstrate the potential of supervised learning for

molecular proxy discovery. The individual steps and the

rationale of the proposed workflow are described in detail

in the following sections.

2.2.1 Data cleaning
In this step, the spectra were first calibrated, normalized by

median peak intensity, aligned onto common mass-to-charge

(m/z) ratios detected by bin-wise KDE, and cleaned by a two-step

peak picking method to extract robust and informative signals in

the spectra, including a peak prominence filter and a

geochemical-context-based filter based on the varying deposits

visualized by the X-Ray image of the sediment.

2.2.1.1 Mass calibration and peak intensity normalization

Raw spectra were calibrated with lock-mass calibration in

data analysis before being exported (Alfken et al., 2020, 2021).

Subsequently, a quadratic mass error function was fitted from the

mass deviations of calibrants in each spectrum for further

calibration. The calibrants used in datasets A and B are listed

in Supplementary Table S1. They were the most ubiquitous

compounds in each dataset whose chemical formulas can be

assigned with great certainty. In addition, peak intensities in each

TABLE 1 Basic information of the MSI datasets employed in this study.

Label m/z window (Da) Depth Number
of data points

Merged label

A1 520–580 Upper ~5 cm 9071 A

A2 520–580 ~5—10 cm 9554

B1 375–525 Upper ~5 cm 9475 B

B2 375–525 ~5—10 cm 9488
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spectrum were normalized to the median peak intensity of the

spectrum as it was found to be robust against artifact generation

such as ion images showing inaccurate ion distributions

(Deininger et al., 2011; Fonville et al., 2012).

2.2.1.2 Peak alignment with bin-wise KDE and peak

prominence filtering

For a molecule whose theoreticalm/z ismzi, its measuredm/

z in the spectrum Sj is mzi,j that has a random deviation from

mzi. We assume mzi,j is normally distributed around mzi and

determinedmzi from the distribution ofmzi,j with KDE. The so-

determined mzi ratios are referred to as reference m/z ratios in

this study since they do not necessarily represent the exact

theoretical m/z ratios.

Concretely, we adapted the cluster-wise KDE approach

proposed in Eriksson et al. (2019) by omitting peak

clustering and detecting peaks directly in mass bins. We

used mass bins with an interval of 1 Da starting at every

integer mass (e.g., 375.0—376.0 Da) to collect m/z from all

spectra and got an array of bins [bin1, bin2, bin3, . . .]. We then

fitted KDE to the distribution of m/z within each sorted bin

using a Gaussian kernel function, the bandwidth of which is

automatically selected by the improved Sheather Jones

algorithm implemented in the python package KDEpy

(Odland, 2018), which is robust in fitting multimodal

distributions (Botev et al., 2010). Reference m/z ratios were

detected on the KDE curve by first normalizing its height to [0,

1] and then picking local maxima with peak prominence

(defined in Virtanen et al., 2020) greater than a pre-defined

threshold pth (pth ∈ (0, 1)). How the choice of pth influences the

peak picking results, including the quality and the coverage of

resulting peaks, is evaluated in Supplementary Text S1. Finally,

all spectra were aligned onto the referencem/z ratios by picking

the nearest neighbor (i.e., the closest peak) with a maximum

drift threshold of 10 ppm.

2.2.1.3 Peak picking with GLCM features: Geochemical-

context-based peak picking

The reference peaks detected by bin-wise KDE likely

contained signals of background noise and non-informative

peaks that cannot be reliably removed by peak prominence

filtering. In this study, we defined informative peaks as those

having certain spatial structures instead of being randomly

distributed in the sediments. The two datasets were obtained

from the varved SBB sediments consisting of seasonally

alternating deposits, which allow the visualization of the

associated density differences on an X-ray image (positive

image). Since the dense, terrestrial deposits are displayed as

dark, and the more porous, diatom-rich biogenic deposits as

light laminae (Hülsemann and Emery, 1961; Soutar and Crill,

1977; Reimers et al., 1990; Thunell et al., 1995), it is reasonable to

assume that geochemically informative peaks should inherit

FIGURE 1
(A) Proposed workflow including data cleaning and data mining modules for the untargeted analysis of the sedimentary MSI dataset,
supplemented by a supervised learning example to demonstrate its potential for the discovery of novel biomarker proxies on the basis of the
proposed workflow. * Molecular signatures refer to the small sets of hidden features extracted by repeated NMF, and they denote the commonality
of co-occurring molecules. By contrast, ElasticNet tries to find the variability in these co-occurring molecules that correlate with certain
environmental parameters. (B) Graph shows an example of the workflow, including the detection of reference peaks betweenm/z values 551.0 and
552.0, the calculation of the gray level co-occurrence matrix (GLCM), and the unsupervised data mining with non-negative matrix
factorization (NMF).
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similar spatial patterns. Based on this assumption, a

geochemical-context-based peak picking method was

employed in the workflow as a supplementary approach to

peak prominence filtering.

Concretely, ion images were first generated using

normalized ion intensity maps across the sediment slide and

were then preprocessed using a similar approach, as described

in Wijetunge et al. (2015). In brief, each ion image was first

rescaled to include all intensities that fall between the 2nd and

98th percentiles to remove hotpots and was subsequently

smoothed by a mean filter with a 3 × 3 neighborhood

(raster) to reduce technical artifacts. All intensity values

excluding 0 in each image were then quantized to 11 integer

intensity levels based on the respective intensity histogram.

The resulting ion images had 12 shades of gray, in which

0 denotes the absence of the peak, while 1—11 denote

increasing peak intensities. The X-ray photograph of the

uppermost ~10 cm sediment slide exhibits the characteristic

varved structure of SBB sediments, and it was thus targeted for

spatial similarity comparison. Instead of computing pixel-to-

pixel correlations or the GLCM scores proposed in Wijetunge

et al. (2015), the features extracted using GLCM from the ion

images and X-ray photographs were compared (Haralick et al.,

1973). We used the approach implemented in the python

package scikit-image (van der Walt et al., 2014) to calculate

GLCM features, including contrast, dissimilarity, correlation,

energy, and homogeneity, for the quantized ion images and

X-ray photographs in 0°, 15°, 45°, 90°, 105°, 135°, and 270°

angles, with pixel pair distance offsets from 1—5. The output

for each image was a 175-dimension GLCM feature vector.

Principal component analysis (PCA) was performed on the

standardized GLCM feature vectors to visualize their

variability in GLCM features. The cosine similarities

between the GLCM feature vector of ion images and those

of X-ray photographs were computed for ranking the ion

images, and the cutoff for peak picking was determined by

manually examining every fifth percentile of the ranked ion

images.

2.2.2 Data mining with NMF
2.2.2.1 Spatial molecular signatures discovered with

repeated NMF

The MSI dataset V after data cleaning is a m × n matrix that

has m spectra, each of which has n peaks. We assume molecules

that are produced by the same living organisms or related to the

same biogeochemical processes should have similar spatial

distribution patterns (signatures) in the sediments.

Mathematically, assuming V has a total of k unique

signatures, we can discover a matrix W that denotes these

spatial signatures and a matrix H that denotes the associated

molecule clusters, given the factorization V ~ WH (Brunet et al.,

2004). The resulting matrices W and H have a dimension of

m × k and k × n, respectively, and both contain only non-negative

entries (i.e., NMF). The NMF algorithm implemented in the

python package scikit-learn (Pedregosa et al., 2011) was

employed in this study.

Since NMF does not necessarily converge to the same

solution over multiple runs, its rank k, i.e., the number of

clusters/signatures, needs to be properly estimated in order to

get the most stable results. Therefore, we factorized V 30 times

with random initial conditions at each rank between 3—20 and

computed the corresponding consensus matrix �C, following

the approach described in Brunet et al. (2004). The stability of
�C denotes how strong the clustering of V into k classes is and

can be measured by the cophenetic correlation coefficient

(Brunet et al., 2004) and dispersion coefficient (Kim and

Park, 2007), in both of which 1 denotes the most stable

clustering, while 0 denotes the least stable clustering. In

addition, given the apparent fact that sedimentary MSI

datasets are not as well-structured as datasets obtained from

biological tissues, similarW andH derived over multiple NMF

runs were accumulated to highlight the stable signatures. In

other words, for the ith spatial signature discovered in the jth
NMF runs Wi,j and Hi,j, if they were strongly correlated

(Pearson’s r > 0.9) with signatures Wm,n and Hm,n (n< j)
discovered in previous NMF runs, Wi,j and Hi,j were,

respectively, added onto Wm,n and Hm,n.

In addition, a co-occurrence molecular network was

constructed based on the consensus matrix C�. Nodes in the

network represent the column and row indices in C�, and the

thickness of edges between the nodes denotes the corresponding

entries in C�.

2.2.2.2 Linking quarterly averaged signatures with

environmental parameters

Each obtained signature is a matrix that has the same

dimension as the ion images in the spectra, and its entry wi,j

denotes the abundance (median normalized peak intensity) of

the signature at the location (i, j) on the sediment slide. In this

step, in order to find the geochemical implications and the

potential drivers of these mathematically derived signatures, we

converted them to quarterly averaged time series using the same

approach described in Alfken et al. (2021), including correcting

tilted laminae, and transforming the spot coordinates to depth

and age using the tie points of the age model. The age model of

SPR0901-05BC was established by varve counting and

additional identification of specific marker layers on the

basis of the X-ray image, yielding an accuracy of ±1 year for

the data reported in this study (Schimmelmann & Lange, 1996).

The resulting temporal sequences were compared with

seasonally measured water column data, including

temperature, salinity, oxygen concentrations, and nutrient

concentrations, at the CalCOFI (California Cooperative

Oceanic Fisheries Investigation) station 81.8 46.9 (CalCOFI,

2018), situated in the center of the SBB and in close proximity to

the core location, using dynamic time warping (DTW)
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constrained by a maximum shift of 12 months. The water

column data were treated by the same approach described in

Alfken et al. (2020). The rationale behind the use of DTW is that

it takes varying amounts of time for the deposition of

biomarkers into sediments. For example, biogenic materials

usually deposit rapidly, while most terrigenous materials

usually arrive at the topmost sediment in the center of the

SBB basin within 1 year (Schimmelmann and Lange, 1996).

DTW is particularly useful in measuring the similarity between

time series that may have varying lags (Zhang et al., 2011;

Wannes et al., 2022). Furthermore, although the terms

“positive” and “negative” correlation are used in the section

below to characterize the link between signatures and

environmental variables, they have no statistical significance.

In fact, the words imply that the temporal sequences of

quarterly averaged signatures mirror the temporal sequences

and inverted temporal sequences of environmental variables,

respectively.

3 Results and discussion

We applied the data cleaning and data mining workflow

described earlier to MSI datasets A and B obtained from the

uppermost ~10 cm of the SBB box core SPR0901-05BC. In the

following part, we report the output of the workflow at each step,

with emphasis on the accuracy of referencem/z ratios detected by

bin-wise KDE, the performance of the geochemical context-

based filter, and the geochemical implications of extracted

molecular signatures. In addition, the potential of supervised

learning based on these untargeted data mining results for

molecular proxy discovery is also discussed.

3.1 Peak alignment with bin-wise KDE

In this study, since peak prominence filtering was further

supplemented by a geochemical-context-based filter, and data

reduction has already been applied to both MSI datasets

employed to remove peaks with low signal-to-noise ratios

(Alfken et al., 2020, Alfken et al., 2021), we chose a low pth of

0.1 that favored the detection of more reference peaks for both

datasets. As a result, 1472 and 1724 reference peaks were detected

in A and B, respectively. After aligning spectra onto these

reference peaks, the TIC of the resulting spectra accounted for

70.70% and 51.24% of the TIC of original spectra A and B,

respectively. TIC recovery percentages per laser spot are shown

in Supplementary Figures S2A,B, and they were mostly

homogenous across the sediment slides. We examined the

areas where the TIC recovery percentages were specifically

low and found that most of them are in fact fissures on the

sediment slides. Nevertheless, in order to avoid possible bias

introduced by the differences in TIC recovery percentages, peak

intensities of each spectrum were normalized by the median peak

intensity of the spectrum. Supplementary Figures S2C,D shows

the mean absolute mass drifts for each reference peak in datasets

A and B. Most reference peaks detected in A have mean absolute

mass drifts between 0 and 4 ppm, and the reference peaks

detected in B have a slightly larger mean absolute mass drift

between 1 and 5 ppm.

In addition, differences between the theoretical mass of some

biomarkers that are detectable by MSI, as reported by Wörmer

et al. (2019), and the mass of the nearest reference peaks detected

in A and B are compared in Supplementary Table S2. The

18 compounds listed were detected with absolute mass

deviations ranging from 0.00 to 2.67 ppm, with an average of

0.84 ppm. This suggests that reference m/z ratios estimated by

bin-wise KDE provide a reliable approximation of the theoretical

mass and can thus be used for assessing possible chemical

formulas, although the precise structures cannot be

determined due to the complexity of spectra without prior

separation and the general difficulty of obtaining spatially

resolved MS/MS spectra in an untargeted way (Alexandrov,

2020).

3.2 Peak picking with GLCM features

The GLCM features computed for the ion images of the

reference peaks picked by bin-wise KDE and peak prominence

filtering are deposited in Metabolights (Haug et al., 2020). The

reference peaks were ranked by the similarities of their GLCM

features to the X-ray photograph of the sediment slide

(i.e., geochemical-context-based peak picking). We examined

the ion images at every fifth percentile (Supplementary Figure

S3) from the top of the ranked lists to determine the cut-off

points for peak picking and found that the ion images at the

upper 20th percentile in datasets A and B begin to show relatively

uniform spatial distribution on the sediment slides. All other

lower-ranking peaks below the upper 20th percentile were

removed, resulting in a total of 293 and 323 peaks (i.e., the

top 20% of the ranked peaks) to be picked in datasets A and B,

respectively.

To visualize the performance of geochemical-context-based

peak picking, variabilities in GLCM features among all reference

peaks detected by bin-wise KDE and peak-prominence filtering

are shown in the biplots (Figure 2) obtained by PCA of the

standardized GLCM features’ table. The definition and the

computation of the five GLCM properties were described in

detail in Hall-Beyer (2017). Briefly, correlation measures how

correlated the specified pixel pairs are, and constant pixel pairs

have no contribution to the correlation of the whole ion image.

Both contrast and dissimilarity measure how different the

specified pixel pairs are, and both energy and homogeneity

measure how uniform the pixel intensities are over the whole

ion image. The first two principal components (PC1 and PC2)
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explain 98.05% and 98.63% of total GLCM features’ variation in

A and B, respectively. On the PC1-PC2 plane, the reference peaks

detected in both datasets exhibit U-shaped distributions, and the

reference peaks on the arm in the direction of correlation are

closer to the X-ray photograph than the others. In other words,

the reference peaks on the arm in the direction of correlation are

geochemically more informative than the others. Most variations

in GLCM features occur among varying GLCM properties rather

than varying pixel pairs at different angles and distances. Figure 2

suggests that the ion images of the most informative peaks are

characterized by high correlation but low energy, homogeneity,

dissimilarity, and contrast. This is to be expected since ion images

that show laminations should have many co-occurring light

pixels (i.e., high intensities) and co-occurring dark pixels

(i.e., low intensities). In comparison, the ion images of the

least informative peaks are characterized by low correlation

and either high contrast and dissimilarity or high homogeneity

and energy, which suggests that these ion images are either rather

scattered, i.e., with a large number of zeros, rather uniform, i.e., of

low pixel intensity variations, or have too large local pixel

intensity variations to show laminae.

The geochemical-context-based peak picking allows us to

select peaks that are potentially linked to biogeochemical

processes without prior knowledge of their identity, which is

of key importance to untargeted data mining. Supplementary

Figure S4 shows the ion images of the five most informative peaks

(most similar to the X-ray photograph) and the five least

informative ones (least similar to the X-ray photograph) in

datasets A and B. In dataset A, the two most informative

peaks have m/z of 557.252 and 558.255. They likely represent

pyropheophorbide a and its 13C-isotopologue as Na+-adducts,

respectively. The C37 di-unsaturated alkenone, which was

originally the targeted compound of dataset A in Alfken et al.

(2020), is also among the top ranked molecules (fourth, m/z =

553.532) and serves as proof of concept for the ability to detect

meaningful compounds with this workflow. In dataset B, the

spatial patterns of the five most informative peaks show less

laminae-like structure than those in dataset A. The two top

ranked molecules can be attributed to chemical formulas

C29H48O(Na
+) and C29H50O(Na

+) and likely represent sterols,

although the specific structures are yet to be determined. Notably,

the third–fifth ion images are characterized by the presence of

hotspots in addition to the laminae; these hotspots might

represent lacustrine debris. In contrast to these most

informative molecules, the ion images of the least informative

peaks in datasets A and B are rather scattered in the sediment,

which agrees with the biplots in Figure 2.

In addition, Supplementary Table S2 shows the rank of some

MSI-detectable putatively identified biomarkers after ranking all

reference peaks frommost informative to least informative. Most

of these biomarkers are ranked relatively high. Notably, C37 and

C38 alkenones are closely ranked with each other, indicating that

they have similar spatial patterns. Interestingly, the two di-

unsaturated ones and the two tri-unsaturated ones are,

respectively, close to each other, indicating that alkenones

with the same unsaturation degree have more similar spatial

patterns than those with the same carbon chain length. This

agrees with the fact that the degree of unsaturation is susceptible

to changing environmental conditions, i.e., SST (Volkman et al.,

1980a, Volkman et al., 1980b; Marlowe et al., 1984a, Marlowe

et al., 1984b; Brassell et al., 1986). Such consistency demonstrates

the power of MSI in revealing the fine spatial patterns of

biomarkers in sediments and the capability of geochemical-

context-based peak picking in selecting geochemically

informative peaks from sedimentary MSI datasets without any

prior knowledge of their corresponding molecules. Moreover, the

application of geochemical-context-based peak picking is not

limited to the MSI datasets obtained from varved SBB sediments

FIGURE 2
Biplots obtained by principal component analysis (PCA) of the standardized GLCM features’ table illustrate variabilities in GLCM features
extracted among reference peaks in datasets (A) and (B). The colors of the dots denote their distance from the X-ray photograph of the sediment
slide. GLCM features are denoted by arrows in the biplots, and the arrowswith the same color denote the sameGLCMproperty derived fromdifferent
pixel pairs. cont = contrast; homo = homogeneity; corr = correlation; diss = dissimilarity; ener = energy.
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as it should also be possible to target geological structures other

than sediment laminae.

3.3 Spatial signature identification
with NMF

The data cleaning procedures mentioned previously

extracted a 18625 × 293 data matrix (number of spectra ×

number of peaks) from dataset A and a 18963 × 323 data

matrix from dataset B, which constitutes an unimaginable

information density for a ~10 cm long sediment section.

Repeated NMF was employed to factorize the two resulting

matrices in order to extract unique molecular signatures with

the associated molecule clusters, in analogy to its most popular

use in bioinformatics, i.e., clustering gene expression data and

finding the most representative genes of the clusters (Brunet

et al., 2004).

3.3.1 Stable spatial signatures and their
environmental drivers

The performances of NMF at varying ranks between 3 and

20 are compared in Supplementary Text S2. As a result, an NMF

rank of 10 was chosen for both dataset A and dataset B, resulting

in the extraction of in total 17 and 14 distinct spatial signatures,

respectively, over 30 NMF runs (Supplementary Figures S6, S7).

From these, 5 and 10 spatial signatures (Figure 3) are stable

because they were reached in at least 27 out of 30

(i.e., >90 percent) NMF runs. The unstable signatures likely

represent the local outliers among these stable signatures, but

FIGURE 3
Stable spatial signatures discovered in datasets A (A) and B (B). The left figures show the ion images of spatial signatures, i.e., the columns ofW,
the weighted average of all ion images in the cluster, with a color scale in “viridis”, where the lighter colors denote a higher abundance of the
signatures. The right figures show the pseudomass spectrum constructed using the contributions ofmolecules, i.e., in which peak intensities denote
the entries in the rows H.
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their differences are too trivial to be stably separated. For

example, in dataset B, the unstable signature B-NMF12 is in

fact similar to the stable signature B-NMF6. Although they are

not well-separated from the rank selected in this study, they are

in fact separated from each other in the consensus-matrix-based

molecular network.

In the following, we compared the spatial signatures with the

varved structures of the sediment revealed by its X-ray

photograph, and their quarterly averages after applying an age

model with the environmental parameters determined in the

water column to show that these mathematically derived

signatures are indeed relevant to biogeochemical processes.

However, one should keep in mind that the inferred

ecological and geochemical implications hereafter are

speculative and could be oversimplified due to the numerous

stereochemical possibilities of the molecular formulas detected,

along with other factors. The spatial signatures are coded in the

following way: assuming dataset V ∈ {A, B}, given V ~ WH for

dataset V, we refer to the columns inW as signatures and the kth
column as a signatureV-NMFk, whose ion images are denoted by

its entries. The contribution of each molecule to a signature

V-NMFk is denoted by the entries in the kth row ofH. Although

the unstable signatures are worth investigating, for example,

B-NMF10 and B-NMF12 show almost complementary ion

images (Supplementary Figure S7) that likely indicate distinct

sources, only the stable signatures are discussed in the following

for succinctly demonstrating the capability of MSI in conjunction

with untargeted data mining in extracting biogeochemically

relevant molecular signatures from the sediments. For stable

signature V-NMFk, we show

(1) its ion image that represents the cluster center (the weighted

average of all ion images in the cluster; Figure 3, left),

constructed using the entries in the kth column of W;

(2) the pseudo mass spectrum of each molecule’s contribution

(Figure 3, right), i.e., the peak intensities denote the entries in

the kth row of H;

(3) the associated co-occurrence molecular network constructed

using the consensus matrix over multiple NMF runs

(Figure 4);

(4) the DTW distance between the quarterly averaged

abundance of V-NMFk and environmental parameters

(Figure 5A), where closer distance suggests a stronger

positive correlation, and the DTW distance between the

quarterly averaged abundance of V-NMFk multiplied by

−1 (i.e., flipping the temporal sequence upside down) and

environmental parameters (Figure 5B), where closer distance

suggests stronger negative correlation. Examples of selected

best matched signatures and environmental parameters are

displayed in Supplementary Figure S8.

Among all signatures discovered in the two datasets,

A-NMF3 shows the most distinct laminations (Figure 3).

Figure 6 further shows that the light laminae of A-NMF3

match well with the light diatom ooze laminae of the SBB

sediments, which result from enhanced primary production

(Schimmelmann and Lange, 1996; Bull et al., 2000). The

corresponding molecular network in Figure 4 indicates that

A-NMF3 consists of chlorin-like compounds, and the most

abundant molecule is putatively pyropheophorbide a. We

speculated that pyropheophorbide a and the other chlorin-like

compounds in A-NMF3 derive from zooplankton and

zoobenthos grazing on diatoms (Head et al., 1994; Szymczak-

Żyła et al., 2011), and the distinct light/dark laminae of A-NMF3

may result from the opportunistic bloom-and-bust life cycle of

diatoms (Butterfield, 1997). In fact, by comparing the quarterly

averaged abundance of A-NMF3 to environmental parameters

(Figure 5), we found that the abundance of A-NMF3 is positively

correlated with salinity and nutrient concentrations including the

concentrations of nitrite, phosphate, and nitrate, while negatively

correlated with bottom water oxygen concentrations. The

positive correlation could indicate the increase in diatom

populations and consequently A-NMF3 associated with

increases in nutrient supply (Lange et al., 1997), while the

negative correlation could suggest the depletion of oxygen in

bottom waters, resulting from the subsequent organic matter

remineralization (Reimers et al., 1990; Alfken et al., 2021).

A-NMF6 consists of alkenones produced by the ubiquitous

coccolithophores (Volkman et al., 1980b, 1980a; Marlowe et al.,

1984a, Marlowe et al., 1984b), i.e., C37- and C38-, di- and tri-

unsaturated alkenones, together with their corresponding

isotopologues and a compound with a tentative chemical

formula of C37H70O2, possibly a coccolith derived di-

unsaturated alkenoate, e.g., methyl hexatriacontadienoate

(Marlowe et al., 1984a; Figure 4). Compared to A-NMF3,

A-NMF6 shows less distinct laminations (Figure 6), and its

light laminae do not match very well with each other. This

agrees with previous observations that coccolithophores usually

do not bloom along with diatoms (Zhao et al., 2000). In addition,

the quarterly averaged A-NMF6 has a slightly different correlation

with environmental parameters compared to A-NMF3 (Figure 5).

It is positively correlated with nutrient concentrations, including

the concentrations of silicate, phosphate, and nitrate, while

negatively correlated with the temperature of the water column.

Moreover, although both A-NMF6 and A-NMF3 are negatively

correlated with oxygen concentrations in the water column,

A-NMF6 is best matched with the oxygen concentrations in the

shallower water column, while A-NMF3 is best matched with the

oxygen concentrations in the bottom water column.

Although B-NMF6 also shows distinct laminations in its

ion image, in contrast to A-NMF3 and A-NMF6, it is more

likely to be a terrigenous signal as its light laminae match with

the dark laminae of the sediment (Figure 6) formed by

seasonal runoff during heavy winter rains (Schimmelmann

and Lange, 1996; Bull et al., 2000). MSI also reveals scattered

hotspots in B-NMF6 in addition to the laminae couplets,

Frontiers in Earth Science frontiersin.org09

Liu et al. 10.3389/feart.2022.931157

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.931157


which could indicate the presence of terrigenous particles. The

corresponding molecular network of B-NMF2 shows that it

consists of steranes and unspecified oxygen-containing

compounds (Figure 4). As steranes are not formed from

autochthonous organic matter in immature sediments, they

are likely derived from eroded source rocks of the Monterey

Formation or related oil seeps (Hinrichs et al., 1995); the

oxygen-containing compounds with even-numbered carbons,

i.e., C24H48O2, C26H52O2, and C28H56O2 could be derived

from higher plants (Ratnayake et al., 2005; Kusch et al., 2010).

Moreover, the quarterly averaged B-NMF6 is positively

correlated with the bottom water oxygen concentrations,

while negatively correlated to salinity and nutrient

concentrations (Figure 5), which is consistent with its

assignment to wintertime terrigenous input during periods

of weakened upwelling.

The ion image of B-NMF2 is rather complicated: it is

ubiquitous in the sediment, while some of its light laminae

(more abundant) match quite well with the dark laminae of

the sediment (Figure 6). Hierarchical clustering of the most

representative compounds in B-NMF2 displayed in

Supplementary Figure S9 further reveals the internal structure

of the molecular cluster, which consists of sterols and compounds

that have one to three oxygen atoms and double bond equivalents

typically found in steroids. Sterols and steroids are known to be

produced by diverse species of eukaryotes such as zoo- and

phytoplankton and terrestrial plants (Volkman et al., 1998;

Volkman, 2003). The mechanism causing the colocalization of

these compounds in the sediment deserves further investigation.

It is possible that B-NMF2 captures the superimposed signal of

steroid-like compounds from varying sources. For example, one

of the most abundant molecules in B-NMF2, C30H52O, can be

FIGURE 4
Examples of spatially co-occurring molecular networks discovered in datasets (A) and (B). Each node represents a molecule, with the labels
being the name of biomarkers, possible chemical formulas, or itsm/z ratios. The size of the node denotes the average intensity of themolecule in the
dataset. Isotopologues are represented by the green nodes. Edges (lines between the nodes) denote that the two connected nodes are classified into
the same cluster for at least 90% of total NMF runs, and thicker edges denote the two connected nodes are clustered together more frequently.
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assigned to dinosterol, which is mainly produced by

dinoflagellates (Volkman et al., 1993), the algae which often

blooms during relaxed upwelling (Kennedy and Brassell, 1992;

Smayda and Trainer, 2010). However, the formula is also

consistent with terrigenous biomarkers such as lupanol

(Pancost et al., 2002) or the bacterial biomarker hopanol

(Pearson et al., 2001). Alternatively, B-NMF2 could reflect

benthic biogeochemical processes because of its strong positive

correlation to bottom water oxygen concentration and strong

negative correlation to bottom water salinity and phosphate

concentrations (Figure 5).

The other signatures exhibit distinctive spatial patterns

as well, although not all chemical formulas of the associated

molecules can be assigned with certainty, partly due to the

absence of isotopologue peaks. For example, signatures

A-NMF5 and B-NMF7 are both characterized by the

“intrusion” structure in the uppermost ~5 cm sediment in

addition to the dark and light laminae (Figure 3); such a

structure is also visible on the sediment slide. A-NMF7 is

omnipresent in the sediment, with distinct laminations only

visible in the topmost sediment, and it consists of a large

number of molecules, with the most abundant one likely to

FIGURE 5
(A) DTW distance between the quarterly averaged abundance of the signatures and the environmental parameters integrated over varying
depths of water parcel (above the dashed lines: 0—50 m in 10 m increments; below the dashed lines: 50 m—bottom in 100 m increments), where
smaller distance indicates stronger positive correlation; (B)DTW distance between the quarterly averaged abundance of the signatures multiplied by
−1 (i.e., flipping the temporal sequence upside down) and the environmental parameters integrated over varying depths of water parcel (from
surface to bottom), where smaller distance indicates stronger negative correlation.

FIGURE 6
Comparison between selected stable spatial signatures and the X-ray photograph of the sediments. The color scale of the ion images is in
“viridis”, where the lighter colors denote higher abundance of the signatures.
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be bacteriohopanetetrol (Figure 4). Quarterly averaged

A-NMF7 is positively correlated with silicate

concentration but negatively correlated with temperature

and nitrite concentration (Figure 5). A-NMF9 is of low

abundance in the topmost surface sediment, and it is

associated with three compounds that are apparently

homologs, together with their 13C isotopologues. Notably,

A-NMF9 does not show a strong correlation with any

environmental parameters. In addition, B-NMF1 is

characterized by curved dark/light boundaries in the

sediment (Figure 3). We speculated that they are

polyethylene glycol contaminants (PEG; H+ and Na+

adducts) because of the characteristic mass difference of

44 Da between individual molecules (Figure 4). Moreover,

it should be noted that all the signatures discovered in this

study spatially overlap with each other to some extent,

causing image segmentation to be difficult. This is due to

either a blurred zonation of biomarkers or the relatively

small mass window analyzed, which limits the number of

diagnostic biomarkers.

3.3.2 Potential of supervised learning for novel
molecular proxy discovery

The proposed data processing workflow in this study is

explorative and mostly unsupervised as except in the

geochemical-context-based peak picking step, it only utilizes

the information carried by sedimentary MSI datasets

themselves. In order to demonstrate the potential of

supervised learning approaches for novel molecular proxy

discovery on the basis of data mining results, we trained

linear models for indicating SST and sediment-water interface

redox conditions, using the abundances of co-occurring

molecules associated with clusters A-NMF6 (alkenones and

derivatives) and B-NMF2 (incl. steroid-like compounds),

respectively, based on the assumption that residuals among

these co-occurring molecules are not random and result from

biogeochemical influences such as changing environmental

conditions or selectivity in biogeochemical processes.

ElasticNet, a popular regularized linear regression algorithm

implemented in the python package scikit-learn (Pedregosa

et al., 2011), was employed to tackle multicollinearity (Gunst

and Webster, 1975; Alin, 2010). Time-based cross-validation

implemented in scikit-learn (Pedregosa et al., 2011) was

employed to reduce overfitting and autocorrelation; whether

the derived proxies are applicable in longer time series or at

other sites is beyond the scope of this study.

Since it has been established that in dataset A, the UK′
37 index

has a strong correlation with SST (Alfken et al., 2020), we first

validated the use of ElasticNet on the alkenone cluster A-NMF6

and its relationship to SST. Although A-NMF6 contains four 13C

isotopologues and an alkenoate in addition to the monoisotopic

alkenones, the whole cluster is used for training without

removing any peaks in order to show the reliability of

ElasticNet with redundant variables. Figure 7A compares the

SST measured in the water column and the SST indicated by the

trained model and the UK′
37 index, suggesting that the model

trained in this study indicates changes in SST. Supplementary

Table 3 shows the resulting coefficients assigned to the nine

molecules in A-NMF6 after cross-validated ElasticNet training

and indicates that the two di-unsaturated alkenones and their

isotopologues are positively correlated with SST, while the two

tri-unsaturated alkenones and their isotopologues are negatively

correlated with SST. This is in agreement with the definition of

the UK′
37 index proposed in the previous study (Prahl and

Wakeham, 1987). In addition, the putative alkenoate was

assigned with a negative coefficient after training, although it

weighed less than the two tri-unsaturated alkenones. This may

suggest that the molecule is also regulated by coccolithophores to

FIGURE 7
(A) Comparison between the ElasticNet model trained by A-NMF6, SST, and UK′

37 ratio (Alfken et al., 2020); (B) comparison between the
ElasticNet model trained by B-NMF2, bottom water oxygen concentrations, and the C29 stanol/stenol ratio (Alfken et al., 2021). In both figures, the
vertical axes of the time series are staggered (i.e., adjusted along the vertical axes to avoid overlap) for better visualization.
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adapt to changing SST, which agrees with the observation by

Conte et al. (1998) that the cellular ratio of alkenoates to

alkenones in coccolithophores decreases with increasing water

temperature.

B-NMF2 consists of diverse steroid-like compounds with one

or more oxygen-containing functional groups, which might be

sensitive to redox conditions. We further applied ElasticNet to

train a model for indicating bottom water redox conditions using

the abundances of co-localized molecules in B-NMF2 against

bottom water oxygen concentrations. Figure 7B compares the

bottom water oxygen concentrations with the trained model and

the redox-sensitive C29 stanol/stenol ratio. In contrast to the

model for indicating SST (cf. in Supplementary Table S3), the

resulting coefficients for indicating redox conditions are all equal

or greater than 0, with smaller absolute values (Supplementary

Table S4). The non-negative coefficients of the compounds

suggest that variations in the model could be driven by 1) the

relative abundances amongst these steroid-like compounds in

B-NMF2 or 2) the relative abundance of these steroid-like

compounds as a group compared to all other compounds in

the spectrum. Although all non-negative coefficients could make

the model less favorable as a paleoenvironmental proxy andmore

sophisticated nonlinear models are likely required to characterize

the link between these compounds and the redox condition, such

rather complicated supervised learning approaches are beyond

the scope of this study and will be evaluated in our future work.

Since standard scaling was applied before model training, the

magnitudes of resulting coefficients depend largely on the

number of dependent variables. The smaller absolute

coefficients assigned in B-NMF2 compared to those assigned

in A-NMF6 results from the much larger numbers of variables

(molecules) in B-NMF2. Nevertheless, the resulting coefficients

agree with the observation in the aforementioned section that

B-NMF2 is positively correlated with bottom water oxygen

concentrations, and the ElasticNet model, here, further

extracted the most redox-related biomarkers from B-NMF2. It

is interesting that the top three molecules are all C30 pentacyclic

triterpenoids with varying unsaturation degrees. This may

suggest that they are the most recalcitrant components of

B-NMF2 in the sediment. However, other factors cannot be

ruled out, for example, it is also possible that the three

putative C30 pentacyclic triterpenoids have the strongest

contribution from terrestrial input during the winter season as

compounds with the same chemical formulas have been reported

in higher plants (e.g., Escobedo et al., 2012; Kennedy, 2012).

4 Conclusion

This study introduced an untargeted data processing

workflow, including data cleaning and untargeted data mining,

for sedimentary MSI datasets and evaluated the workflow by re-

analyzing two existing MSI datasets obtained from ~10 cm SBB

sediment sections. Bin-wise KDE employed for peak detection and

alignment extractedmore than a thousand peaks from each dataset

and achieved an average mass deviation of 0.84 ppm between the

resulting reference m/z and the theoretical m/z of 18 established

biomarkers detected byMSI in this study. The detected peaks were

then evaluated by the peak-prominence filter that measures the

sparsity of these peaks in sediments, in conjunction with the

geochemical-context-based filter that measures the distance of

the ion images of these peaks from the X-ray photograph of

the sediment, allowing the selection of hundreds of

biogeochemically informative peaks that exhibit spatial patterns

reminiscent of the sediment laminae. The subsequent untargeted

data mining using repeated NMF further extracted a total of

15 stable molecular signatures from these hundreds of

informative peaks. The relevance between these mathematically

derived signatures and historical oceanographic data proves the

capability of the proposed workflow in extracting

biogeochemically relevant molecular signatures from the

sedimentary MSI datasets, broadening the number and diversity

of available candidate compounds utilizable for molecular

stratigraphy. On the basis of these molecular signatures,

ElasticNet, a supervised learning algorithm, combined with

cross-validation was able to train easy-to-interpret multivariate

linear regression models using the residuals among co-occurring

molecules against historical oceanographic data for

paleoenvironmental and paleoceanographic reconstruction, and

it holds great potential for novel biomarker discovery in a top-

down manner and unleashing the full power of MSI in the field of

organic geochemistry.
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